View Article Online View Journal

Journal of Materials Chemistry A

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. Lu, S. Wang, C. Zhou, Z. shi, H. Zhu, X. Wang, Z. Xin, S. C. Yan and Z. Zou, *J. Mater. Chem. A*, 2018, DOI: 10.1039/C8TA05339A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/materials-a

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM.

YAL SOCIETY CHEMISTRY

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Surface chemistry imposing selective reduction of CO_2 to CO over $Ta_3N_5/LaTiO_2N$ photocatalyst⁺

Lei Lu,^{‡a} Shaomang Wang,^{‡b,c} Chenguang Zhou,^{‡a} Zhan Shi,^b Heng Zhu,^a Zhenyu Xin,^a Xiaohui Wang,^a Shicheng Yan,^{*a} and Zhigang Zou^{a,b}

Revealing the mechanism of photocatalytic product selectivity will provide valuable guidance on developing novel catalysts and reaction pathways. Here, the roles of surface chemistry on product generation are well demonstrated over LaTiO₂N, Ta₃N₅, and their hybrids, respectively with dominant (002) and (020) facet. The photocatalytic test results show that the CO₂ is reduced to CH₄ and CO over LaTiO₂N and Ta₃N₅ photocatalysts, respectively. The CO₂ reduction over LaTiO₂N and Ta₃N₅ follows the possible reaction pathway *via* CO₂ \rightarrow COOH^{*} \rightarrow CO \rightarrow CH_x^{*} \rightarrow CH₄, as proposed by the detected intermediates. The product selectivity is dependent on the ability of capturing CO onto photocatalyst surface, probably related to electronegativity of the adsorption sites. The strongly adsorbed CO on LaTiO₂N surface favors the subsequent hydrogenation reaction to generate CH₄, while the weak CO adsorption on Ta₃N₅ induces the CO as a main product of CO₂ reduction, as well demonstrated by theoretical calculation. Such product selectivity is mainly related to the surface chemistry and is independent on the surface charge concentration of photocatalyst. Our results provide a progressive understanding of the selective product formation during the photocatalytic CO₂ reduction.

Introduction

Reduction of CO₂ over semiconductor photocatalyst is recognized to be a potential solution to achieve the recycling of carbon source.^[1-3] Under irradiation, driven by photogenerated electrons of semiconductor, CO₂ can be reduced into various value-added fuels, such as CO, HCO₂H, HCOH, CH₃OH, or CH₄, in the presence of protons that are commonly provided from H₂O splitting by photogenerated hole oxidation.^[4] To date, much concern has been focused on improving the efficiency of the solar-driven CO₂ conversion. However, the product selectivity is still not well understood.

In theory, the formation of reduced products depends on the number of transferring electrons and protons, typically twoelectron process for CO and eight-electron requirement for CH_4 .^[5] Actually, among the reported gaseous CO_2 reductions, the CO and CH_4 are usually detected as the main product over different photocatalysts.^[6-9] For instance, the TiO₂ or C_3N_4 without additional decoration presented excellent CO selectivity,^[6.7] while the selective

CH₄ formation was observed over ZnGa₂O₄ and Zn₂GeO₄.^[8,9] Surface modification including introducing basic sites or loading cocatalysts could induce the CH₄ as main product over TiO₂ or C₃N₄.^[10-14] Meanwhile, exposing the (110) facet of Zn₂GeO₄ produced the CO as main product.^[15] The similar facet dependence of reduced products was also demonstrated on TiO₂ and BiVO₄.^[16-18] These results indicate that the product selectivity of CO₂ reduction is strongly related to surface chemistry of photocatalyst, since the two half-reactions of H₂O oxidation and CO₂ reduction both take place on the photocatalyst surface.

In the previous reports, accompanied by the increase of electron concentration on the surface of photocatalysts by loading cocatalysts, effectively promoted CH₄ formation was observed. Therefore, the product selectivity was considered to be dependent on the charge concentration. Such a standpoint was well demonstrated by forming heterojunction or metal-semiconductor junction to enhance the charge separation efficiency.^[10,11,19-22] Typically, the Pt modification on TiO₂ accelerated the formation of CH_{4} .^[10,11] However, different reduced products could be detected when using the different electrocatalysts. Correspondingly, the Ag and Au are beneficial for CO formation,^[23,24] while Cu commonly shows a combination of hydrocarbons.^[25] This fact means that, in addition to electron concentration, the surface chemistry of catalysts may also play an important role on the product selectivity. Indeed, the difference in CO₂ activation on the surface of various metals or oxides, which determines the reaction pathway and product selectivity, has been investigated in thermocatalysis of CO₂ conversion.^[26] Actually, for explaining the product selectivity of photocatalytic CO₂ reduction, theoretical calculations that using the TiO₂ as a material model have proposed two reaction pathways,

^{a.}Eco-materials and Renewable Energy Research Center (ERERC),

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 (P. R. China)

^b Jiangsu Province Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, Jiangsu 210093 (P. R. China)

^c School of Environment and Safety Engineering, Changzhou University, Changzhou 213164 (P. R. China)

E-mail: yscfei@nju.edu.cn

[†]Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

[‡]These authors contributed equally to this work.

ARTICLE

respectively calling fast-hydrogenation (FH) pathway (CO₂ \rightarrow HCOOH/CO \rightarrow CH₂O \rightarrow CH₃OH \rightarrow CH₄) and fast deoxygenation (FdO) pathway (CO₂ \rightarrow CO \rightarrow C^{*} \rightarrow CH₃^{*} \rightarrow CH₄).^[5,27] However, it is necessary to further understand the effect of surface chemistry on product selectivity, due to that the molecule activation, reaction pathway, and product formation are highly sensitive to the surface properties of catalysts.

Here, to identify the importance of surface chemistry in product formation of the photocatalytic CO₂ reduction, photocatalysts of porous LaTiO₂N plates with exposure of (002) facet, Ta₃N₅ nanorods with exposure of (020) facet, and the corresponding Ta₃N₅/LaTiO₂N composite were prepared by respectively nitriding La₂Ti₂O₇ plates, KTaO₃ microcubes, and their mixtures under flowing NH_3 . The photocatalytic CO_2 reduction tests showed that the CO_2 was, respectively, reduced into CH₄ and CO over LaTiO₂N and Ta₃N₅. Proposed by the detected intermediates, the CO₂ reduction over LaTiO₂N and Ta₃N₅ possibly followed the reaction pathway of CO₂ \rightarrow $COOH^* \rightarrow CO \rightarrow CH_x^* \rightarrow CH_4$. Theoretical calculation showed that the product selectivity was dependent on the ability of capturing CO onto photocatalyst surface, probably resulting from the different electronegativity of adsorption sites. The strongly adsorbed CO on LaTiO₂N surface favored the subsequent hydrogenation reaction to generate CH₄. However, the weak CO adsorption on Ta₃N₅ induced the CO as a main product of CO₂ reduction. Indeed, when using CO as carbon source, the $LaTiO_2N$ could rapidly convert the CO into CH_4 , while the Ta_3N_5 showed a much lower conversion efficiency. Moreover, all the Ta₃N₅/LaTiO₂N samples, where CO₂ reduction took place on Ta₃N₅ surface, evolved CO as main product during the CO₂ conversion. These results confirmed that such product selectivity was mainly related to the surface chemistry and was independent on the surface charge concentration of photocatalyst, providing us a progressive understanding of the selective product formation for the photocatalytic CO₂ reduction.

