Lipase-Catalyzed Domino Kinetic Resolution/Intramolecular Diels – Alder Reaction: One-Pot Synthesis of Optically Active 7-Oxabicyclo[2.2.1]heptenes from Furfuryl Alcohols and β -Substituted Acrylic Acids

Shuji Akai, Tadaatsu Naka, Sohei Omura, Kouichi Tanimoto, Masashi Imanishi, Yasushi Takebe, Masato Matsugi, and Yasuyuki Kita^{*[a]}

Abstract: The first lipase-catalyzed domino reaction is described in which the acyl moiety formed during the enzymatic kinetic resolution of furfuryl alcohols (\pm) -3 with a 1-ethoxyvinyl ester 2 was utilized as a part of the constituent structure for the subsequent Diels – Alder reaction. The preparation of ester 2 from carboxylic acid 1 and the subsequent domino reaction were carried out in a one-pot reaction. Therefore, this procedure provides a convenient preparation of the optically active 7-oxabicyclo[2.2.1]heptene derivatives **5**, which has five chiral, non-racemic carbon centers, from achiral **1** and racemic **3**. The overall efficiency of this process was dependent on the substituent at the C-3 position of **3**, and the use of the 3-meth-

Keywords: asymmetric synthesis • cycloadditions • domino reactions • hydrolases • kinetic resolution

ylfurfuryl derivatives, (\pm) -**3b** and (\pm) -**3f**, exclusively produced diastereoselectivity with excellent enantioselectivity to give (2R)-syn-**5** $(91 - \ge 99\% \ ee)$ and (S)-**3** $(96 - \ge 99\% \ ee)$. Similar procedures starting from the 3-bromofurfuryl alcohols (\pm) -**3h**-**j** provided the cycloadducts (2R)-syn-**5j**-**q** $(93 - \ge 99\% \ ee)$, in which the bromo group was utilized for the installation of bulky substituents to the 7-oxabicycloheptene core.

Introduction

The lipase-catalyzed enantioselective transesterification of racemic alcohols (\pm)-I with vinyl esters II in organic solvents has been widely employed to give optically active esters III (Scheme 1).^[1] These reactions are more advantageous than the original enzymatic hydrolysis of esters in terms of their simple operation, the good solubility of the substrates, and the prevention of water dependent side reactions. In addition to the inherent nontoxicity of the lipases, recent studies on the efficient application of supercritical carbon dioxide^[2] and ionic liquids^[3] as a solvent have raised the potential of the lipase-catalyzed transesterification reaction as an environmentally benign asymmetric synthesis.

Although this reaction provides optically active **III**, the installed acyl moiety is usually removed during the subsequent transformations, therefore its effective use as a part of the constituent structure of the subsequent reactions has been limited.^[4] In addition, all of the reported examples were

[a] Prof. Dr. Y. Kita, Dr. S. Akai, Dr. T. Naka, S. Omura, K. Tanimoto, M. Imanishi, Dr. Y. Takebe, Dr. M. Matsugi Graduate School of Pharmaceutical Sciences Osaka University
1-6, Yamadaoka, Suita, Osaka 565-0871 (Japan) Fax: (+81) 6-6879-8229 E-mail: kita@phs.osaka-u.ac.jp carried out after isolation of **III**. If one can achieve a domino process,^[5] namely, the enzymatic transesterification followed by an intramolecular cyclization reaction of R¹ and R³ groups of **III**, such a reaction must be attractive because it provides optically active cyclic compounds **IV** with multichiral carbon centers in a one-pot reaction. The potential influence of the lipase on the intramolecular reaction of **III** might have a chance of improving the optical purity and the diastereose-lectivity of the products. However, no examples have been reported probably due to the lack of the easy preparation of **II** having a reactive acyl moiety (Scheme 1).

Recently, we disclosed that 1-ethoxyvinyl esters V are highly effective acyl donors for the lipase-catalyzed kinetic resolution of racemic alcohols^[6] and the desymmetrization of

Scheme 1. Transesterification of (\pm) -I with II or V.

Chem. Eur. J. 2002, 8, No. 18 © 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0947-6539/02/0818-4255 \$ 20.00+.50/0

symmetrical diols.^[7] Some remarkable advantages of **V** over **II** involve the generation of nonharmful, volatile ethyl acetate as a single co-product,^[8] facile preparation of **V** with an acyl moiety of various kinds,^[9] and its applicability for a one-pot enzymatic reaction following the preparation of **V**.^[6b]

Utilizing these features, we briefly communicated the onepot synthesis of the 7-oxabicyclo[2.2.1]heptenes, **5a** ($R^1 = CO_2Me$, $R^2 = R^3 = H$, $R^4 = Me$) and **5b** ($R^1 = CO_2Me$, $R^2 =$ H, $R^3 = R^4 = Me$), from the carboxylic acid **1a** ($R^1 = CO_2Me$) and the racemic furfuryl alcohol derivatives, **3a** ($R^2 = R^3 = H$, $R^4 = Me$) and **3b** ($R^2 = H$, $R^3 = R^4 = Me$). In this process, the domino reaction, that is the lipase-catalyzed kinetic resolution of **3** using an in situ prepared ethoxyvinyl ester **2a** followed by an intramolecular Diels – Alder reaction of the resulting optically active ester **4**, was achieved for the first time (Scheme 2).^[10] We now present details of these reactions with additional examples of the formation of **5** with up to ≥ 99 % *ee* and some synthetic applications.

Scheme 2. The domino kinetic resolution/Diels-Alder reaction starting from 1 and (\pm)-3.

Results and Discussion

Enantiomerically pure 7-oxabicyclo[2.2.1]heptenes are highly useful as synthetic intermediates of various biologically important natural products.[11] Intensive efforts have been devoted to synthesize these structures, among which the intramolecular Diels-Alder reaction of the optically active furan derivatives is one of the most effective methods.^[12] The intramolecular Diels-Alder reaction of furfuryl acrylate derivatives 4 under thermal or high-pressure conditions is a typical example.^[12a] The requisite optically active esters 4 were prepared by esterification of the corresponding optically active furfuryl alcohols 3, obtained by chemical^[13] or enzymatic reactions.^[14, 15] In contrast to these stepwise methods, we envisaged a highly effective, domino synthesis of optically active 5 via the lipase-catalyzed kinetic resolution of (\pm) -3 with 2 followed by the intramolecular Diels-Alder reaction (Scheme 2). For the success of this plan, the easy preparation of the reagents 2 with a dienophilic moiety and their applicability in the enzymatic reaction were the pivotal issues to be investigated.

The preparation of new ethoxyvinyl esters 2 was examined by applying our method.^[9] Thus, monomethyl fumarate (1a) was added to a mixture of ethoxyacetylene (1.5 equiv to 1a) and $[RuCl_2(p-cymene)]_2$ (0.5 mol% to **1a**) in anhydrous acetone at 0°C, and the reaction mixture was stirred at room temperature. The reaction was monitored by IR spectroscopy which found that 1a was consumed within 3-5h; the formation of 2a was confirmed by the appearance of the characteristic absorption of its olefin (1676 cm^{-1} in CHCl₃). Concentration of the reaction mixture gave 90-95% pure 2a (¹H NMR analysis) in quantitative yield. However, **2a** was not very stable, and purification by either silica gel flash column chromatography using a mixture of hexane/ethyl acetate/Et₃N as the eluent or distillation under reduced pressure caused partial decomposition. Although the crude 2a was contaminated with a catalytic amount of $[RuCl_2(p-cymene)]_2$, we have already confirmed that the enzymatic transesterification of various alcohols was not affected by the presence of the ruthenium complex. Thus, the reaction using a crude ethoxyvinyl ester presented the same reactivity and same selectivity as that using the purified reagent.^[6b] Therefore, the crude solution of 2a in acetone was used for the subsequent enzymatic resolution. Similarly, the ethoxyvinyl esters 2b, c having an electron-withdrawing group were prepared in \geq 90% yields (¹H NMR analysis) (Scheme 3).

Scheme 3. Preparation of 2a - c from 1a - c.

Next, suitable enzymes for the kinetic resolution of (\pm) -**3a** were investigated using a crude solution of **2a** in acetone. We checked the reaction conversion and the optical purity of the ester **4a** prior to the formation of the cycloadduct **5a**. After screening a number of hydrolytic enzymes including lipases (Amano A-6, AK, AY, PPL, PS; Meito MY, OF; Toyobo LIP; Novo CHIRAZYME L-3) and pig liver esterase, lipases from the *Pseudomonas* species (LIP, AK, PS) were found to actively catalyze the kinetic resolution (Table 1). Especially Toyobo LIP, a lipase from *Pseudomonas aeruginosa* immobilized on Hyflo Super-Cell, gave the optically active (*R*)-**4a** (70% *ee*, 26% yield) along with the recovered alcohol (*S*)-**3a** (34% *ee*, 65% yield) after 10 h (entry 1).

The domino reaction of (\pm) -**3a** was carried out by simply prolonging the reaction time of the above-mentioned kinetic resolution, and meanwhile, the gradual formation of (2R)-syn-**5a** and (2R)-anti-**5a** was observed (Scheme 4). The timecourse of the reaction monitored by ¹H NMR analysis has revealed that the Diels – Alder reaction reached equilibrium^[16] after 7 – 8 days (Figure 1). At this point, a 3:2 mixture of (2R)-syn-**5a** (78–79% *ee*) and (2R)-anti-**5a** (75–81% *ee*) was obtained in 25–36% yield after a few repeated runs.^[17] (R)-**4a** (10-68% *ee*, 20–29% yield) and (S)-**3a** (73–79% *ee*, 35– 46% yield) were also isolated. Quite interestingly, the optical purity of either the syn- or anti-**5a** was higher than that of the

[a] Unreactive enzymes ($\leq 10\%$ conversion after 10 d); A-6 (Aspergillus niger), AY (Candida rugosa), MY (Candida rugosa), OF (Candida rugosa), L-3 (Candida rugosa), porcine pancreas, and pig liver esterase. [b] Determined by the HPLC (Daicel CHIRALCEL OD) analysis. [c] Isolated yield. [d] Determined by the GC analysis using a chiral column (TCI CHIRALDEX G-TA).

Scheme 4. Lipase LIP-catalyzed domino kinetic resolution/Diels-Alder reaction of (\pm) -**3a** with **2a**.

Figure 1. Time-course of the domino reaction of (\pm) -3a with 2a.

Table 2. Domino kinetic resolution/Diels-Alder reaction of (\pm) -3c-e with 2a.^[a]

For 3-5; c: R¹ = H, R² = Et, d: R¹ = R² = Me, e: R¹ = Me, R² = Et

intermediate (R)-**4a** (70% *ee*) at 10 h, which suggested some catalytic effect of the lipase on the Diels-Alder reaction with increasing optical purity.^[18]

Some other examples of the domino kinetic resolution/intramolecular Diels-Alder reaction of (\pm) -**3**c-e using crude **2**a are summarized in Table 2. All these reactions provided a mixture of (2R)-syn- and (2R)anti-**5**c-e in favor of the synisomer. Especially, both synand anti-**5**d, e were obtained as a single enantiomer (en-

tries 2 and 3). However, the equilibrium between 4 and 5 has hampered the improvement of the chemical yields of 5c-e.