Experimental Section

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM

Synthesis of La₂Ti₂O₇ and KTaO₃ precursors: The solid La₂Ti₂O₇ powder was synthesized by a typical flux-assisted growth method. Simply, a stoichiometric mixture of La₂O₃ and TiO₂ was thoroughly mixed with NaCl and KCl compounds (NaCl: KCl=1:1), in which the La₂Ti₂O₇ product accounts for 5% mole ratio. The resulting mixtures were heated to 1273 K with a raise rate of 100 K/h and held at this temperature for 10 h. After a cooling process to 973 K at a rate of 50 K/h, it was cooled to room temperature naturally. The KTaO₃ microcubes were prepared by a hydrothermal reaction. Typically, Ta₂O₅ powder (0.4 g) was added to KOH solution (30 mL, 1 M). After ultrasonic dispersion, the resultant suspension was poured into a 50 mL Teflon vessel and heated to 433 K for 12 h. Notably, both the obtained white powders of La₂Ti₂O₇ and KTaO₃ were separated by deionized water washing and dried in an oven at 353 K overnight.

Preparation of Ta₃N₅/LaTiO₂N photocatalyst: The LaTiO₂N and Ta₃N₅ were prepared by respectively nitriding the as-prepared La₂Ti₂O₇ and KTaO₃ precursors (about 0.2 g for each run) under 200 mL/min flowing NH₃ at 1223 K for 18 h at a rate of 10 K/min, followed by a natural cooling process to room temperature. To

obtain the heterojunction of $Ta_3N_5/LaTiO_2N$, the $La_2Ti_2O_7$ and $KTaO_3$ precursors were mixed intensively, and the same nitridation process was carried out. For comparison, $Ta_3N_5/LaTiO_2N$ samples with different Ta_3N_5 ratio were prepared, and the ratio of Ta_3N_5 to $LaTiO_2N$ was achieved by changing the amount of $KTaO_3$. All the obtained products were washed with deionized water, and dried in a vacuum oven.

Photoreduction CO_2 testing: The gas phase photocatalytic reduction of CO₂ was tested in a glass reactor with an area of 4.2 cm² using H₂O as reducing agent, and photocatalyst (40 mg) was uniformly dispersed. The light source was a 300 W Xenon arc lamp fitted with a cutoff filter (λ > 420 nm). The volume of the reaction chamber was about 230 mL. Before the irradiation, the reaction system was vacuumed several times, and then high-purity gas of compressed CO₂ (purity 99.999%) was introduced into the reaction chamber to achieve an ambient pressure. Subsequently, deionized water (0.4 mL) was injected into the chamber as reactant. Prior to irradiation, the adsorption process was held for 2 h. During the reaction, 1 mL gas was extracted by a sampling needle from the chamber at given intervals for subsequent concentration analysis. The carbon-based products were quantified by a gas chromatography (GC-2014, Shimadzu Corp., Japan) with flame ionization detector (FID).

Materials characterizations: The crystal phases were determined by powder X-ray diffraction (XRD, Rigaku Ultima III, Japan) operated at 20 kV and 40 mA with Cu-K radiation. The surface morphology was observed by scanning electron microscopy (SEM, FEI Nova Nano SEM 230, USA). High-solution lattice images and selected area electron diffraction (SAED) patterns was obtained by transmission electron microscopy (TEM, FEI Tecnai G2 F30 S-Twin, USA) operated at 200 kV. Diffused reflectance spectrum was scanned by a UV-vis spectrophotometer (UV-2500, Shimadzu Co., Japan) and transformed into absorption spectrum with Kubelka-Munk relationship. The specific surface area was measured from nitrogen (N₂) adsorption-desorption isotherm at 77 K by an automatic surface area analyzer (Micromeritics Tristar-3000, USA) after the samples had been dehydrated at 423 K for 2 h in the flowing N₂. The CO₂ adsorption was measured by the applied BET method at 273 K. The surface chemical species was investigated by X-ray photoelectron spectroscopy (XPS) on PHI5000 Versa Probe (ULVAC-PHI, Japan) with monochromatized Al Ka X-ray radiation (1486.6 eV). The energy resolution of the electrons analyzed by the hemi-spherical mirror analyzer is about 0.2 eV. The C 1s core level at 284.6 eV was taken as an internal reference to correct the shift of the binding energies. The room temperature photoluminescence (PL) spectra were acquired using an objective-scanning confocal microscope system, in which the samples were excited through an oil-immersion objective lens (Olympus, SR-ASZ-0103, 150) using a 40 mW pulsed laser (488 nm). The flat band positions of the Ta_3N_5 and LaTiO₂N were estimated by Mott-Schottky measurement, which was carried out using a Princeton Applied Research PARSTAT 2273, using 0.5 M Na₂SO₄ aqueous solution as electrolyte with a pH value of 7. The frequency was 500, 1000, and 2000 Hz.

Computational calculations: The calculations of adsorption

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM

Journal Name

energy were conducted through the Cambridge Serial Total Energy Package (CSTEP) code. The general gradient approximation with Perdew-Bueke-Ernzerh (PBE) functional was employed to describe the exchange–correlation effects. The attractive energy between nuclear and electrons was calculated via ultrasoft pseudopotential. The convergence threshold of geometric optimization was set at 2.0 \times 10⁻⁵ eV per atom for total energy, 0.05 eV Å⁻¹ for maximum force, 0.1 GPa for stress, and 0.002 Å for maximum displacement. The crystal structure of Ta₃N₅ (020) was built including 9 atoms of Ta, 15 atoms of N, and lattice parameter was a = 10.3 Å, b = 3.9 Å, c = 17.0 Å and $\alpha = \beta = \gamma = 90^{\circ}$. The crystal structure of LaTiO₂N (002) contained 3 atoms of La, 3 atoms of Ti, 6 atoms of O, and 3 atoms of N, and lattice parameter was a = 5.6 Å, b = 7.9 Å, c = 16.5 Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 89.9^{\circ}$.

Results and Discussion

Fig. 1 (a) XRD patterns for the as-prepared $xTa_3N_5/LaTiO_2N$ (x = 0.1, 0.3, and 0.5) samples. SEM images of (b) $LaTiO_2N$, (c) Ta_3N_5 , and (d) $0.3Ta_3N_5/LaTiO_2N$.

To obtain our designed photocatalysts, precursors of La2Ti2O7 and KTaO₃ were first prepared. La₂Ti₂O₇ was prepared by heating stoichiometric mixture of ${\sf La}_2{\sf O}_3$ and ${\sf TiO}_2$ in a molten salt of NaCl and KCl at 1273 K. KTaO₃ was synthesized by a hydrothermal method at 433 K using Ta₂O₅ and KOH as reagents. X-ray diffraction (XRD) patterns showed that the as-prepared La₂Ti₂O₇ (JCPDS No. 70-1690) and KTaO₃ (JCPDS No. 77-0198) were both crystallized in single phase with orthorhombic structure (Fig. S1a and S1b, ESI⁺). Scanning electron microscope (SEM, Fig. S1c and S1d, ESI⁺) images showed the plate-like La₂Ti₂O₇ (0.4-0.6 µm in thickness, 1.5-1.7 µm in width, and 3.5-4 μ m in length) and KTaO₃ microcubes (0.2-0.3 μ m in side length). After heating the mixtures of La₂Ti₂O₇ and KTaO₃ under flowing NH₃ at 1223 K, the XRD peaks (Fig. 1a) of the products were well indexed to mixtures of Ta₃N₅ (JCPDS No. 79-1533) and LaTiO₂N (JCPDS No. 48-1230). This evidence indicated that both La2Ti2O7 and KTaO3 could be completely converted into LaTiO₂N and Ta₃N₅. Indeed, pure LaTiO₂N and Ta₃N₅ were obtained

by directly nitriding their precursors (**Fig. S1a** and **S1b**, **ESI**⁺). The obtained hybrids were denoted as $xTa_3N_5/LaTiO_2N$, where the *x* represented the mole ratio between Ta_3N_5 and $LaTiO_2N$. Accordingly, with increasing the ratio of $KTaO_3/La_2Ti_2O_7$, continuously enhanced intensity of Ta_3N_5 diffraction peaks was observed.

The SEM image of the obtained LaTiO₂N showed a porous structure with apparent profile and size of La₂Ti₂O₇ precursor (Fig. 1b). However, great morphology change was observed for phase transformation from KTaO₃ microcubes to Ta₃N₅, which was shaped in nanorods with particle size of 60-80 nm in width and 0.3-0.5 μm in length (Fig. 1c). This fact indicated that the formation of LaTiO₂N driven by nitriding La₂Ti₂O₇ was pseudomorphic and topotactic.^[28] The particles with porous structure were resulted from the volume shrinkage during replacing the three O atoms by two N atoms.^[28] In contrast, a recrystallization-growth process maybe occur during the Ta₃N₅ formation due to the potassium removal from KTaO₃, thus destroying the profile of precursor. For the composite materials, taken 0.3Ta₃N₅/LaTiO₂N as an example, the typical morphologies of LaTiO₂N porous plates and Ta₃N₅ nanorods were also observed (Fig. 1d), in which the Ta₃N₅ nanorods were uniformly distributed around LaTiO₂N plates. This indicated that the one-step nitriding did not change their morphologies.

Fig. 2 TEM images of (a) LaTiO₂N and (b) Ta₃N₅. The inset shows the corresponding SAED images. HR-TEM images of (c) LaTiO₂N and (d) Ta₃N₅. (e) and (f) TEM images of $0.3Ta_3N_5/LaTiO_2N$. HR-TEM images of (g) LaTiO₂N and (h) Ta₃N₅ in $0.3Ta_3N_5/LaTiO_2N$. Side view of surface structure model for (i) (002) facet of LaTiO₂N and (j) (020) facet of Ta₃N₅.

Observations of the transmission electron microscope (TEM) further confirmed the typical morphologies of LaTiO₂N porous plate and Ta₃N₅ nanorod (**Fig. 2a** and **2b**). The corresponding selected area electron diffraction (SAED) patterns well demonstrated the single-crystal nature of the porous LaTiO₂N sheets and Ta₃N₅

DOI: 10.1039/C8TA05339A Journal Name

ARTICLE

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM

nanorods. As shown in high-resolution TEM (HR-TEM) lattice images (Fig. 2c and 2d), the measured lattice spacing of 0.394 and 0.512 nm were, respectively, assigned to (002) and (020) plane of the orthorhombic LaTiO₂N and Ta₃N₅. Apparently, both the (002) facet in $LaTiO_2N$ and (020) facet in Ta_3N_5 were highly exposed. The representative TEM images of 0.3Ta₃N₅/LaTiO₂N were shown in Fig. 2e and 2f. Due to the significant difference in morphology and shape size, LaTiO₂N and Ta₃N₅ could be easily identified. Intimate contact at the interface was found, well confirming the formation of $Ta_3N_5/LaTiO_2N$ heterojunction. Moreover, the (002) facet of LaTiO₂N and (020) facet of Ta₃N₅ were observed in the composite of LaTiO₂N and Ta₃N₅ (Fig. 2g and 2h), indicating that they followed the same growth mechanism during the two synthetic processes. The calculated surface structure model showed that the (002) facet of LaTiO₂N was composed of equal anions and cations, respectively involving one La atom, two Ti atoms, one N atom, and two O atoms (Fig. 2i). In contrast, the (020) facet in Ta_3N_5 was dominated by N atoms, and Ta atoms located at the sublayer (Fig. 2j). Commonly, the metal sites in catalysts are demonstrated to be active sites for CO₂ adsorption.^[29] This result suggested that the exposed (020) facet of Ta₃N₅ was possibly unfavorable for capturing CO₂ or the intermediates.

Fig. 3 (a) UV-vis absorption spectra for $LaTiO_2N$, Ta_3N_5 , and $xTa_3N_5/LaTiO_2N$ (x = 0.1, 0.3, and 0.5) samples. (b) N 1s XPS spectra for $LaTiO_2N$, Ta_3N_5 , and $0.3Ta_3N_5/LaTiO_2N$. (c) Ti 2p and (d) O 1s XPS spectra for $LaTiO_2N$ and $0.3Ta_3N_5/LaTiO_2N$. (e) Ta 4f XPS spectra for Ta_3N_5 and $0.3Ta_3N_5/LaTiO_2N$.