On the other hand, the domino reaction of the furfuryl alcohol (\pm) -**3b** having a methyl group at the C-3 position with **2a** gave much better results than those of **3a** and **3c**-**e**. Thus, the kinetic resolution at 30°C reached 50% conversion within one day to provide (2*R*)-syn-**5b** (82% *ee*, 42% yield) as a single product along with the recovery of (S)-**3b** (71% *ee*, 44% yield) (Table 3, entry 1). The intramolecular Diels-Alder reaction instantaneously and completely proceeded, and formation of the ester **4b** was not detected by the ¹H NMR analysis of the crude product. A similar reaction proceeded at 20°C with better enantioselectivity to give (2*R*)-syn-**5b** (91% *ee*, 34% yield) and (S)-**3b** (\geq 99% *ee*, 45% yield) (entry 2), whereas the reaction at 4°C was tedious and no improvement was attained.

In a similar manner, the reaction of (\pm) -3 **f** with 2**a** at 20 °C accomplished perfect resolution to give (2R)-syn-5 **f** (\geq 99% *ee*, 45% yield) and (S)-3 **f** (\geq 99% *ee*, 50% yield) (entry 3). Similar reactions using the in situ prepared 2**b**, **c** also provided the corresponding (2R)-syn-5**g**, **h** (95- \geq 99% *ee*) and (S)-3 **f** (96- \geq 99% *ee*) (entries 4 and 5); however, the

Entry	3	\mathbb{R}^1	R ²	Reaction time		(2 <i>R</i>)-5 c - e					(R)-4c-e		(S)-3c-e		
						ee [ˈ syn	%] ^[b] anti	Total yield [%] ^[c]	de [%] ^[d]		Yield [%] ^[e]		ее [%] ^[b]	Yield [%] ^{[c}	
1 2 3	3c 3d 3e	H Me Me	Et Me Et	12 d 5 d 5 d	5 c 5 d 5 e	$77 \\ \ge 99 \\ \ge 99$	$78 \\ \ge 99 \\ \ge 99$	50 31 27	46 24 42	4c 4d 4e	14 23 22	3c 3d 3e	86 98 ≥99	32 46 51	

[a] The reaction was run according to the typical procedure in the Experimental Section. [b] For determination of the enantiomeric excess of the products, see the general method of the experimental section. [c] Isolated yield. [d] Obtained in favor of *syn-5*. Diastereomeric excess was determined by the 500 MHz ¹H NMR analysis. [e] Yield based on the 500 MHz ¹H NMR analysis of the crude reaction mixture.

Table 3. Domino kinetic resolution/Diels – Alder reaction of (\pm) -3b, 3f-j with 2a-c.^[a]

Entry	2	3	Reaction	$(2R)$ -syn- $5^{[b]}$								(<i>S</i>)- 3		
			conditions		\mathbb{R}^1	R ²	R ³	R ⁴	ee [%] ^[c]	Yield [%] ^[d]		ee [%] ^[c]	Yield [%] ^[d]	
1	2a	3 b	30°C, 1 d	5b	CO ₂ Me	Н	Me	Me	82	42	(S)- 3b	71	44	
2	2 a	3 b	20°C, 2 d	5b	CO ₂ Me	Н	Me	Me	91	34	(S)- 3 b	\geq 99	45	
3	2 a	3 f	20°C, 2 d	5 f	CO_2Me	Н	Me	Et	\geq 99	45	(S)- 3 f	\geq 99	50	
4	2 b	3 f	30°C, 4 d	5g	CO_2Et	Н	Me	Et	\geq 99	46	(S)- 3 f	96	43	
5	2 c	3 f	30°C, 4 d	5h	COMe	Н	Me	Et	95	44	(S)- 3 f	\geq 99	47	
6	2 b	3g	30°C, 7 d	5i	CO_2Et	Н	Ph	Et	-	trace	3 g	-	>95	
7	2 b	3h	30°C, 6 d	5j	CO_2Et	Н	Br	Et	96	43	(S)- 3 h	\geq 99	38	
8	2 c	3h	30°C, 5 d	5 k	COMe	Н	Br	Et	\geq 99	40	(S)- 3 h	\geq 99	48	
9 ^[e]	2 a	3i	30°C, 2.5 d	51	CO_2Me	Me	Br	Et	95	35	(S)- 3i	82	54	
10	2 b	3i	30°C, 2.5 d	5 m	CO ₂ Et	Me	Br	Et	95	30	(S)- 3i	\geq 99	45	
11 ^[e]	2 c	3i	10°C, 1 d	5n	COMe	Me	Br	Et	\geq 99	34 ^[f]	(S)- 3i	82	48	
12	2 a	3 j	30°C, 4.5 d	50	CO_2Me	CH ₂ OMe	Br	Et	94	43	(S)- 3 j	\geq 99	44	
13	2b	3 j	30°C, 4.5 d	5 p	CO_2Et	CH ₂ OMe	Br	Et	96	45	(S)- 3 j	98	44	
14	2 c	3j	30°C, 4.5 d	5 q	COMe	CH ₂ OMe	Br	Et	93	36	(S)- 3 j	93	44	

[a] The reaction was run according to the typical procedure in the Experimental Section. [b] syn:anti > 99:1 based on the ¹H NMR analysis of the crude reaction mixture. [c] For determination of the enantiomeric excess of the products, see the methods of the Experimental Section. [d] Isolated yield. [e] Formation of the ester **4** was observed based on the ¹H NMR analysis of the crude product; 6% for entry 9, 11% for entry 11. [f] Contaminated with 12% of the corresponding ester **4n** due to the retro-Diels – Alder reaction of **5n** during the silica gel column chromatography.

application of this method to (\pm) -**3**g having a phenyl group at the C-3 position resulted in no reaction (entry 6).

As mentioned above, some problems have been uncovered for the C-3 unsubstituted furfuryl alcohols 3a, 3c-e and the C-3 phenyl substituted one 3g: The low yield and the low diastereoselectivity for 3a, 3c - e and the limited applicability for the sterically congested alcohols such as 3g. Aiming at the solution of these problems at once, we next investigated the domino reaction of the furfuryl alcohol (\pm) -**3h** having a key bromo group at the C-3 position.^[19] To our delight, the reaction of the 3-bromofuryl alcohol (\pm)-3h with 2b at 30 °C gradually gave the cycloadduct, (2R)-syn-5j. After six days, the Diels-Alder reaction reached completion, and (2R)-syn-**5j** (96% *ee*, 43% yield) and (S)-**3h** (\geq 99% *ee*, 38% yield) were isolated (entry 7). The exclusive diastereoselectivity was confirmed by the ¹H NMR analysis of the crude product. Likewise, (\pm) -3h-j and 2a-c were subjected to similar reaction conditions to produce the diastereoselective preparation of (2R)-syn-5k-q with 93 – \geq 99% ee (entries 8–14). In most cases, the Diels-Alder reaction was brought to completion; however, the reaction of 2c and 3i suffered from an incomplete Diels-Alder reaction and also the retro-Diels-Alder reaction during the silica gel chromatography (entry 11).

The hydrogenation of syn-**51** afforded syn-**6e** (>99% de) in 79% yield. On the contrary, the same sequence from **3e** resulted in the formation of a hardly separable mixture of *syn*-and *anti*-**6e** (Scheme 5).

The application of the Suzuki coupling^[20] to syn-**5j** enabled us to obtain syn-**5i** (61% yield) which could not be prepared

4258

Scheme 5. Preparation of syn-6e. a) Pd/C, H₂, MeOH, room temperature.

from **3g** (Table 3, entry 6). Similarly, by the Sonogashira coupling,^[21] syn-**5r** having a (trimethylsilyl)ethynyl group was prepared in 60 % yield (Scheme 6). This protocol will open a

Scheme 6. Preparation of *syn*-**5i** and **5r** having a bulky substituent. a) PhB(OH)₂, PdCl₂(PPh₃)₂, Na₂CO₃, THF, 65 °C; b) (trimethylsilyl)ace-tylene, Pd(PPh₃)₄, CuI, Et₂NH, DMF, 50 °C.

new approach towards the asymmetric synthesis of some biologically interesting natural products such as viridin^[22] and himbacine.^[23]

The absolute configuration of $3\mathbf{a} - \mathbf{e}$ recovered in the enzymatic reactions was determined to be (S) based on the comparison of their specific rotation values with those of the reported values. The product *syn*-**6e** from either **3e** or **3i** was identical, and therefore, the absolute stereochemistry of (2R)-**51** and (S)-**3i** was determined. The absolute configuration of all the new alcohols **3 f**, **h**, **j** was deduced to be (S) based on the similarity of their specific rotational values to those of **3a**-**e** and **3i**. Consequently, the absolute configuration of all the Diels – Alder adducts **5a**-**q** is (R) at the C-2 position. The relative stereochemistry of the adducts, *syn*-**5a**, *anti*-**5a**, *syn*-**5b**, *syn*-**5c**, and *anti*-**5c**, was determined by the comparison of their ¹H NMR data with those of the reported data.^[12a] The others were deduced to be the same by the similarity of their ¹H and ¹³C NMR data to those of **5a**-**c**.

Conclusion

The first lipase-catalyzed domino reaction was developed in which the acyl moiety installed during the enzymatic kinetic resolution was utilized as a part of the constituent structure for the subsequent Diels – Alder reaction. Coupled with the in situ preparation of **2**, this reaction has achieved a one-pot synthesis of optically active 7-oxabicyclo[2.2.1]heptene derivatives **5** having five chiral, non-racemic carbon centers from an achiral carboxylic acid **1** and a racemic alcohol **3** (Scheme 2). It also takes advantages of the atom efficiency and the environmentally acceptable nature of the lipases, and therefore, is attractive as a new environmentally benign protocol. We believe wide applicability of this concept to a finely designed process that starts from a carboxylic acid with a reactive functional group and an alcohol with a reactive counterpart.^[24]

On the other hand, the potential catalytic effect of the lipase LIP on the Diels – Alder reaction offers an interesting topic because the natural-enzyme-catalyzed Diels – Alder reactions have recently been receiving increasing attention.^[25] A detailed evaluation of the lipase effect is currently under progress in our laboratory.

Experimental Section

Methods: The ¹H NMR spectra were measured at 300 or 500 MHz with tetramethylsilane (TMS) as the internal standard at 20-25 °C. The ¹³C NMR spectra were measured at 75 or 125 MHz with TMS as the internal standard at 20-25 °C. The IR spectra were recorded by a diffuse reflectance measurement of samples dispersed in KBr powder or as a CHCl₃ solution. Flash column chromatography was done using silica gel BW-300 (200-400 mesh, Fuji Silysia Chemical Co., Ltd., Japan). Yields refer to isolated material of ≥ 95 % purity as determined by ¹H NMR unless otherwise noted. The diastereoselectivity of the *syn-* and *anti-5* was determined based on the ¹H NMR (300 or 500 MHz) data of the crude product. The determination of the optical purity of the products was performed by the following methods: 3a-f, chiral GC analysis using TCI CHIRALDEX G-TA (10 m × 0.125 mm, 0.125 µm film thickness); 3h-j, 4a, 5k-n, chiral HPLC analysis using a Daicel CHIRALCEL OD or OD-

H column (250 mm × 4.6 mm); **4j**, **5j**, **p**, chiral HPLC analysis using a Daicel CHIRALPAK AD-H column (250 mm × 4.6 mm); **5a**-**c**, **f**, **o**, chiral HPLC analysis using a Daicel CHIRALCEL OJ column (250 mm × 4.6 mm); **5q**, chiral HPLC analysis using a Daicel CHIRAL-PAK AS column (250 mm × 4.6 mm); **5a**, **d**, **e**, **g**, **h**, chiral GC analysis (TCI CHIRALDEX G-TA) of its derivative obtained by hydrogenation of the mixture of *syn*- and *anti*-**5** (for details, see the hydrogenation of **5d**). A mixture of hexane-iPrOH was used as the eluent for the HPLC analysis.