Fig. 3a showed the ultraviolet-visible (UV-vis) absorption spectra. All the samples exhibited a similar visible light absorption up to 600 nm. Compared with the LaTiO₂N, gradual increase in absorbance was found for the $Ta_3N_5/LaTiO_2N$ composite with increasing the content of Ta_3N_5 . This fact should be a result of higher absorption ability for Ta_3N_5 than LaTiO₂N in the wavelength range from UV region to 600 nm. Interestingly, for the composite samples, obvious upward absorption trail in the wavelength above 600 nm could be observed, especially for the 0.5Ta₃N₅/LaTiO₂N sample. Usually, the absorption trail was strongly associated with

the light absorption process of defect states.^[30-33] It has been widely reported that some defects, such as reduced Ta species, and N or O vacancies,^[34-36] could be introduced into the crystal lattice during high-temperature heating process. To exclude the possibility of element doping, Ta-doped LaTiO₂N was prepared by nitriding Tadoped La2Ti2O7. XRD analysis showed that (112) plane of LaTiO2N shifted to smaller angle (Fig. S2a, ESI⁺), due to the slight larger ionic radius of Ta^{5+} (64 pm) than Ti^{4+} (61 pm), thus confirming that the Ta was successfully incorporated into the lattice of LaTiO₂N. Compared with the LaTiO₂N, about 10 nm blue-shift of the UV-vis absorption curve and absent absorption trail were found for Ta-doped LaTiO₂N (Fig. S2b, ESI⁺). This evidence meant that, during formation of Ta₃N₅/LaTiO₂N composite, no doping effects were involved. Indeed, XRD peak without position shift was observed in the Ta₃N₅/LaTiO₂N composite (Fig. S2c, ESI⁺), further confirming that no element doping occurred. None absorption trail was also observed in the physically mixed Ta₃N₅+LaTiO₂N sample (Fig. S3a, ESI⁺), suggesting that the increased defect absorption may relate to the strong interaction between Ta₃N₅ and LaTiO₂N due to their compact contact.

To check the interactions between Ta_3N_5 and $LaTiO_2N$, X-ray photoelectron spectroscopy (XPS) analysis was carried out. As can be seen, N 1s XPS for the $0.3Ta_3N_5/LaTiO_2N$ photocatalyst can be deconvoluted into two peaks at 395.6 and 394.9 eV (**Fig. 3b**), respectively assigned to lattice N in Ta_3N_5 and $LaTiO_2N$,^[19,30] well demonstrating the composite materials. The binding energy difference was resulted from slightly smaller electronegativity for Ti (3.45 eV) than Ta (4.11 eV). For the single LaTiO_2N, Ti 2p XPS spectrum was fitted for Ti⁴⁺ at 457.8 eV and for Ti³⁺ at 456.7 eV (**Fig. 3c**).^[36,37] The Ti³⁺ species in the LaTiO₂N was resulted from the reduction of Ti⁴⁺ by NH₃ during the nitridation process.^[30] The amount of Ti³⁺ species obviously decreased with the formation of Ta₃N₅/LaTiO₂N composite. This fact suggested that the compact contact between Ta₃N₅ and LaTiO₂N could stabilize the lattice Ti⁴⁺ under NH₃, thus decreasing the Ti³⁺ defect.

For charge balance, the oxygen vacancy and Ti³⁺ species were usually coexisted in the LaTiO₂N or TiO₂.^[30,38-41] Usually, the O 1s XPS peak at 531.2 eV was attributed to lattice oxygen atoms near the oxygen vacancy.^[30,42] Compared with the LaTiO₂N, the $0.3 Ta_3 N_5/La TiO_2 N$ showed lower oxygen vacancy concentration. This fact further suggested that the compactly contacting Ta₃N₅ with LaTiO₂N was beneficial to stabilize the Ti⁴⁺ in the lattice of LaTiO₂N. The XPS peaks at 529.2 and 532.2 eV were respectively assigned to Ti-O-Ti lattice oxygen and surface adsorbed oxygen species (Fig. 3d).^[30,43] Notably, for 0.3Ta₃N₅/LaTiO₂N, one additional peak at 530.2 eV was assigned to TaO_x species in Ta_3N_5 .^[44] The Ta 4f XPS spectra for both Ta_3N_5 and $0.3Ta_3N_5/LaTiO_2N$ sample were deconvoluted into four peaks: 24.2 eV for Ta 4f 7/2 and 26.0 eV for Ta 4f 5/2 in Ta₃N₅, and 25.4 eV for Ta 4f 7/2 and 27.2 eV for Ta 4f 5/2 in TaO_x species (Fig. 3e).^[44,45] Obviously, the $0.3Ta_3N_5/LaTiO_2N$ showed higher amount of TaO_x species (39.4%) than the Ta_3N_5 (13.1%). No obvious binding energy difference was observed in La 3d XPS spectra for both the LaTiO₂N and 0.3Ta₃N₅/LaTiO₂N (Fig. S3b, ESI[†]), indicating their almost identical surface chemistry for La element. After forming Ta₃N₅/LaTiO₂N composite, the decreased Ti^{3+} species in LaTiO₂N and the increased TaO_x species in Ta₃N₅ maybe suggest that the surface chemistry environment change was

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM

Journal Name

a result of the strong interaction between Ta and Ti. This was comprehensible that after the compact contact, Ti would donate electrons to Ta due to the lower electronegativity for Ti than Ta, thus causing the decreased content of Ti^{3+} and the increased content of TaO_x species. The increased TaO_x defects may be responsible for the increased trail absorption of the $Ta_3N_5/LaTiO_2N$ composite (**Fig. 3a**).

Fig. 4 (a) CO and (b) CH₄ generation, and (c) PL spectra for LaTiO₂N, 0.3Ta₃N₅/LaTiO₂N, and Ta₃N₅. (d) Product generation for LaTiO₂N, Ta₃N₅, and *x* Ta₃N₅/LaTiO₂N (x = 0.1, 0.3, and 0.5). The inset in Fig. 4a shows the enlarged view of CO yields for LaTiO₂N and Ta₃N₅.

The photocatalytic CO₂ reduction tests were carried out over the as-prepared LaTiO₂N porous plates, Ta₃N₅ nanorods, and Ta₃N₅/LaTiO₂N samples under irradiation of visible light ($\lambda \ge 420$ nm) using H₂O as reducing agent. The typical time-course curves of photocatalytic CO₂ reduction were shown in Fig. 4a and 4b. The CO and CH₄ were evolved only under irradiation and their yields increased with prolonging the irradiation time. This result well demonstrated the formation of CO and CH₄ originating from CO₂ photoreduction. Compared with the LaTiO₂N or Ta₃N₅, the 0.3Ta₃N₅/LaTiO₂N sample showed much higher CH₄ and CO evolution. As observed by TEM, a compact contact may induce the formation of heterojunction of LaTiO₂N and Ta₃N₅. The Mott-Schottky measurement and UV-vis absorption spectra revealed that the relative conduction band (CB, -0.218 eV) and valence band (VB, +1.902 eV) levels of Ta_3N_5 were, respectively, slightly positive than the CB (-0.332 eV) and VB (+1.768 eV) of LaTiO₂N. This fact meant that a typical type- \Box heterojunction was formed between LaTiO₂N and Ta_3N_5 (Fig. S4, ESI⁺). The space-charge region electric field, which would contribute to the increased performance in CO₂ reduction, was built at their interface as a result of charge carries diffusion.^[46] Under irradiation, this electric field can direct the flow of electrons and holes to different semiconductors, thus resulting in efficient charge separation and low recombination. Indeed, much lower photoluminescence (PL) intensity was observed for the sample of 0.3Ta₃N₅/LaTiO₂N by comparing with the LaTiO₂N or Ta₃N₅ (Fig. 4c), well demonstrating the decreased recombination of

electrons and holes. As expected, the content of Ta_3N_5 played important effects on the CO2 reduction performance for the Ta₃N₅/LaTiO₂N systems. Typically, with increasing the content of Ta₃N₅, volcano-type distributions of the CH₄ and CO yields were revealed (Fig. 4d). And, the 0.3Ta₃N₅/LaTiO₂N sample exhibited the highest CH_4 and CO generation rates to be 2.32 and 11.53 μ mol/g, respectively. For the $xTa_3N_5/LaTiO_2N$ composite, when x < 0.3, the gradually increased CO₂ conversion rate can be attributed to the increased space charge region by forming heterojunction between Ta_3N_5 and $LaTiO_2N$, thus promoting the charge separation and improving the CO_2 reduction. When x > 0.3, the decreased CO_2 conversion rate was probably due to the increased TaO_x species on Ta₃N₅, as demonstrated by UV-vis and XPS analysis. The earlier theoretical calculations showed that the Ta^{4+} defect in Ta_3N_5 was the recombination center of electron-hole pairs, thus decreasing the photocatalytic efficiency.^[47] All the Ta₃N₅/LaTiO₂N samples showed evidently faster CO2 reduction rate than the LaTiO2N or Ta₃N₅, confirming the contribution of Ta₃N₅/LaTiO₂N heterojunction structure.

DOI: 10.1039/C8TA05339A

ARTICLE

Fig. 5 (a) CO_2 adsorption isotherms for $LaTiO_2N$, Ta_3N_5 , and $0.3Ta_3N_5/LaTiO_2N$ samples. (b). FT-IR spectra for $LaTiO_2N$ and Ta_3N_5 after CO_2 adsorption and reduction. C 1s XPS analysis of (c) $LaTiO_2N$ and (d) Ta_3N_5 after CO_2 adsorption and photocatalytic reaction.

After irradiation for 8 h (**Fig. 4d**), the total evolved CH₄ and CO were 1.61 and 0.28 μ mol/g for LaTiO₂N and 0.20 and 0.49 μ mol/g for Ta₃N₅, respectively. This result indicated that CH₄ and CO were the main product over LaTiO₂N and Ta₃N₅, respectively. The CH₄/CO mole ratio was 5.75 for LaTiO₂N and 0.41 for Ta₃N₅, confirming their different product selectivity for CO₂ reduction. In general, the product selectivity was controlled by the reagent concentration and molecule activation. Indeed, for the CO₂ conversion, it was proposed that CO generation occurred at a low CO₂ reaction rate resulting from the insufficient electrons.^[10,11] In our case, the Ta₃N₅ with CO selectivity indeed showed obviously lower CO₂ reduction for Ta₃N₅ than LaTiO₂N. However, a lower charge recombination for Ta₃N₅ than LaTiO₂N was verified by PL results (**Fig. 4c**). This fact probably suggested that electron concentration was not mainly responsible for the CO selectivity of Ta₃N₅. As demonstrated in XPS

DOI: 10.1039/C8TA05339A Journal Name

ARTICLE

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM

results, the oxygen vacancies were inevitably generated in the LaTiO₂N, which usually served as an important electron transfer route to improve the charge separation efficiency.^[30,43] Passivating oxygen vacancies by heating the LaTiO₂N at 353 K under air, the PL intensity evidently increased when prolonged the heat time from 12 h to 24 h (Fig. S5a, ESI⁺), indicating that the oxygen vacancies were indeed responsible for charge separation. Obviously, passivating the oxygen vacancies induced the decrease in CO₂ reduction activity of LaTiO₂N, due to the increased charge recombination (Fig. S5b, ESI \dagger). And, the CH_4/CO mole ratio decreased from 5.75 for fresh $LaTiO_2N$, to 2.2 for passivating LaTiO₂N for 12 h, and to 1.8 for passivating LaTiO₂N for 24 h. Although the CO yield was increased, the CH₄ was still the main product, implying that the product selectivity was not completely attributed to the charge concentration change. Hence, for the LaTiO₂N or Ta₃N₅, a possible conclusion could be drawn that the surface chemistry of the photocatalyst played a decisive role on the selective product generation rather than the surface electron density. The increased CH₄ and CO yields verified that the charge separation efficiency was evidently improved in the Ta₃N₅/LaTiO₂N heterojunction. Significantly increased CO product selectivity with CH₄/CO mole ratio of 0.2 was achieved by the 0.3Ta₃N₅/LaTiO₂N heterojunction, further demonstrating that evolved products were possibly dependent on the surface chemistry, in spite of the improved photocatalytic activity due to the promoted charge separation. Similarly, the Z-scheme α -Fe₂O₃/g-C₃N₄ with increased electron concentration only enhanced the CO₂ reduction performance, still presenting the CO product selectivity as the g- C_3N_4 .^[7]

It was reported that changing the surface chemistry of TiO₂ by doping could change the main product from CO to CH_{A} .^[48] Increasing the NH₃ flow amount from 200 to 500 mL/min, the content of TaO_x species in Ta_3N_5 was decreased from the 13% to 9.3%, as demonstrated by XPS analysis (Fig. S6a, ESI⁺). Correspondingly, the CH₄/CO mole ratio slightly decreased from 0.41 to 0.34, although the CO₂ reduction activity increased approximately two fold due to the decrease of TaO_x as recombination centers (Fig. S6b, ESI⁺). This evidence indicated that the TaO_x species played little effects on the product selectivity of Ta₃N₅. CO₂ adsorption and activation have been demonstrated to be pivotal factors to affect photocatalytic CO₂ reduction.^[7,8,30] Brunauer-Emmett-Teller (BET) tests revealed the nearly same BET surface areas for the as-prepared LaTiO₂N (26.49 m²/g), Ta₃N₅ (23.56 m²/g), and 0.3Ta₃N₅/LaTiO₂N (20.81m²/g) (Fig. S6c, ESI⁺). Interestingly, the CO₂ adsorption tests (Fig. 5a) showed that the maximal adsorption amount of CO_2 on the surface of Ta_3N_5 (3.58 mg/g) was obviously lower than $LaTiO_2N$ (6.08 mg/g) and $0.3Ta_3N_5/LaTiO_2N$ (5.51 mg/g), indicating a stronger CO₂ capture ability for the LaTiO₂N-contianing samples than Ta₃N₅. A similar result was obtained by normalizing their CO₂ adsorption quantity with BET surface area to be 0.23 mg/m² for LaTiO₂N, 0.15 mg/m² for Ta_3N_5 , and 0.27 mg/m² for 0.3Ta₃N₅/LaTiO₂N, respectively. The higher CO₂ adsorption ability for LaTiO₂N-contianing samples was possibly attributed to the porous structure that helped to enhance the molecule adsorption. The 0.3Ta₃N₅/LaTiO₂N with strong adsorption of CO₂ exhibited the higher CO selectivity, similar to the Ta_3N_5 with weak adsorption of CO₂, suggesting that the product selectivity could not be completely attributed to the $\ensuremath{\text{CO}}_2$ molecule adsorption.