Materials: Lipases AK (*Pseudomonas* sp.), PS (*Pseudomonas cepacia*), A-6 (*Aspergillus niger*), AY (*Candida rugosa*), porcine pancreas, and pig liver esterase were gifts from Amano Enzyme Inc. (Japan). Lipase MY (*Candida rugosa*) and OF (*Candida rugosa*) were gifts from Meito Sangyo Co., Ltd. (Japan). CHIRAZYME L-3 (*Candida rugosa*) was a gift from Roche Diagnostics (Japan). Lipases LIP (*Pseudomonas aeruginosa*) was a gift from Toyobo Co., Ltd. (Japan). Enzymes except for LIP were dried (1 mm Hg, room temperature, overnight) prior to use, and LIP was used without prior treatment. Anhydrous acetone (H₂O $\leq 0.005\%$) used for the preparation of **2** and the subsequent enzymatic reaction was purchased from Kanto Chemical Co., Inc. (Japan), and kept under a nitrogen atmosphere before use. Known compounds $[1a,^{[26]} 1b,^{[26,77]} 1c,^{[28]} (\pm)-3a-c,^{[12a]} (\pm)-3a,^{[29]} and (\pm)-4a^{[12a]}] were prepared according to their reported methods. Unknown compounds <math>(\pm)-3f-j$ were prepared as follows. The others are commercially available.

(±)-1-(3-Methyl-2-furyl)propanol (3 f): Under a nitrogen atmosphere, EtMgBr (1.0m in THF, 17 mL, 17 mmol) was added to an ice-cooled solution of 3-methyl-2-furfural^[12a] (1.6 g, 14 mmol) in anhydrous THF (15 mL). The reaction mixture was stirred at 0°C for 30 min and quenched with saturated aqueous NH₄Cl. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flash column chromatography (hexane/EtOAc 1:1) gave (±)-3f (1.1 g, 56%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, J = 7.5 Hz, 3H), 1.74 (d, J = 5.5 Hz, 1H), 1.82 – 1.98 (m, 2H), 2.04 (s, 3H), 4.61 (dt, J = 5.0, 7.0 Hz, 1H), 6.19 (d, J = 2.0 Hz, 1H), 7.28 (d, J = 2.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 9.6$, 10.0, 28.8, 67.5, 112.9, 116.3, 140.9, 150.6; IR (KBr): $\tilde{\nu} = 3603$, 1587 cm⁻¹; elemental analysis calcd (%) for C₈H₁₂O₂ (140.2): C 68.54, H 8.63; found: C 68.31, H 8.60.

(±)-1-(3-Phenyl-2-furyl)propanol (3g): Under a nitrogen atmosphere, PhB(OH)₂ (160 mg, 1.25 mmol), PdCl₂(PPh₃)₂ (70 mg, 0.10 mmol), and 2 M aqueous Na₂CO₃ (2.0 mL, 4.0 mmol) were successively added to a solution of (±)-3g (100 mg, 0.50 mmol) in THF (10 mL). The reaction mixture was stirred at refluxing temperature for 12 h. After cooling, the reaction was quenched with water, and the product was extracted with EtOAc twice. The combined organic layer was washed with brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by Japan Analytical Industry Co., Ltd. Recycling preparative HPLC LC-928 equipped with gel permeation chromatography columns, JAIGEL 1H and 2H (each 600 mm × 20 mm) (eluent: CHCl₃) to give **3g** (24 mg, 24%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (t, J = 7.5 Hz, 3H), 1.91–2.01 (m, 2H), 4.72 (dd, J = 7.0, 12.5 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 7.27–7.56 (m, 6H); IR (KBr): $\tilde{v} = 3342$, 1612, 1512 cm⁻¹; HRMS: calcd for C₁₃H₁₄O₂ [M^+]: 202.0994; found: 202.1001.

(±)-1-(3-Bromo-2-furyl)propanol (3h): According to the reported method,^[30] a solution of 3-bromo-2-lithiofuran in anhydrous THF was prepared from 3-bromofuran (0.90 mL, 10 mmol), iPr_2NH (1.4 mL, 10 mmol), and *n*BuLi (1.6 m in hexane, 6.4 mL, 10 mmol). A solution of propanal (0.80 mL, 11 mmol) in anhydrous THF (15 mL) was added to it at -78 °C, and the reaction mixture was stirred at -78 °C for 15 min and quenched with saturated aqueous NH₄Cl (125 mL). The product was extracted with Et₂O three times, and the combined organic layer was washed with brine, dried with Na₂SO₄, and concentrated in vacuo. Purification by flash column chromatography (hexane/Et₂O 19:1 \rightarrow 3:1) gave (±)-**3h** (1.5 g, 72%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): δ =0.89 (t, *J* =7.5 Hz, 3H), 1.82–1.98 (m, 2H), 2.21 (s, 1H), 4.71 (t, *J* =7.5 Hz, 1H), 6.39 (d, *J* =2.0 Hz, 1H), 7.34 (d, *J* =2.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ =9.8, 28.3, 67.2, 97.4, 113.7, 142.2, 152.2; IR (KBr): $\tilde{\nu}$ = 3342, 1574 cm⁻¹; elemental analysis calcd (%) for C₇H₉BrO₂ (205.0): C 41.00, H 4.42; found: C 40.95, H 4.37.

(±)-1-(3-Bromo-5-methyl-2-furyl)propanol (3i): Prepared according to the reported method for the synthesis of similar compounds.^[31] Under a nitrogen atmosphere, iPr_2NH (3.4 mL, 24 mmol) and nBuLi (1.6 m in

hexane, 15.6 mL, 24 mmol) were successively added to a mixture of KO(tBu) (2.7 g, 24 mmol) and anhydrous THF (50 mL), and the reaction mixture was stirred at -78 °C for 1 h. A solution of 2-bromo-5-methylfuran (3.3 g, 20 mmol) in anhydrous THF (10 mL) was added to the above reaction mixture over a period of 5 min, and the mixture was gradually allowed to warm up to -20° C over a period of 1 h with stirring. After 1 h at -20°C, propanal (2.3 mL, 32.6 mmol) was added to the reaction mixture over a period of 10 min, and the whole mixture was stirred at -20 °C for 2 h and then at $0\,^\circ\mathrm{C}$ for 4 h. The reaction mixture was poured onto a 1:1 mixture of saturated aqueous NH4Cl and ice. The organic layer was separated, and the aqueous layer was extracted with Et2O twice. The combined organic layer was washed with brine, dried with Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography (hexane/Et₂O 5:1 \rightarrow 3:1) to give **3i** (0.57 g, 13%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, J = 7.5 Hz, 3H), 1.82 – 1.94 (m, 2H), 2.26 (d, J = 1.0 Hz, 3H), 4.65 (dt, J = 5.5, 7.5 Hz, 1 H), 5.97 (q, J = 1.0 Hz, 1 H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 9.9, 13.7, 28.4, 67.3, 97.8, 109.6, 150.3, 152.1$; IR (KBr): $\tilde{\nu} = 3340$, 1568 cm⁻¹; elemental analysis calcd (%) for $C_8H_{11}BrO_2(219.1)$: C 43.86, H 5.06; found: C 44.17, H 5.14.

(±)-1-(3-Bromo-5-methoxymethyl-2-furyl)propanol (3j): Methyl 4,5-dibromofuran-2-carboxylate^[32] was converted to 2,3-dibromo-5-(methoxymethyl)furan by standard methods: Reduction using diisobutylaluminum hydride in THF followed by O-methylation using NaH and MOMCl in THF. Under a nitrogen atmosphere, a solution of 2,3-dibromo-5-(methoxymethyl)furan (0.20 g, 0.74 mmol) in anhydrous THF (2 mL) was cooled to -78°C, and nBuLi (1.6м in hexane, 0.48 mL, 0.74 mmol) was added. After stirring the reaction mixture at -78 °C for 20 min, a solution of propanal (47 mg, 0.82 mmol) in anhydrous THF (3 mL) was added over 1 min. The reaction mixture was stirred for 5 min and quenched with saturated aqueous NH₄Cl. Similar work-up and column chromatography (hexane/ Et₂O 49:1 \rightarrow 1:1) as described for the preparation of **3h** gave (±)-**3j** (46 mg, 25 %) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, *J* = 7.5 Hz, 3 H), 1.83 – 2.04 (m, 2 H), 2.01 (s, 1 H), 3.35 (s, 3 H), 4.35 (s, 2 H), 4.67 - 4.74 (m, 1 H), 6.33 (s, 1 H); 13 C NMR (75 MHz, CDCl₃): $\delta = 9.8, 28.4,$ 57.9, 66.1, 67.3, 97.6, 113.0, 151.2, 152.4; IR (KBr): $\tilde{\nu} = 3396$, 1601 cm⁻¹; elemental analysis calcd (%) for $C_9H_{13}BrO_3$ (249.1): C 43.39, H 5.26; found: C 43.08, H 5.11.

1-Ethoxyvinyl methyl fumarate (2a)-A Typical procedure for the preparation of 2: Under a nitrogen atmosphere, 1a (98 mg, 0.75 mmol) was portionwise added to an ice-cooled solution of ethoxyacetylene^[7e] (79 mg, 1.1 mmol) and [RuCl₂(p-cymene)]₂ (4.5 mg, 0.0075 mmol) in anhydrous acetone (3.0 mL) over a period of 30 min. The reaction mixture was stirred at room temperature for 5 h. An aliquot was concentrated in vacuo and was subject to ¹H NMR and IR analyses. Usually 1a was consumed at this point. In the case of incomplete reaction, the stirring was continued for another 5 h. The reaction mixture was used for the following enzymatic reaction as such. Concentration of the reaction mixture in vacuo gave 2a (160 mg, quant.) with 90-95% purity based on the ¹H NMR analysis. Similar reaction was run from 1a (1.0 g, 7.7 mmol) and the crude product was purified by either flash column chromatography (hexane/ EtOAc/Et₃N 83:17:1) or distillation [b.p. 120-130 °C at 2.0 mmHg (bath temp.)] to give analytically pure 2a as a colorless oil (0.47 g, 31% or 0.80 g, 52%, respectively). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.34$ (t, J = 7.0 Hz, 3H), 3.81 (d, J = 3.5 Hz, 1H), 3.82 (s, 3H), 3.88 (d, J = 3.5 Hz, 1H), 3.90 (q, J = 7.0 Hz, 2 H), 6.88 (d, J = 16.0 Hz, 1 H), 6.97 (d, J = 16.0 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.1$, 52.5, 65.2, 72.2, 132.4, 135.1, 156.7, 162.1, 165.0; IR (CHCl₃): $\tilde{\nu} = 1755$, 1732, 1676 cm⁻¹; elemental analysis calcd (%) for C₉H₁₂O₅ (200.2): C 54.00, H 6.04; found: C 54.04, H 6.02.

1-Ethoxyvinyl ethyl fumarate (2b): Similarly to the preparation of **2 a**, **2b** (5.3 g, quant., approx. 95 % purity by ¹H NMR analysis) was obtained from **1b** (3.6 g, 25 mmol) and was used for the following enzymatic reaction as such. Distillation of the crude product gave analytically pure **2b** (1.6 g, 30 %) as a colorless oil. B.p. 105-107 °C at 2.5 mm Hg; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.32$ (t, J = 7.0 Hz, 3H), 1.35 (t, J = 7.0 Hz, 3H), 3.83 (d, J = 4.0 Hz, 1H), 3.91 (d, J = 4.0 Hz, 1H), 3.93 (q, J = 7.0 Hz, 2H), 4.28 (q, J = 7.0 Hz, 2H), 6.88 (d, J = 16.0 Hz, 1H), 6.97 (d, J = 16.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.0$, 61.4, 65.0, 72.0, 132.0, 135.6, 156.7, 162.1, 164.4; IR (CHCl₃): $\tilde{\nu} = 1751$, 1724, 1676 cm⁻¹; elemental analysis calcd (%) for C₁₀H₁₄O₅ (214.2): C 56.07, H 6.59; found: C 55.53, H 6.50.