Semi-qualitative Fourier transform infrared (FT-IR) spectroscopy analysis was carried out on the LaTiO₂N and Ta₃N₅. After 2 h CO₂ adsorption-desorption equilibrium under dark condition, the LaTiO₂N and Ta₃N₅ exhibited the nearly similar FT-IR bands (Fig. 5b). A band at 2347 cm⁻¹ was assigned to linearly adsorbed CO₂.^[30] The band from 1850 cm⁻¹ to 1610 cm⁻¹ was attributed to the asymmetric vibration of some chemisorbed species, such as OH groups at 1618 cm⁻¹, COOH species at 1623 cm⁻¹ or HCO_3^- species at 1658 cm⁻¹ resulting from the reaction of CO_2 with the surface OH groups.^[12,30] The wide band from 1590 cm⁻¹ to 1290 cm⁻¹ was possibly assigned to stretching vibration of C=O or asymmetric stretching of O-C=O belonging to chemisorbed carbonate species (CO_3^{2-}) .^[12] After irradiation for 8 h, it was found that the intensities of chemisorbed species increased on the Ta_3N_5 while slightly decreased on the LaTiO₂N. This fact may imply that the chemisorbed species were important intermediates during CO₂ photoreduction. Notably, these intermediates, such as CO_3^{2-} species, were usually the result of CO_2 activation, thus boosting the CO₂ reduction kinetics. That is, the faster/slower consumption of the chemisorbed species would contribute to the higher/lower CO₂ reduction efficiency on LaTiO₂N and Ta_3N_5 , respectively. The new bands at 2920 and 2851 cm⁻¹ belonging to CH_x^* species,^[49] serving as an important intermediate for reduction of CO_2 to $CH_{4\nu}^{[27]}$ were only detected by FT-IR on LaTiO₂N during the CO₂ conversion, further verifying that the high CH₄ selectivity on LaTiO₂N was possibly a result of efficient CO₂ reduction via CH_x^* intermediates. The CO_3^{2-} species was also observed on Ta_3N_5 after the irradiation. And to promote the formation of CO_3^{2-} species by the modification of KOH (0.5 wt.%) on Ta_3N_5 surface, the CO₂ reduction efficiency (0.71 μ mol/g for CO and $0.30 \,\mu\text{mol/g}$ for CH₄) enhanced significantly, while the CO selectivity (CH₄/CO=0.42) kept unchanged (Fig. S6d, ESI⁺). Similar results were observed for the MgO modified TiO_2 and KOH modified $\text{C}_3\text{N}_4.^{[10,50]}$ These evidences indicated that the product selectivity on both of Ta_3N_5 and LaTiO₂N was not dependent on the formation of CO_3^2 species.

XPS analysis revealed that the -COOH at 288.4 eV and C=O species at 286.3 eV existed on the LaTiO₂N and Ta₃N₅ surfaces (Fig. **5c** and **5d**).^[23,30] The absent CH_x^* species in XPS was highly possible for its low amount due to its fast reaction kinetics, as confirmed by the FT-IR analysis. During the irradiation, the formation of -COOH species on LaTiO₂N is evidently faster than that on the Ta₃N₅. It was well known that the CO resulted mainly from dehydroxylation of -COOH species with the assitance of the photogenerated electrons and protons.^[5,23] This evidence suggested that the the reaction kinetics for converting CO2 to -COOH species were mainly responsible for the CO generation on Ta₃N₅ surface. The much lower amount of C=O species on LaTiO₂N surface under irradiation, as indicated by the decreased peak intensity, demonstrated that the C=O species on LaTiO₂N surface was rapidly consumed by the photoelectrons for the CH₄ formation. Indeed, the Ta₃N₅ with low CH₄ yields showed a little difference in concentration of C=O species before and after the irradiation. Hence, the possible reaction pathway of CO₂ reduction was proposed as CO₂ \rightarrow COOH \rightarrow CO \rightarrow $CH_x \rightarrow CH_4$. Our previous work demonstrated that the La as a basic site on porous LaTiO₂N particles without exposure of specific facet Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM

Journal Name

contributed to the CO₂ activation and the CH₄ selectivity.^[30] The similar CH₄ selectivity on the LaTiO₂N with dominant (002) surface probably meant that the CO₂ activation and product selectivity on LaTiO₂N did not depend on the specific facets but still were dominated by La element. However, the performed CO₂ reduction experiment over the Ta₃N₅ without specific exposed crystal facet, which was prepared by nitriding Ta₂O₅ powders at 1123 K for 8 h under 500 mL/min NH₃, exhibited the main product of CH₄ with a CH₄/CO mole ratio of 1.95 (**Fig. S7a, ESI**⁺), confirming that the high CO selectivity was highly dependent on the exposed (020) facet of Ta₃N₅. Judging by the FT-IR and C 1s XPS analysis, the high CO selectivity in hydrogenation of CO for generating CH₄ on the N-rich facet.

Fig. 6 The energies for CO_2 or CO adsorbed on $LaTiO_2N$ (002) and Ta_3N_5 (020) facets. The calculated energies for $LaTiO_2N$ (002) and Ta_3N_5 (020) facets were -12440.2 and -5297 eV, respectively.

Table 1. Adsorption energy, geometric parameter change before and after adsorption of CO_2 and CO over the surface of $LaTiO_2N$ (002) and Ta_3N_5 (020) facet.

	CO ₂	CO ₂ adsorption	
		Ta ₃ N ₅ (020)	LaTiO ₂ N (002)
E _{ads} [eV]	-	-2.1	-2.9
d _{C-O} [Å]	1.151	1.178	1.179,1.188
∠0-C-0 [°]	180	178.8	178.2
	CO	CO adsorption	
		Ta ₃ N ₅ (020)	LaTiO ₂ N (002)
E_{ads} [eV]	-	-0.3	-0.8
d _{c-o} [Å]	1.129	1.157	1.166

To further explore the mechanism of the product selectivity, the surface models of LaTiO₂N (002) and Ta₃N₅ (020) facet, the highly exposed facets by TEM observations, were built for calculations of adsorbed energies of CO₂ and CO by density functional theory (DFT). The adsorbed energy of an adsorbate on a given photocatalyst was calculated by the equation of $E_{ads} = E_{ads/pho} - E_{pho} - E_{adsorbate}$. Where, E_{ads} is adsorption energy. $E_{ads/pho}$, E_{pho} and $E_{adsorbate}$ are energy of adsorption system, energy of a photocatalyst

and energy of an adsorbate, respectively. The calculated results were illustrated in Fig. 6 and Table 1. The calculated results showed that the E_{ads} for CO₂ on Ta₃N₅ (020) surface was -2.1 eV, which was about 0.8 eV lower than that on LaTiO₂N (002) facet (-2.9 eV). As can be seen, on the Ta_3N_5 (020) surface, the CO₂ was absorbed at N sites via interactions between C and N atoms because the stable terminal facet was consisted of N atom layer. In general, the CO₂ was inclined to absorb onto the metal atom sites because of their low electronegativity.^[4,29] Similarly, on the surface of LaTiO₂N, the CO2 with a tilted structure was absorbed at La sites by contacting with O atoms of CO2. As well demonstrated in our previous report, the La sites were served as basic sites for effectively catalyzing CO₂ into CH_4 .^[30] Similarly, the adsorbed CO_2 on $LaTiO_2N$ was also activated, as demonstrated by the increased C-O bonding length (from 1.151 Å to 1.179/1.188 Å) and decreased O-C-O bonding angle (from 180° to 178.2°). In contrast, the CO_2 on Ta_3N_5 surface was adsorbed with slightly shorter C-O bonding length (1.178 Å) and wider O-C-O bonding angle (178.8°). This may induce the faster and lower formation rate for -COOH species by CO₂ activation on LaTiO₂N and Ta₃N₅ surface, respectively.

DOI: 10.1039/C8TA05339A

ARTICLE

Fig. 7 (a) The CH₄ yields over LaTiO₂N, Ta₃N₅, and 0.3Ta₃N₅/LaTiO₂N using CO as carbon source under visible light. b) The possible CO₂ reduction mechanism for Ta₃N₅/LaTiO₂N.

Obviously, the calculated results showed that the E_{ads} for CO on Ta₃N₅ (020) surface (-0.33 eV) was about 0.5 eV lower than that on $LaTiO_2N$ (002) facet (-0.83 eV). The strong CO adsorption on LaTiO₂N may provide the possibility to covert the CO into CH₄ by subsequent hydrogenation. In another word, the desorption of CO on Ta_3N_5 (020) facet was much easier than that on LaTiO₂N surface. As expected, the (023) surface model of Ta₃N₅ was built, an exposed facet for the Ta₃N₅ prepared from direct nitridation of Ta₂O₅ particles, as observed by TEM. It was found that the (023) facet with relatively rich Ta atoms showed a much higher CO capture ability (-2.7 eV) and the CO was indeed adsorbed at Ta site (Fig. S7a, ESI⁺). After stable adsorption, the increase of C-O bonding length of CO (1.129 Å) was obviously larger on the surface of LaTiO₂N (1.166 Å) than Ta_3N_5 (1.157 Å). This result indicated that CO activation was easier to occur on the La sites on LaTiO₂N by comparing to the N sites of Ta₃N₅, thus boosting the CH₄ formation. A photocatalytic test was carried out to check the photocatalytic reaction of CO, performing under the CO (5% mole)+argon mixed gases. Indeed, in the presence of H₂O, the LaTiO₂N could rapidly convert the CO into CH4 (1.42 µmol/g for 8 h) (Fig. 7a), truly confirming that the CO could be further converted into CH4. In contrast, a much low conversion efficiency was observed for the Ta_3N_5 (0.16 μ mol/g for 8

DOI: 10.1039/C8TA05339A

ARTICLE

h), confirming its poor ability to convert CO into CH₄. For the $0.3Ta_3N_5/LaTiO_2N$, due to the high charge separation, an improved CH₄ yield was also obtained (2.22 µmol/g for 8 h). These results prove that the product selectivity of CO₂ reduction is dependent on the surface chemistry of Ta₃N₅ and LaTiO₂N.

On the basis of the above results, the product selectivity for the CO₂ reduction over Ta₃N₅/LaTiO₂N heterojunction was proposed in **Fig. 7b.** Under the visible light, the lower CB and VB positions of Ta₃N₅ induce directional electron flow from CB of LaTiO₂N to CB of Ta₃N₅ and reversed hole transfer between their VBs. The high CO selectivity was achieved on (020) surface of Ta₃N₅ due to the poor ability in converting -COOH intermediate and the weak CO adsorption. Meanwhile, the high CH₄ selectivity produced on the LaTiO₂N due to the strong CO adsorption and efficiently activating carbon-based precursors to CH_x^{*}, probably on the La base metal sites.

Conclusions

In summary, using the LaTiO₂N with exposure of (002) facet and Ta₃N₅ with dominant (020) facet as model photocatalysts, we have showed that the product selectivity for CO₂ reduction on photocatalyst is strongly associated to the kinetics of molecule activation and intermediate conversion. The (020) surface of Ta₃N₅ terminated by N atoms exhibits the poor ability in converting - COOH intermediate and the weak CO adsorption, thus inducing the high CO selectivity. The high CH₄ selectivity on the LaTiO₂N is not facet-dependent, more likely to be dominated by La base metal sites to efficiently activate carbon-based precursors to CH_x^{*}. Our findings indicated that the surface chemistry of catalyst was a significant factor for the selective product formation of the photocatalytic CO₂ reduction.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported primarily by the National Basic Research Program of China (2013CB632404), the National Natural Science Foundation of China (51572121, 21603098 and 21633004), the Natural Science Foundation of Jiangsu Province (BK20151265, BK20151383 and BK20150580), the Fundamental Research Funds for the Central Universities (021314380133 and 021314380084), the Postdoctoral Science Foundation of China (2017M611784), Six talent peaks project in Jiangsu Province (YY-013) and the program B for outstanding PhD candidate of Nanjing University (201702B084).

References

- 1 J. Ran, M. Jaroniec and S. Z. Qiao, *Adv. Mater.*, 2018, **30**, 1704649.
- 2 Y. Zheng, W. Q. Zhang, Y. F. Li, J. Chen, B. Yu, J. C. Wang, L. Zhang and J. J. Zhang, *Nano Energy*, 2017, **40**, 512.
- 3 J. H. Wu, Y. Huang, W. Ye and Y. G. Li, *Adv. Sci.*, 2017, **4**, 1700194.
- 4 W. G. Tu, Y. Zhou and Z. G. Zou, Adv. Mater., 2014, 26, 4607.