1-Ethoxyvinyl 4-oxo-2-pentenoate (2c): Similarly to the preparation of **2a**, **2c** (2.4 g, quant., approx. 90 % purity by ¹H NMR analysis) was obtained

from **1c** (1.37 g, 12 mmol) and was used for the following enzymatic reaction as such. Distillation of the crude product gave analytically pure **2c** (0.11 g, 5%) as a pale yellow oil. B.p. 70–80 °C at 2.0 mm Hg; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.35$ (t, J = 7.0 Hz, 3 H), 2.38 (s, 3 H), 3.83 (d, J = 3.5 Hz, 1 H), 3.907 (q, J = 7.0 Hz, 2 H), 3.912 (d, J = 3.5 Hz, 1 H), 6.68 (d, J = 16.0 Hz, 1 H), 7.12 (d, J = 16.0 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.1$, 28.3, 65.1, 72.1, 129.9, 141.5, 156.7, 162.6, 197.0; IR (CHCl₃): $\tilde{\nu} = 1751$, 1703, 1676 cm⁻¹; elemental analysis calcd (%) for C₉H₁₂O₄ (184.2): C 58.69, H 6.57; found: C 58.23, H 6.65.

Lipase-catalyzed kinetic resolution of (\pm) -3a with 2a: A solution of 2a (0.75 mmol) in acetone (3.0 mL), prepared as above-described, was placed in a resealable tube. (\pm) -3a (56 mg, 0.50 mmol) and lipase LIP (0.10 g) were added, and the tube was sealed. The reaction mixture was stirred at 30 °C for 10 h and filtered through a Celite pad. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography (hexane/Et₂O 3:1) to give (*S*)-3a (36 mg, 65%, 34% *ee*) and (*R*)-4a (29 mg, 26%, 70% *ee*).

(S)-3a (34% *ee*): Colorless oil. $[\alpha]_D^{28} = -5.8$ (*c* = 1.0, CHCl₃). [lit.^[13f] $[\alpha]_D^{24} = -20.1$ (*c* = 1.0, CHCl₃)].

(*R*)-1-(2-Furyl)ethyl methyl fumarate [(*R*)-4a] (70% *ee*): Colorless oil. $[a]_D^{27} = +6.2$ (c = 1.4, CH₂Cl₂) [lit.^[12a] $[a]_D^{25} = -8.8$ (c = 4.6, CH₂Cl₂) for (*S*)-4a]. Spectroscopic data of 4a were identical with the reported data.^[12a]

Lipase-catalyzed domino kinetic resolution/Diels – Alder Reaction of (\pm)-3a with 2a—A typical procedure: A solution of 2a (0.75 mmol) in acetone (3.0 mL), prepared as above-described, was placed in a resealable tube. (\pm)-3a (56 mg, 0.50 mmol) and lipase LIP (0.10 g) were added, and the tube was sealed. The reaction mixture was stirred at 30 °C for 8 d and filtered through a Celite pad. The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography (hexane/Et₂O/ Et₃N 16:4:1)^[33] to give (S)-3a (20 mg, 35%, 73% *ee*), (R)-4a (22 mg, 20%, 10% *ee*), and a 63:37 mixture of (2R)-syn- and (2R)-anti-5a (40 mg, 36%, 79% *ee* for *syn*-5a, 81% *ee* for *anti*-5a). ¹H NMR (CDCl₃) and IR data for *syn*- and *anti*-5a were identical with the reported data.^[12a]

Methyl (1*R*,2*R*,5*S*,6*S*,7*S*)-2-methyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene-6-carboxylate (*syn*-5a): ¹H NMR (500 MHz, [D₆]acetone^[33]): δ = 1.36 (d, *J* = 6.5 Hz, 3 H), 3.17 (d, *J* = 3.5 Hz, 1 H), 3.40 – 3.43 (m, 1 H), 3.65 (s, 3 H), 5.29 (q, *J* = 6.5 Hz, 1 H), 5.32 (dd, *J* = 1.5, 4.5 Hz, 1 H), 6.40 (dd, *J* = 1.5, 6.0 Hz, 1 H), 6.70 (d, *J* = 6.0 Hz, 1 H).

(15,2*R*,5*R*,6*R*,7*R*)-Diastereomer (*anti*-5a): ¹H NMR (500 MHz, [D₆]acetone): $\delta = 1.64$ (d, J = 6.5 Hz, 3H), 3.15 (d, J = 3.5 Hz, 1H), 3.40–3.43 (m, 1H), 3.65 (s, 3H), 4.82 (q, J = 6.5 Hz, 1H), 5.28–5.30 (m, 1H), 6.43 (dd, J = 1.5, 6.0 Hz, 1H), 6.74 (d, J = 6.0 Hz, 1H).

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (\pm)-3c with 2 a: Similarly to the typical procedure, a mixture of 2 a (0.75 mmol), (\pm)-3c (63 mg, 0.50 mmol), and lipase LIP (0.10 g) was stirred at 30 °C for 12 d to give (*S*)-3c (20 mg, 32%, 86% *ee*), (*R*)-4c (14%, NMR yield), and a 73:27 mixture of (2*R*)-syn- and (2*R*)-anti-5c (60 mg, 50%, 77% *ee* for syn-5c, 78% *ee* for anti-5c). ¹H NMR (CDCl₃) and IR data for (*S*)-3c, (*R*)-4c, syn-5c, and anti-5c were identical with the reported data.^[12a] The optical rotation power of (*R*)-4c could not be obtained due to contamination of small amount of impurity hardly separable by flash column chromatography.

(**S**)-**3**c (86 % *ee*): Colorless oil. $[a]_{D}^{25} = -9.7 (c = 0.5, \text{CHCl}_3)$ [lit.^[13b] $[a]_{D}^{25} = +12.6 (c = 2.1, \text{CHCl}_3)$ for 95 % *ee* of (*R*)-form].

Methyl (1*R*,2*R*,5*S*,6*S*,7*S*)-2-ethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1,5}]dec-8ene-6-carboxylate (*syn*-5c) and its (1*S*,2*R*,5*R*,6*R*,7*R*)-diastereomer (*anti*-5c): A 73:27 mixture of *syn*- and *anti*-5c; colorless crystals; IR (KBr): $\tilde{\nu} =$ 1779, 1738, 1734 cm⁻¹.

*syn-*5c (77% *ee*): ¹H NMR (500 MHz, [D₆]acetone): $\delta = 1.00$ (t, J = 7.5 Hz, 3 H), 1.68 – 1.86 (m, 2 H), 3.16 (d, J = 3.0 Hz, 1 H), 3.39 – 3.42 (m, 1 H), 3.69 (s, 3 H), 5.05 (t, J = 7.5 Hz, 1 H), 5.31 (dd, J = 2.0, 5.0 Hz, 1 H), 6.38 (dd, J = 2.0, 6.0 Hz, 1 H), 6.72 (d, J = 6.0 Hz, 1 H).

anti-5c (78 % *ee*): ¹H NMR (500 MHz, [D₆]acetone): $\delta = 1.12$ (t, J = 7.5 Hz, 3 H), 1.86–2.11 (m, 2 H), 3.07 (d, J = 3.0 Hz, 1 H), 3.39–3.42 (m, 1 H), 3.64 (s, 3 H), 4.59 (dd, J = 4.5, 9.0 Hz, 1 H), 5.28 (dd, J = 2.0, 5.0 Hz, 1 H), 6.43 (dd, J = 2.0, 6.0 Hz, 1 H), 6.74 (d, J = 6.0 Hz, 1 H).

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3d with 2a: Similarly to the typical procedure, a mixture of 2a (3.0 mmol), (±)-3d (0.25 g, 2.0 mmol), and lipase LIP (0.40 g) was stirred at 30 °C for

5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 75:25:1) to give (*S*)-**3d** (116 mg, 46 %, 98 % *ee*), (*R*)-**4d** (23 %, NMR yield), and a 62:38 mixture of (2*R*)-*syn*- and (2*R*)-*anti*-**5d** (148 mg, 31 %, \geq 99 % *ee* for both *syn*- and *anti*-**5d**). Analytically pure (2*R*)-*syn*-**5d** was obtained by the second flash column chromatography (hexane/Et₂O/Et₃N 75:25:1) of the mixture of *syn*- and *anti*-**5d**. The optical rotation power of (*R*)-**4d** could not be obtained due to contamination of small amount of impurity hardly separable by flash column chromatography. Elemental analysis calcd (%) for a mixture of *syn*- and *anti*-**5d**: C₁₂H₁₄O₅ (238.2): C 60.50, H 5.92; found: C 60.28, H 5.87.

(S)-3d (98% *ee*): Colorless oil; $[\alpha]_D^{25} = -10.5$ (c = 0.35, CHCl₃) [lit.^[15] $[\alpha]_D = +8.5$ (c = 2.2, CHCl₃) for 95% *ee* of (*R*)-form].

Methyl (*R***)-1-(5-methyl-2-furyl)ethyl fumarate (***R***)-4d: Colorless oil; ¹H NMR (300 MHz, [D₆]acetone): \delta = 1.58 (d, J = 6.5 Hz, 3 H), 2.24 (d, J = 1.0 Hz, 3 H), 3.76 (s, 3 H), 5.94–6.01 (m, 2 H), 6.33 (d, J = 3.0 Hz, 1 H), 6.76 (brs, 2 H); ¹³C NMR (75 MHz, [D₆]acetone): \delta = 13.4, 18.3, 52.5, 66.9, 107.2, 110.1, 134.1, 134.3, 152.0, 153.1, 164.5, 165.6; IR (KBr): \tilde{\nu} = 1780, 1724, 1647, 1562 cm⁻¹; HRMS: calcd for C₁₂H₁₄O₅ [***M***⁺]: 238.0841; found: 238.0841.**

Methyl (1*R*,2*R*,5*S*,6*S*,7*S*)-2,7-dimethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (*syn*-5d) (≥99% *ee*): Colorless oil; [*α*]²⁷₂ = −16.1 (*c* = 0.32, CHCl₃); ¹H NMR (300 MHz, [D₆]acetone): δ = 1.35 (d, *J* = 6.5 Hz, 3H), 1.74 (s, 3H), 3.06 (d, *J* = 3.5 Hz, 1H), 3.28 (d, *J* = 3.5 Hz, 1H), 3.66 (s, 3H), 5.23 (q, *J* = 6.5 Hz, 1H), 6.25 (d, *J* = 5.5 Hz, 1H), 6.66 (d, *J* = 5.5 Hz, 1H); ¹³C NMR (75 MHz, [D₆]acetone): δ = 14.5, 18.6, 52.5, 54.1, 54.3, 60.4, 76.7, 110.9, 135.2, 139.1, 170.8, 206.1; IR (KBr): $\bar{\nu}$ = 1774, 1732 cm⁻¹; HRMS: calcd for C₁₂H₁₄O₅ [*M*⁺]: 238.0841; found: 238.0851.

anti-5d (≥99% *ee*): ¹H NMR (300 MHz, [D₆]acetone): δ = 1.59 (d, *J* = 7.0 Hz, 3 H), 1.73 (s, 3 H), 3.04 (d, *J* = 3.5 Hz, 1 H), 3.26 (d, *J* = 3.5 Hz, 1 H), 3.66 (s, 3 H), 4.78 (q, *J* = 7.0 Hz, 1 H), 6.28 (d, *J* = 6.0 Hz, 1 H), 6.69 (d, *J* = 6.0 Hz, 1 H).

Hydrogenation of a mixture of (2*R***)-***syn-* **and (2***R***)-***anti***-5 d: A mixture of a 62:38 mixture of (2***R***)-***syn-* **and (2***R***)-***anti***-5 d (10 mg) and 10% Pd/C (10 mg) in MeOH (1.5 mL) was stirred at room temperature under atmospheric pressure of hydrogen overnight. The reaction mixture was filtered through a Celite pad, and the filtrate was concentrated in vacuo to give a 58:42 mixture of methyl (1***R***,2***R***,5***S***,6***S***,7***S***)-2,7-dimethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]decane-6-carboxylate (***syn***-6d) and its (1***S***,2***R***,5***R***, 6***R***,7***R***)-diastereomer (***anti***-6d). This crude product was subjected to GC (CHIRALDEX G-TA) analysis to determine their optical purity. Some characteristic ¹H NMR data (300 MHz, [D₆]acetone):** *syn***-6d \delta = 1.37 (d,** *J* **= 6.5 Hz, 3H), 1.58 (s, 3H), 3.74 (s, 3H), 4.86 (q,** *J* **= 6.5 Hz, 1H).** *anti***-6d \delta = 1.41 (d,** *J* **= 7.0 Hz, 3H), 1.56 (s, 3H), 3.74 (s, 3H), 4.73 (q,** *J* **= 7.0 Hz, 1H).**

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3e with 2a: Similarly to the typical procedure, a mixture of 2a (3.0 mmol), (±)-3e (0.28 g, 2.0 mmol), and lipase LIP (0.40 g) was stirred at 30 °C for 5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 100:50:1) to give (*S*)-3e (143 mg, 51%, \geq 99% *ee*), (*R*)-4e (22%, NMR yield), and a 71:29 mixture of (2*R*)-*syn*- and (2*R*)-*anti*-5e (136 mg, 27%, \geq 99% *ee* for both *syn*- and *anti*-5e). The optical rotation power of (*R*)-4e could not be obtained due to contamination of small amount of impurity hardly separable by flash column chromatography.

(S)-3e (≥99% *ee*): Colorless oil; $[a]_D^{25} = -11.3$ (*c* = 1.4, CHCl₃) [lit.^[13d] $[a]_D^{20} = +7.6$ (*c* = 1.0, CHCl₃) for 70% *ee* of (*R*)-form].

(*R*)-4e: Colorless oil; ¹H NMR (300 MHz, [D₆]acetone): $\delta = 0.90$ (t, J = 7.5 Hz, 3 H), 1.99 (quint, J = 7.5 Hz, 1 H), 2.24 (s, 3 H), 3.77 (s, 3 H), 5.78 (t, J = 7.0 Hz, 1 H), 5.98 (brs, 1 H), 6.32 (d, J = 2.5 Hz, 1 H), 6.78 (s, 2 H); ¹³C NMR (75 MHz, [D₆]acetone): $\delta = 10.1, 13.4, 26.3, 52.5, 71.8, 107.1, 110.7, 134.1, 134.2, 151.1, 153.1, 164.5, 165.6; IR (KBr): <math>\tilde{\nu} = 1782, 1726, 1645, 1562$ cm⁻¹; HRMS: calcd for C₁₃H₁₆O₅ [*M*⁺]: 252.0998; found: 252.1021.

Methyl (1*R*,2*R*,5*S*,6*S*,7*S*)-2-ethyl-7-methyl-3,10-dioxa-4-oxotricyclo-[5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (*syn*-5 e) and its (1*S*,2*R*,5*R*,6*R*,7*R*)-diastereomer (*anti*-5 e): A 71:29 mixture of *syn*- and *anti*-5 e: Colorless oil; IR (KBr): $\tilde{\nu} = 1776$, 1769, 1735, 1730 cm⁻¹; HRMS: calcd for C₁₃H₁₆O₅ [*M*⁺]: 252.0998; found: 252.1002.

syn-5e (≥99% ee): ¹H NMR (500 MHz, [D₆]acetone): δ = 1.00 (t, J = 7.5 Hz, 3H), 1.67–2.08 (m, 2H), 1.75 (s, 3H), 3.04 (d, J = 3.5 Hz, 1H),

3.27 (d, J = 3.5 Hz, 1 H), 3.66 (s, 3 H), 4.99 (t, J = 7.5 Hz, 1 H), 6.23 (d, J = 6.0 Hz, 1 H), 6.69 (d, J = 6.0 Hz, 1 H).

anti-5e (≥99% *ee*): ¹H NMR (500 MHz, [D₆]acetone): δ = 1.11 (t, J = 7.5 Hz, 3H), 1.67–2.08 (m, 2H), 1.73 (s, 3H), 3.04 (d, J = 3.5 Hz, 1H), 3.19 (d, J = 3.5 Hz, 1H), 3.66 (s, 3H), 4.55 (dd, J = 4.0, 9.5 Hz, 1H), 6.28 (d, J = 6.0 Hz, 1H), 6.70 (d, J = 6.0 Hz, 1H).

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (\pm)-3b with 2a: Similarly to the typical procedure, a mixture of 2a (1.5 mmol), (\pm)-3b (128 mg, 1.0 mmol), and lipase LIP (0.20 g) was stirred at 20 °C for 2 days followed by flash column chromatography (hexane/Et₂O/Et₃N 100:50:1) to give (*S*)-3b (58 mg, 45%, \geq 99% *ee*) and (2*R*)-*syn*-5b (81 mg, 34%, 91% *ee*).

(S)-3b (\geq 99% *ee*): Colorless oil; $[\alpha]_{20}^{20} = -47.9$ (c = 1.1, CHCl₃) [lit.^[12a] $[\alpha]_{20}^{20} = +34.6$ (c = 2.27, CHCl₃) for 85% *ee* of (R)-form].

Methyl (15,2*R*,55,65,75)-2,9-dimethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene-6-carboxylate (*syn*-5b): Colorless crystals (91 % *ee*); m.p. 94 – 96 °C [lit.^[12a] m.p. 98–100 °C (MeOH)]; $[a]_D^{17} = -56.0$ (c = 0.81, CHCl₃). ¹H NMR (CDCl₃) and IR data were identical with the reported ones.^[12a]

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3 f with 2 a: Similarly to the typical procedure, a mixture of 2 a (0.75 mmol), (±)-3 f (70 mg, 0.50 mmol), and lipase LIP (0.20 g) was stirred at 20 °C for 2 d followed by flash column chromatography (hexane/Et₂O/Et₃N 100:50:1) to give (*S*)-3 f (35 mg, 50%, \geq 99% *ee*) and (2*R*)-*syn*-5 f (57 mg, 45%, \geq 99% *ee*).

(S)-3 f (\geq 99 % *ee*): Colorless oil; $[\alpha]_{D}^{20} = -35.3$ (*c* = 0.65, CHCl₃).

Methyl (15,2*R*,55,65,75)-2-ethyl-9-methyl-3,10-dioxa-4-oxotricyclo-[5.2.1.0^{1.5}]dec-8-ene-6-carboxylate (*syn*-5 f): Colorless crystals (≥99% *ee*); m.p. 115–116 °C (MeOH); [α]₁¹⁸ = −55.2 (*c* = 1.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 1.04 (t, *J* = 7.5 Hz, 3 H), 1.68 − 2.03 (m, 2 H), 1.91 (d, *J* = 1.5 Hz, 3 H), 3.05 (d, *J* = 3.5 Hz, 1 H), 3.53 (dd, *J* = 3.5, 4.0 Hz, 1 H), 3.68 (s, 3 H), 4.79 (t, *J* = 7.5 Hz, 1 H), 5.20 (brd, *J* = 4.0 Hz, 1 H), 5.88 (quint, *J* = 1.5 Hz, 1 H); ¹H NMR (300 MHz, [D₆]acetone): δ = 1.02 (t, *J* = 7.5 Hz, 3 H), 1.65 − 1.92 (m, 2 H), 1.95 (d, *J* = 1.5 Hz, 3 H), 3.19 (d, *J* = 3.5 Hz, 1 H), 3.40 (dd, *J* = 3.5, 4.0 Hz, 1 H), 3.66 (s, 3 H), 5.02 (t, *J* = 7.5 Hz, 1 H), 5.20 (brd, *J* = 4.0 Hz, 1 H), 5.94 (quint, *J* = 1.5 Hz, 1 H); ¹³C NMR (75 MHz, [D₆]acetone): δ = 9.8, 12.0, 23.2, 50.5, 50.7, 52.4, 80.3, 80.8, 96.4, 128.6, 145.6, 171.0, 174.9; IR (KBr): \hat{r} = 1778, 1744 − 1732 cm⁻¹; HRMS: calcd for C₁₃H₁₆O₅ [*M*⁺]: 252.0998; found: 252.1004; elemental analysis calcd (%) for C₁₃H₁₆O₅

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (\pm)-3 f with 2b: Similarly to the typical procedure, a mixture of 2b (3.0 mmol), (\pm)-3 f (0.28 g, 2.0 mmol), and lipase LIP (0.40 g) was stirred at 30 °C for 4 d followed by flash column chromatography (hexane/Et₂O/Et₃N 100:50:1) to give (*S*)-3 f (120 mg, 43 %, 96 % *ee*) and (2*R*)-*syn*-5 g (0.24 g, 46 %, \geq 99 % *ee*).

Ethyl (15,2*R*,55,65,75)-2-ethyl-9-methyl-3,10-dioxa-4-oxotricyclo-[5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (*syn*-5g): Colorless oil (≥99% *ee*); $[α]_D^{27} = -64.9$ (*c* = 0.66, CHCl₃); ¹H NMR (500 MHz, [D₆]acetone): δ = 1.01 (t, *J* = 7.5 Hz, 3H), 1.22 (t, *J* = 7.5 Hz, 3H), 1.67 – 1.76 (m, 1 H), 1.79 – 1.88 (m, 1 H), 1.94 (d, *J* = 2.0 Hz, 3 H), 3.18 (d, *J* = 3.0 Hz, 1 H), 3.37 (dd, *J* = 3.0, 4.5 Hz, 1 H), 4.10 (q, *J* = 7.5 Hz, 2 H), 5.00 (t, *J* = 7.5 Hz, 1 H), 5.18 (d, *J* = 4.5 Hz, 1 H), 5.93 – 5.95 (m, 1 H); ¹³C NMR (125 MHz, [D₆]acetone): δ = 9.9, 12.0, 14.4, 23.2, 50.7, 50.8, 61.6, 80.3, 81.0, 96.5, 128.7, 145.7, 170.5, 175.0; IR (KBr): $\tilde{ν}$ = 1781, 1738 – 1732 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₈O₅ (266.3): C 63.15, H 6.81; found: C 62.90, H 6.79.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3 f with 2 c: Similarly to the typical procedure, a mixture of 2 c (0.75 mmol), (±)-3 f (63 mg, 0.45 mmol), and lipase LIP (0.10 g) was stirred at 30 °C for 4 d followed by flash column chromatography (hexane/Et₂O/Et₃N 100:50:1) to give (*S*)-3 f (30 mg, 47%, \geq 99% *ee*) and (2*R*)-*syn*-5h (47 mg, 44%, 95% *ee*).