- 5 S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, *Angew. Chem. Int. Ed.*, 2013, **52**, 7372.
- 6 L. J. Liu, H. L. Zhao, J. M. Andino and Y. Li, ACS Catal., 2012, **2**, 1817.
- 7 Z. F. Jiang, W. M. Wan, H. M. Li, S. Q. Yuan, H. J. Zhao and P. K. Wong, *Adv. Mater.*, 2018, **30**, 1706108.
- 8 S. C. Yan, J. J. Wang, H. L. Gao, N. Y. Wang, H. Yu, Z. S. Li, Y. Zhou and Z. G. Zou, *Adv. Funct. Mater.*, 2013, **23**, 758.
- 9 Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan and Z. G. Zou, *J. Am. Chem. Soc.*, 2010, **132**, 14385.
- 10 S. J. Xie, Y. Wang, Q. H. Zhang, W. Q. Fan, W. P. Deng and Y. Wang, *Chem. Commun.*, 2013, **49**, 2451.
- 11 W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhywy and P. Biswas, J. Am. Chem. Soc., 2012, 134, 11276.
- 12 X. G. Meng, S. X. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang and J. H. Ye, *Chem. Commun.*, 2014, **50**, 11517.
- 13 S. Neaţu, J. A. Maciá-Agulló, P. Concepción and H. Garcia, J. Am. Chem. Soc., 2014, **136**, 15969.
- 14 Q. Q. Lang, Y. J. Yang, Y. Z. Zhu, W. L. Hu, W. Y. Jiang, S. X. Zhong, P. J. Gong, B. T. Teng, L. H. Zhao and S. Bai, *J. Mate. Chem. A*, 2017, **5**, 6686.
- 15 S. C. Yan, L. J. Wan, Z. S. Li and Z. G. Zou, *Chem. Commun.*, 2011, **47**, 5632.
- 16 J. G. Yu, J. X. Low, W. Xiao, P. Zhou and M. Jaroniec, J. Am. Chem. Soc., 2014, **136**, 8839.
- 17 J. Mao, T. Y. Peng, X. H. Zhang, K. Li and L. Zan, *Catal. Commun.*, 2012, **28**, 38.
- 18 Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, M. H. Jiang and M. Whangbo, *Catal. Commun.*, 2009, **11**, 210.
- 19 S. M. Wang, Y. Guan, L. Lu, Z. Shi, S. C. Yan and Z. G. Zou, *Appl. Catal. B Environ.*, 2018, **224**, 10.
- 20 S. B. Wang, B. Y. Guan, Y. Lu, X. Wen and D. Lou, J. Am. Chem. Soc., 2017, **139**, 17305.
- 21 J. G. Hou, S. Y. Cao, Y. Z. Wu, F. Liang, L. Ye, Z. S. Lin and L. C. Sun, Nano Energy, 2016, **30**, 59.
- 22 M. L. Li, L. X. Zhang, M. Y. Wu, Y. Y. Du, X. Q. Fan, M. Wang, L. L. Zhang, Q. L. Kong and J. L. Shi, *Nano Energy*, 2016, **19**, 145.
- 23 J. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G. Vlachos and F. Jiao, ACS Catal., 2015, 5, 4293.
- 24 W. L. Zhu, Y. J. Zhang, H. Y. Zhang, H. F. Lv, Q. Li, R. Michalsky, A. A. Peterson and S. H. Sun, J. Am. Chem. Soc., 2014, **136**, 16132.
- 25 D. D. Zhu, J. L. Liu and S. Z. Qiao, Adv. Mater., 2016, 28, 3423.
- 26 S. Kattel, P. Liu and J. G. Chen, *J. Am. Chem. Soc.*, 2017, **139**, 9739.
- 27 Y. F. Ji and Y. Luo, J. Am. Chem. Soc., 2016, 138, 15896.
- 28 A. E. Maegli, S. Pokrant, T. Hisatomi, M. Trottmann, K. Domen and A. Weidenkaff, J. Phys. Chem. C, 2013, 118, 16344.
- 29 J. C. Matsubu and V. N. Yang, J. Am. Chem. Soc., 2015, **137**, 3076.
- 30 L. Lu, B. Wang, S. M. Wang, Z. Shi, S. C. Yan and Z. G. Zou, Adv. Funct. Mater., 2017, 27, 1702447.
- 31 R. B. Singh, H. Matsuzaki, Y. Suzuki, K. Seki, T. Minegishi, T. Hisatomi, K. Domen and A. Furube, J. Am. Chem. Soc., 2014, 136, 17324.
- 32 M. Sluban, P. Umek, Z. Jagličic, J. Buh, P. Smitek, A. Mrzel, C. Bittencourt, M. H. Delville, D. Mihailovic and D. Arcon, ACS Nano, 2015, 9, 10133.
- Y. Qi, S. S. Chen, M. R. Li, Q. Ding, Z. Li, J. Y. Cui, B. B. Dong, F. X. Zhang and C. Li, *Chem. Sci.*, 2017, 8, 437.
- 34 F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt and P. Feng, J. Am. Chem. Soc., 2010, 132, 11856.
- 35 M. Batzill, E. H. Morales and U. Diebold, *Phys. Rev. Lett.*, 2006, **96**, 026103.
- 36 Y. G. Li, H. Song, F. Li, X. Li, Z. R. Lou, Z. Z. Ye and L. P. Zhu, Nano Energy, 2016, 19, 437.

Published on 04 July 2018. Downloaded on 7/6/2018 3:44:35 AM.

Journal Name

- 37 M. Matsukawa, R. Ishikawa, T. Hisatomi, Y. Moriya, N. Shibata, J. Kubota and K. Domen, Nano Lett., 2014, 14, 1038.
- 38 X. B. Chen, L. Liu, Y. Peter and S. S. Mao, Science, 2011, 331, 746.
- 39 G. Liu, L. C. Yin, J. Q. Wang, P. Niu, C. Zhen, Y. P. Xie and H. M. Cheng, *Energy Environ. Sci.*, 2012, 5, 9603.
- 40 G. Liu, J. Pan, L. C. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald and H. M. Cheng, *Adv. Funct. Mater.*, 2012, **22**, 3233.
- 41 X. X. Xu, C. Randorn, P. Efstathiou and J. T. S. Irvine, *Nat. Mater.*, 2012, **11**, 595.
- 42 K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater., 2011, 10, 45.
- 43 Y. G. Li, X. B. Cheng, X. Y. Ruan, H. Song, Z. R. Lou, Z. Z. Ye and L. P. Zhu, *Nano Energy*, 2015, **12**, 775.
- 44 Y. M. He, J. E. Thorne, C. H. Wu, P. Y. Ma, C. Du, Q. Dong, J. H. Guo and D. W. Wang, *Chem*, 2016, **1**, 640.
- 45 L. Wang, X. M. Zhou, N. T. Nguyen, I. Hwang and P. Schmuki, Adv. Mater., 2016, 28, 2432.
- 46 S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo and J. W. Tang, *Energy Environ. Sci.*, 2015, **8**, 731.
- 47 J. J. Wang, T. Fang, L. Zhang, J. Y. Feng, Z. S. Li and Z. G. Zou, J. Catal., 2014, 309, 291.
- 48 M. Tahir and N. A. S. Amin, Appl. Catal. B Environ., 2015, 162, 98.
- 49 W. Yu, D. Xu and T. Peng, J. Mater. Chem. A, 2015, 3, 19936.
- 50 Z. X. Sun, J. M. T. A. Fischer, Q. Li, J. Hu, Q. J. Tang, H. Q. Wang, Z. B. Wu, M. Hankel, D. J. Searles and L. Z. Wang, *Appl. Catal. B Environ.*, 2017, **216**, 146.

The product selection for CO_2 reduction depends on the surface chemistry of Ta_3N_5 and $LaTiO_2N$ photocatalyst.