(1S,2R,5S,6S,7S)-6-Acetyl-2-ethyl-9-methyl-3,10-dioxa-4-oxotricyclo-

[5.2.1.0^{1,5}]dec-8-ene (syn-5h): Pale yellow oil (95 % *ee*); $[\alpha]_D^{26} = -34.2$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, $[D_6]$ acetone): $\delta = 1.01$ (t, *J* = 7.5 Hz, 3 H), 1.66 - 1.90 (m, 2 H), 1.92 (s, 3 H), 2.21 (s, 3 H), 3.23 (d, *J* = 3.5 Hz, 1 H), 3.58 (t, *J* = 4.0 Hz, 1 H), 4.98 (t, *J* = 7.0 Hz, 1 H), 5.38 (brd, *J* = 3.5 Hz, 1 H), 5.93 (quint, *J* = 1.5 Hz, 1 H); ¹³C NMR (75 MHz, $[D_6]$ acetone): $\delta = 9.9$, 11.9, 23.2, 49.0, 59.5, 80.3, 80.8, 96.6, 128.0, 145.4, 175.5, 203.4; IR (KBr): $\tilde{\nu} =$

1774, 1713, 1624 cm $^{-1};$ HRMS: calcd for $C_{13}H_{16}O_4$ $[M^+]:$ 236.1048; found: 236.1007.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (\pm)-3h with 2b: Similarly to the typical procedure, a mixture of 2b (1.13 mmol), (\pm)-3h (154 mg, 0.75 mmol), and lipase LIP (0.30 g) was stirred at 30 °C for 6 d followed by flash column chromatography (hexane/Et₂O/Et₃N 93:2:5 \rightarrow 85:10:5) to give (S)-3h (58 mg, 38%, \geq 99% *ee*) and (2*R*)-*syn*-5j (106 mg, 43%, 96% *ee*).

(S)-3h (\geq 99% *ee*): Pale yellow oil; $[\alpha]_{D}^{24} = -1.6$ (*c* = 1.0, CHCl₃).

Ethyl (1*R*,2*R*,55,65,7*S*)-9-bromo-2-ethyl-3,10-dioxa-4-oxotricyclo-[5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (*syn*-5j): Pale yellow oil (96 % *ee*); $[a]_D^{24} = -42.7$ (*c* = 1.2, MeOH); ¹H NMR (300 MHz, [D₆]acetone): $\delta =$ 1.04 (t, *J* = 7.5 Hz, 3H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.64 – 1.95 (m, 2H), 3.36 (d, *J* = 3.5 Hz, 1H), 3.50 (dd, *J* = 3.5, 4.5 Hz, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 5.03 (t, *J* = 7.5 Hz, 1H), 5.41 (dd, *J* = 2.0, 4.5 Hz, 1H), 6.64 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (75 MHz, [D₆]acetone): $\delta = 9.7$, 14.3, 22.9, 50.0, 50.8, 62.0, 79.7, 82.5, 96.6, 125.0, 135.4, 169.9, 173.6; IR (KBr): $\tilde{v} = 1788$, 1730, 1570 cm⁻¹; elemental analysis calcd (%) for C₁₃H₁₅BrO₅ (331.2): C 47.15, H 4.57; found: C 47.32, H 4.62.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3h with 2 c: Similarly to the typical procedure, a mixture of 2 c (1.13 mmol), (±)-3h (154 mg, 0.75 mmol), and lipase LIP (0.15 g) was stirred at 30 °C for 5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 92:3:5 \rightarrow 20:75:5) to give (*S*)-3h (74 mg, 48%, ≥99% *ee*) and (2*R*)-*syn*-5k (90 mg, 40%, ≥99% *ee*).

(1R,2R,5S,6S,7S)-6-Acetyl-9-bromo-2-ethyl-3,10-dioxa-4-oxotricyclo-

[5.2.1.0^{1,5}]dec-8-ene (*syn*-**5**k): Pale yellow oil (≥99% *ee*); $[a]_{25}^{25} = -14.4$ (*c* = 1.1, MeOH); ¹H NMR (300 MHz, [D₆]acetone): δ = 1.04 (t, *J* = 7.5 Hz, 3H), 1.64 – 1.97 (m, 2H), 2.27 (s, 3H), 3.39 (d, *J* = 4.0 Hz, 1H), 3.69 – 3.71 (m, 1H), 5.01 (t, *J* = 7.5 Hz, 1H), 5.56 (dd, *J* = 2.0, 4.5 Hz, 1H), 6.62 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (75 MHz, [D₆]acetone): δ = 9.7, 22.9, 49.3, 58.6, 79.8, 82.5, 96.8, 124.7, 134.9, 174.2, 203.1; IR (KBr): $\tilde{\nu}$ = 1778, 1713, 1570 cm⁻¹; elemental analysis calcd (%) for C₁₂H₁₃BrO₄ (301.1): C 47.86, H 4.35; found: C 47.85, H 4.35.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3i with 2a: Similarly to the typical procedure, a mixture of 2a (0.75 mmol), (±)-3i (110 mg, 0.50 mmol), and lipase LIP (0.10 g) was stirred at 30 °C for 2.5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 100:10:1 \rightarrow 100:30:1) to give (*S*)-3i (59 mg, 54 %, 82 % *ee*) and (2*R*)-syn-5l (61 mg, 35 %, 95 % *ee*).

(S)-3i (82 % *ee*): Colorless oil; $[\alpha]_{D}^{20} = -5.8$ (*c* = 1.0, CHCl₃).

Methyl (1*R*,2*R*,5*S*,6*S*,7*S*)-9-bromo-2-ethyl-7-methyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (*syn*-51): Colorless crystals (95 % *ee*); m.p. 64–66 °C (AcOEt); $[\alpha]_D^{20} = -6.8$ (*c* = 0.81, MeOH); ¹H NMR (300 MHz, [D₆]acetone): $\delta = 1.03$ (t, *J* = 7.5 Hz, 3H), 1.65–1.74 (m, 1H), 1.77 (s, 3H), 1.80–1.90 (m, 1H), 3.14 (d, *J* = 4.0 Hz, 1H), 3.45 (d, *J* = 4.0 Hz, 1H), 3.69 (s, 3H), 4.97 (t, *J* = 7.0 Hz, 1H), 6.50 (s, 1H); ¹³C NMR (125 MHz, [D₆]acetone): $\delta = 9.8$, 18.6, 23.0, 52.7, 53.9, 54.8, 80.0, 92.1, 95.8, 124.9, 138.3, 170.7, 173.6; IR (KBr): $\tilde{\nu} = 1782$, 1732 cm⁻¹; elemental analysis calcd (%) for C₁₃H₁₅BrO₅ (331.2): C 47.15, H 4.57; found: C 47.33, H 4.57.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3i with 2b: Similarly to the typical procedure, a mixture of 2b (0.75 mmol), (±)-3i (110 mg, 0.50 mmol), and lipase LIP (0.10 g) was stirred at 30 °C for 2.5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 100:30:1 \rightarrow 100:100:1) to give (*S*)-3i (50 mg, 45 %, ≥99 % *ee*) and (2*R*)*syn*-5m (50 mg, 30 %, 95 % *ee*).

Ethyl (1*R*,2*R*,5*S*,6*S*,7*S*)-9-bromo-2-ethyl-7-methyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene-6-carboxylate (*syn*-5 m) (95% *ee*): Colorless oil (95% *ee*); $[a]_{20}^{20} = -9.3$ (*c* = 1.7, MeOH); ¹H NMR (500 MHz, [D₆]acetone): $\delta = 1.03$ (t, *J* = 7.5 Hz, 3H), 1.25 (t, *J* = 7.5 Hz, 3H), 1.66 – 1.74 (m, 1H), 1.78 (s, 3H), 1.81 – 1.91 (m, 1H), 3.12 (d, *J* = 4.0 Hz, 1H), 3.44 (d, *J* = 4.0 Hz, 1H), 4.10 – 4.17 (m, 2H), 4.97 (t, *J* = 7.5 Hz, 1H), 6.50 (s, 1H); ¹³C NMR (125 MHz, [D₆]acetone): $\delta = 9.8$, 14.4, 18.8, 23.0, 53.8, 55.0, 62.0, 80.0, 92.2, 95.8, 124.9, 138.2, 170.0, 173.7; IR (KBr): $\tilde{\nu} = 1784$, 1736 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₇BrO₅ (345.2): C 48.71, H 4.96; found: C 49.00, H 4.98.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (\pm)-3i with 2 c: Similarly to the typical procedure, a mixture of (\pm)-3i (110 mg, 0.50 mmol), 2c (0.75 mmol), and lipase LIP (0.10 g) was stirred at 10 °C for

24 h followed by flash column chromatography (hexane/Et₂O/Et₃N 100:10:1 \rightarrow 100:30:1) to give (S)-**3i** (53 mg, 48%, 82% *ee*) and (2*R*)-*syn*-**5n** (53 mg, 34%, \geq 99% *ee*).

(1*R*,2*R*,5*S*,6*S*,7*S*)-6-Acetyl-9-bromo-2-ethyl-7-methyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene (*syn*-5n): Pale yellow oil (≥99% *ee*); [*α*]²⁰₂ = +20.7 (*c* = 1.4, MeOH); ¹H NMR (500 MHz, [D₆]acetone): δ = 1.02 (t, *J* = 7.5 Hz, 3H), 1.65 – 1.76 (m, 1H), 1.77 (s, 3H), 1.80 – 1.89 (m, 1H), 2.25 (s, 3H), 3.36 (d, *J* = 4.0 Hz, 1H), 3.39 (d, *J* = 4.0 Hz, 1H), 4.93 (t, *J* = 7.5 Hz, 1H), 6.49 (s, 1H); ¹³C NMR (125 MHz, [D₆]acetone) δ = 9.8, 18.9, 23.0, 26.4, 53.3, 63.2, 80.1, 91.7, 95.5, 123.9, 138.9, 174.2, 204.5; IR (KBr): $\tilde{\nu}$ = 1778, 1713 cm⁻¹; elemental analysis calcd (%) for C₁₃H₁₅BrO₄ (315.2): C 49.54, H 4.80; found: C 49.72, H 4.80.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3j with 2a: Similarly to the typical procedure, a mixture of 2a (0.75 mmol), (±)-3j (125 mg, 0.50 mmol), and lipase LIP (0.20 g) was stirred at 30 °C for 4.5 days followed by flash column chromatography (hexane/Et₂O/Et₃N 93:2:5 \rightarrow 85:10:5) to give (*S*)-3j (55 mg, 44 %, ≥99 % *ee*) and (2*R*)-*syn*-5o (78 mg, 43 %, 94 % *ee*).

(S)-3j (\geq 99% *ee*): Pale yellow oil. $[\alpha]_{D}^{25} = -4.6$ (*c* = 1.0, CHCl₃).

Methyl (1*R*,2*R*,5*S*,6*S*,7*R*)-9-bromo-2-ethyl-7-methoxymethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene-6-carboxylate (*syn*-5 o): Pale yellow oil (94 % *ee*); $[a]_{2}^{2b} = +7.8$ (*c* = 1.0, MeOH); ¹H NMR (300 MHz, $[D_6]$ acetone): $\delta = 1.05$ (t, *J* = 7.5 Hz, 3 H), 1.65 – 1.95 (m, 2 H), 3.39 (s, 3 H), 3.45 – 3.48 (m, 2 H), 3.70 (s, 3 H), 3.99 (d, *J* = 12.0 Hz, 1 H), 4.04 (d, *J* = 12.0 Hz, 1 H), 5.01 (t, *J* = 7.5 Hz, 1 H), 6.57 (s, 1 H); ¹³C NMR (75 MHz, $[D_6]$ acetone): $\delta = 9.8$, 22.9, 49.6, 52.8, 52.9, 59.6, 70.6, 79.8, 94.9, 96.1, 124.9, 135.9, 170.5, 173.5; IR (KBr): $\tilde{\nu} = 1788$, 1738, 1574 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₇BrO₆ (361.2): C 46.56, H 4.74; found: C 46.56, H 4.72.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3j with 2b: Similarly to the typical procedure, a mixture of 2b (0.75 mmol), (±)-3j (125 mg, 0.50 mmol), and lipase LIP (0.20 g) was stirred at 30 °C for 4.5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 93:2:5 \rightarrow 85:10:5) to give (*S*)-3j (55 mg, 44%, 98% *ee*) and *syn*-5p (84 mg, 45%, 96% *ee*).

Ethyl (1*R*,2*R*,5*S*,6*S*,7*R*)-9-bromo-2-ethyl-7-methoxymethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene-6-carboxylate (*syn*-5**p**): Pale yellow oil (96 % *ee*); $[a]_{25}^{25} = +0.8$ (*c* = 1.3, MeOH); ¹H NMR (300 MHz, $[D_6]$ acetone): $\delta = 1.05$ (t, *J* = 7.5 Hz, 3H), 1.26 (t, *J* = 7.0 Hz, 3H), 1.65 - 1.92 (m, 2H), 3.39 (s, 3H), 3.44 - 3.45 (m, 2H), 3.99 (d, *J* = 12.0 Hz, 1 H), 4.05 (d, *J* = 12.0 Hz, 1 H), 4.15 (q, *J* = 7.0 Hz, 2H), 5.01 (t, *J* = 7.5 Hz, 1 H), 6.57 (s, 1 H); ¹³C NMR (75 MHz, $[D_6]$ acetone): $\delta = 9.8$, 14.3, 22.9, 49.8, 52.8, 59.6, 62.1, 70.7, 79.8, 94.9, 96.1, 124.9, 135.9, 169.9, 173.5; IR (KBr): $\tilde{\nu} = 1782$, 1730, 1574 cm⁻¹; elemental analysis calcd (%) for C₁₅H₁₉BrO₆ (375.2): C 48.02, H 5.10; found: C 48.05, H 5.08.

Lipase-catalyzed domino kinetic resolution/Diels – Alder reaction of (±)-3j with 2c: Similarly to the typical procedure, a mixture of 2c (0.75 mmol), (±)-3j (125 mg, 0.50 mmol), and lipase LIP (0.20 g) was stirred at 30 °C for 4.5 d followed by flash column chromatography (hexane/Et₂O/Et₃N 93:2:5 \rightarrow 85:10:5) to give (S)-3j (55 mg, 44%, 93% *ee*) and (2*R*)-*syn*-5q (62 mg, 36%, 93% *ee*).

(1*R*,2*R*,5*S*,6*S*,7*R*)-6-Acetyl-9-bromo-2-ethyl-7-methoxymethyl-3,10-dioxa-4-oxotricyclo[5.2.1.0^{1.5}]dec-8-ene (*syn*-5 q): Pale yellow oil (93% *ee*); $[\alpha]_D^{25} = +21.7$ (*c* = 1.2, MeOH); ¹H NMR (300 MHz, [D₆]acetone): $\delta =$ 1.04 (t, *J* = 7.5 Hz, 3H), 1.67–1.92 (m, 2H), 2.25 (s, 3H), 3.40 (d, *J* = 4.0 Hz, 1H), 3.41 (s, 3H), 3.66 (d, *J* = 4.0 Hz, 1H), 3.95 (d, *J* = 12.0 Hz, 1H), 4.00 (d, *J* = 12.0 Hz, 1H), 4.97 (t, *J* = 7.5 Hz, 1H), 6.74 (s, 1H); ¹³C NMR (75 MHz, [D₆]acetone): $\delta = 9.8$, 22.9, 52.5, 57.9, 59.6, 71.0, 79.9, 94.6, 96.0, 124.1, 136.2, 174.0, 204.5; IR (KBr): $\tilde{\nu} = 1778$, 1713, 1574 cm⁻¹; elemental analysis calcd (%) for C₁₄H₁₇BrO₅ (345.2): C 48.71, H 4.96; found: C 48.80, H 4.96.

Methyl (1*R*,2*R*,5*S*,6*S*,7*S*)-2-ethyl-7-methyl-3,10-dioxa-4-oxotricyclo-[5.2.1.0^{1.5}]decane-6-carboxylate (*syn*-6e): Similarly to the hydrogenation of 5d, (2*R*)-*syn*-6e (6.0 mg, 79%) was obtained from (2*R*)-*syn*-5l (95% *ee*, 10 mg, 0.030 mmol) after flash column chromatography (hexane/Et₂O 1:1 → 1:2) as colorless crystals. M.p. 74–76 °C; [α]_D²⁵ = +12.8 (*c* = 0.42, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 1.11 (t, *J* = 7.0 Hz, 3H), 1.57 (s, 3H), 1.74–1.90 (m, 6H), 3.05 (m, 1H), 3.36 (d, *J*=4.5 Hz, 1H), 3.73 (s, 3H), 4.47 (dd, *J*=4.5, 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 10.6, 20.5, 21.9, 28.8, 31.8, 52.4, 54.3, 57.0, 82.0, 87.3, 91.0, 171.0, 175.8; IR (KBr): $\bar{v}\,{=}\,1776,\,1732\,{\rm cm^{-1}};\,{\rm HRMS}{:}$ calcd for ${\rm C}_{13}{\rm H}_{18}{\rm O}_5$ $[M^+]{:}$ 254.1163; found: 254.1154.

Hydrolysis of a mixture of (2*R***)-syn-5e and (2***R***)-anti-5e: Similarly to the hydrogenation of 5d**, a 67:33 mixture of (2*R*)-syn-**6e** and (2*R*)-anti-**6e** (16.6 mg, 97%) was obtained from a 70:30 mixture of (2*R*)-syn-**5e** and (2*R*)-anti-**5e** (17.0 mg, 0.067 mmol) after flash column chromatography as a colorless oil. ¹H NMR data of the major isomer, syn-**6e**, was identical with those of (2*R*)-syn-**6e** obtained above. Typical ¹H NMR (300 MHz, CDCl₃) data for anti-**6c**: $\delta = 1.10$ (t, J = 7.0 Hz, 3 H), 1.62 (s, 3 H), 3.35 (d, J = 4.0 Hz, 1 H), 3.76 (s, 3 H), 4.57 (dd, J = 4.0, 10.0 Hz, 1 H).

(1S,2R,5S,6S,7S)-2-ethyl-3,10-dioxa-4-oxo-9-phenyltricyclo-Ethvl [5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (syn-5i): Under a nitrogen atmosphere, $PhB(OH)_2$ (11 mg, 0.090 mmol), $PdCl_2(PPh_3)_2$ (5 mg, 0.007 mmol), and $2\,{\mbox{\scriptsize M}}$ aqueous Na₂CO₃ (0.12 mL, 0.24 mmol) were successively added to a solution of (2R)-syn-5i (96% ee, 20 mg, 0.060 mmol) in THF (1 mL). The reaction mixture was stirred at refluxing temperature for 26 h. After cooling, the reaction was quenched by water, and the product was extracted with Et₂O three times. The combined organic layer was washed with brine, dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/Et₂O 10:1 \rightarrow 1:1) to give syn-5i (12 mg, 61 %) as a colorless gum. $[\alpha]_{\rm D}^{20} = -61.1 \ (c = 0.54, \text{CHCl}_3); {}^{1}\text{H NMR}$ (300 MHz, CDCl₃): $\delta = 1.00$ (t, J = 7.5 Hz, 3 H), 1.26 (t, J = 7.0 Hz, 3 H), 1.82-2.00 (m, 2H), 3.30 (d, J = 3.0 Hz, 1H), 3.60 (dd, J = 3.0, 5.0 Hz, 1H), 4.08 - 4.27 (m, 2 H), 5.10 (dd, J = 5.5, 8.0 Hz, 1 H), 5.35 (dd, J = 2.0, 5.0 Hz, 1 H), 6.28 (d, J = 2.0 Hz, 1 H), 7.22 – 7.41 (m, 5 H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 10.1, 14.2, 22.8, 49.7, 50.8, 61.5, 80.3, 80.4, 106.9, 126.9, 128.8,$ 129.0, 129.9, 132.1, 148.2, 169.7, 174.2; IR (KBr): $\tilde{\nu} = 1780$, 1734 cm⁻¹; HRMS: calcd for C₁₉H₂₀O₅ [*M*⁺]: 328.1294; found: 328.1310.

(1S,2R,5S,6S,7S)-2-ethyl-3,10-dioxa-4-oxo-9-[(trimethylsilyl)ethy-Ethvl nyl]tricyclo[5.2.1.0^{1,5}]dec-8-ene-6-carboxylate (syn-5r): Under a nitrogen atmosphere, Et₂NH (0.015 mL, 0.14 mmol) and CuI (0.5 mg, 2.4 µmol) and $Pd(PPh_3)_4$ (1.4 mg, 1.2 µmol) were successively added to a solution of (2R)syn-5i (96% ee, 20 mg, 0.060 mmol) and (trimethylsilyl)acetylene (0.017 mL, 0.12 mmol) in anhydrous DMF (0.1 mL). The reaction mixture was stirred at 50°C for 45 min, cooled to room temperature, and concentrated in vacuo. The residue was purified by preparative TLC (hexane/Et₂O 1:1) to give syn-5r (12.6 mg, 60%) as a pale yellow gum. $[a]_{D}^{23} = -133 (c = 0.85, MeOH); {}^{1}H NMR (300 MHz, [D_{6}]acetone): \delta = 0.23$ (s, 9H), 1.05 (t, J = 7.5 Hz, 3H), 1.27 (t, J = 7.0 Hz, 3H), 1.72 - 2.01 (m, 2H), 3.20 (d, J = 4.0 Hz, 1 H), 3.58 (dd, J = 4.0, 5.0 Hz, 1 H), 4.10 - 4.21 (m, 2 H), 4.91 (dd, J = 7.0, 9.0 Hz, 1 H), 5.34 (dd, J = 2.0, 5.0 Hz, 1 H), 6.42 (d, J =2.0 Hz, 1 H); ¹³C NMR (75 MHz, [D₆]acetone): $\delta = -0.3$, 9.7, 14.4, 22.9, 49.7, 51.0, 61.9, 80.0, 81.5, 95.8, 96.2, 106.9, 131.2, 139.0, 170.0, 174.0; IR (KBr): $\tilde{\nu} = 1788$, 1738, 1578 cm⁻¹; elemental analysis calcd (%) for C18H24O5Si (348.5): C 62.04, H 6.94; found: C 61.85, H 6.92.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research [Priority Areas (A) "Exploitation of Multi-Element Cyclic Molecules", No. 13672214, and No. 13853010] from the Ministry of Education, Culture, Sports, Science, and, Technology, Japan and the Takeda Science Foundation, Japan. Toyobo Co., Ltd., Japan, Amano Enzyme Inc., Japan, Meito Sangyo Co., Ltd., Japan, and Roche Diagnostics K. K., Japan are thanked for their generous gifts of the lipases.

- [3] For recent papers, see: T. Itoh, E. Akasaki, Y. Nishimura, *Chem. Lett.* 2002, 154–155; S. Park, R. J. Kazlauskas, *J. Org. Chem.* 2001, 66, 8395–8401.
- [4] a) A. Ghogare, G. S. Kumar, J. Chem. Soc. Chem. Commun. 1990, 134–135; b) Y. L. Khmelnitsky, C. Budde, J. M. Arnold, A. Usyatinsky, D. S. Clark, J. S. Dordick, J. Am. Chem. Soc. 1997, 119, 11554–11555; c) P. J. Coelho, L. Blanco, Eur. J. Org. Chem. 2000, 3039–3046; d) E. Brenna, C. Fuganti, P. Grasselli, S. Serra, Eur. J. Org. Chem. 2001, 1349–1357; e) V. Athawale, N. Manjrekar, Tetrahedron Lett. 2001, 42, 4541–4543; f) A. Córdova, K. D. Janda, J. Org. Chem. 2001, 66, 1906–1909.
- [5] For a review on enzyme-initiated domino reactions, see: S. F. Mayer, W. Kroutil, K. Faber, *Chem. Soc. Rev.* **2001**, *30*, 332–339; for reviews on the chemical domino reactions, see: L. F. Tietze, *Chem. Rev.* **1996**, *96*, 115–136; L. F. Tietze, U. Beifuss, *Angew. Chem.* **1993**, *105*, 137– 170; *Angew. Chem. Int. Ed.* **1993**, *32*, 131–163.
- [6] a) Y. Kita, Y. Takebe, K. Murata, T. Naka, S. Akai, *Tetrahedron Lett.* 1996, *37*, 7369–7372; b) Y. Kita, Y. Takebe, K. Murata, T. Naka, S. Akai, *J. Org. Chem.* 2000, *65*, 83–88.
- [7] a) S. Akai, T. Naka, Y. Takebe, Y. Kita, *Tetrahedron Lett.* 1997, *38*, 4243–4246; b) S. Akai, T. Naka, T. Fujita, Y. Takebe, Y. Kita, *Chem. Commun.* 2000, 1461–1462; c) S. Akai, T. Tsujino, T. Naka, K. Tanimoto, Y. Kita, *Tetrahedron Lett.* 2001, *42*, 7315–7317; d) S. Akai, T. Tsujino, N. Fukuda, K. Iio, Y. Takeda, K. Kawaguchi, T. Naka, K. Higuchi, Y. Kita, *Org. Lett.* 2001, *3*, 4015–4018; e) S. Akai, T. Naka, T. Fujita, Y. Takebe, T. Tsujino, Y. Kita, *J. Org. Chem.* 2002, *67*, 411–419.
- [8] Acetaldehyde liberated from II occasionally inactivates certain lipases^[8a, b] and causes side reactions,^[8c] see: a) B. Berger, K. Faber, *J. Chem. Soc. Chem. Commun.* **1991**, 1198–1200; b) H. K. Weber, J. Zuegg, K. Faber, J. Pleiss, *J. Mol. Catal. B* **1997**, *3*, 131–138; c) H.-E. Högberg, M. Lindmark, D. Isaksson, K. Sjödin, M. C. R. Franssen, H. Jongejan, J. B. P. A. Wijnberg, A. de Groot, *Tetrahedron Lett.* **2000**, *41*, 3193–3196.
- [9] The esters 2 are prepared in almost quantitative yields by the addition of the corresponding carboxylic acids to ethoxyacetylene in the presence of about 0.5 mol% equivalent of [RuCl₂(*p*-cymene)]₂, see: Y. Kita, H. Maeda, K. Omori, T. Okuno, Y. Tamura, *J. Chem. Soc. Perkin Trans. 1* 1993, 2999–3005; Y. Kita, Y. Takeda, M. Matsugi, K. Iio, K. Gotanda, K. Murata, S. Akai, *Angew. Chem.* 1997, *109*, 1525– 1527; *Angew. Chem. Int. Ed. Engl.* 1997, *36*, 1529–1531.
- [10] Y. Kita, T. Naka, M. Imanishi, S. Akai, Y. Takebe, M. Matsugi, *Chem. Commun.* 1998, 1183–1184.
- [11] For recent reviews, see: a) P. Vogel, J. Cossy, J. Plumet, O. Arjona, *Tetrahedron* 1999, 55, 13521–13642; b) C. O. Kappe, S. S. Murphree, A. Padwa, *Tetrahedron* 1997, 53, 14179–14233; see also c) M. Murakami, H. Igawa, *Chem. Commun.* 2002, 390–391, and references therein.
- [12] For recent examples, see: a) T. Butz, J. Sauer, *Tetrahedron: Asymmetry* 1997, 8, 703 714; b) F. Pontén, G. Magnusson, *J. Org. Chem.* 1997, 62, 7978 7983; c) C. Andrés, J. Nieto, R. Pedrosa, M. Vicente, *J. Org. Chem.* 1998, 63, 8570 8573.
- [13] Sharpless asymmetric epoxidation of racemic 3, see: a) M. Kusakabe, Y. Kitano, Y. Kobayashi, F. Sato, J. Org. Chem. 1989, 54, 2085–2091;
 b) T. Kametani, M. Tsubuki, Y. Tatsuzaki, T. Honda, J. Chem. Soc. Perkin Trans. 1 1990, 639–646; enantioselective addition of diethyl zinc to furfural, see: c) M. Hayashi, T. Kaneko, N. Oguni, J. Chem. Soc. Perkin Trans. 1 1991, 25–28; d) I. Sato, T. Saito, D. Omiya, Y. Takizawa, K. Soai, Heterocycles 1999, 51, 2753–2758; enantioselective reduction of 2-acyfurans; see: e) R. Noyori, T. Ohkuma, Angew. Chem. 2001, 113, 41–75; Angew. Chem. Int. Ed. 2001, 40, 40–73; f) T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749–1751.
- [14] For kinetic resolution through the enzymatic transesterification of racemic 3 or the hydrolysis of the corresponding esters, see: a) A. J. M. Janssen, A. J. H. Klunder, B. Zwanenburg, *Tetrahedron* 1991, 47, 7645–7662; b) J. Kaminska, I. Górnicka, M. Sikora, J. Góra, *Tetrahedron: Asymmetry* 1996, 7, 907–910.
- [15] For kinetic resolution through the microbial oxidation of the furfuryl alcohols, see: G. Fantin, M. Fogagnolo, A. Medici, P. Pedrini, S. Poli, F. Gardini, *Tetrahedron: Asymmetry* **1993**, *4*, 1607–1612.
- [16] During the intramolecular Diels-Alder reaction of furans, the equilibrium of the cycloadducts and their precursors has often been observed, see: a) C. Rogers, B. A. Keay, *Can. J. Chem.* **1993**, *71*, 611-

Chem. Eur. J. 2002, 8, No. 18 © 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0947-6539/02/0818-4263 \$ 20.00+.50/0

For recent reviews, see: a) U. T. Bornscheuer, R. J. Kazlauskas, *Hydrolases in Organic Synthesis: Regio- and Stereoselecive Biotransformations*, Wiley-VCH, Weinheim, **1999**; b) F. Theil, *Tetrahedron* **2000**, 56, 2905–2919; c) M. Pogorevc, K. Faber, J. Mol. Cat. B **2000**, 10, 357–376; d) S. M. Roberts, J. Chem. Soc. Perkin Trans. 1 **2001**, 1475– 1499.

 ^[2] a) T. Matsuda, R. Kanamaru, K. Watanabe, T. Harada, K. Nakamura, *Tetrahedron Lett.* 2001, 42, 8319–8321; b) A. J. Mesiano, E. J. Beckman, A. J. Russell, *Chem. Rev.* 1999, 99, 623–633, and references therein.

622; b) N. Iwasawa, F. Sakurada, M. Iwamoto, *Org. Lett.* **2000**, *2*, 871–873.

- [17] Discrimination of *syn* and *anti* tentatively shows the relation between the oxygen bridge and the C-2 side-chain following the precedents.^[12a, 16a] The structures of both the *syn*- and *anti*-Diels – Alder adducts in our previous communication^[10] were erroneously drawn and need to be corrected. The revised structures are shown in Scheme 4.
- [18] To evaluate of the potential effect of the lipase on the Diels-Alder reaction, the reaction of a mixture of (\pm) -4a and LIP in acetone was examined with or without [RuCl₂(*p*-cymene)]₂ at 30 °C for 4-6 days. In several repeated trials, optically enriched products, (*S*)-4a (7-9% *ee*), (2*R*)-*syn*-5a (0-8% *ee*), and (2*R*)-*anti*-5a (0-23% *ee*) were obtained; however, the degree of the optical purity was small and varied. Further investigation is now being continued.
- [19] The allylic 1,3-strain between the C-3 group and the C-2 alkyl-sidechain at the transition state of the Diels-Alder reaction of 4b was reported to be a plausible reason for the diastereoselective formation of syn-5b.^[12a]
- [20] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; C. R. Johnson, B. A. Johns, J. Org. Chem. 1997, 62, 6046–6050.
- [21] K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* 1975, 4467 4470; H. Mosimann, P. Vogel, J. Org. Chem. 1997, 62, 3002 3007.
- [22] For synthetic studies, see: D. L. Wright, C. V. Robotham, K. Aboud, *Tetrahedron Lett.* **2002**, *43*, 943–946; F. E. S. Souza, R. Rodrigo, *Chem. Commun.* **1999**, 1947–1948.
- [23] For total synthesis, see: M. Takadoi, T. Katoh, A. Ishiwata, S. Terashima, *Tetrahedron Lett.* **1999**, *40*, 3399–3402; S. Chackalamannil, R. J. Davies, Y. Wang, T. Asberom, D. Doller, J. Wong, D. Leone, A. T. McPhail, *J. Org. Chem.* **1999**, *64*, 1932–1940.

- [24] Quite recently, we developed a new domino process involving a lipasecatalyzed kinetic resolution of hydroxy nitrons followed by the intramolecular [3+2] polar cycloaddition, which will be reported in the near future.
- [25] For reviews, see: S. Laschat, Angew. Chem. 1996, 108, 313-315; Angew. Chem. Int. Ed. Engl. 1996, 35, 289-291; A. Ichihara, H. Oikawa, Curr. Org. Chem. 1998, 2, 365-394; G. Pohnert ChemBio-Chem 2001, 2, 873-875; see also: K. Auclair, A. Sutherland, J. Kennedy, D. J. Witter, J. P. Van den Heever, C. R. Hutchinson, J. C. Vederas, J. Am. Chem. Soc. 2000, 122, 11519-11520.
- [26] S. Niwayama, J. Org. Chem. 2000, 65, 5834-5836.
- [27] U. Eisner, J. A. Elvidge, R. P. Linstead, J. Chem. Soc. 1951, 1501– 1512.
- [28] J.-J. Bourguignon, A. Schoenfelder, M. Schmitt, C.-G. Wermuth, V. Hechler, B. Charlier, M. Maitre, J. Med. Chem. 1988, 31, 893–897.
- [29] N. P. Buu-Hoï, N. D. Xuong, B. K. Diêp, J. Org. Chem. 1961, 26, 1673 1674.
- [30] N. D. Ly, M. Schlosser, Helv. Chem. Acta 1977, 60, 2085-2088.
- [31] J. Fröhlich, C. Hametner, Monatsh. Chem. 1996, 127, 435-443.
- [32] D. J. Chadwick, J. Chambers, G. D. Meakins, R. L. Snowden, J. Chem. Soc. Perkin Trans. 1 1973, 1766–1773.
- [33] The retro-Diels Alder reaction of **5** was observed during the flash column chromatography (hexane/Et₂O) of the crude products as was often reported in similar compounds.^[12, 16] The addition of 1-5% Et₃N to the eluent effectively prevented it. The NMR data of **4** and **5** were obtained in [D₆]acetone because the easy interconversions of **4a**, **c**-**e**, **n** and **5a**, **c**-**e**, **n** were observed in CDCl₃ at room temperature overnight, while it was fairly suppressed in [D₆]acetone.

Received: April 19, 2002 [F4030]