View Article Online View Journal

# ChemComm

### Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Lei, M. Yang, J. Hou, F. Wang, E. Cui, C. Kong and S. Min, *Chem. Commun.*, 2017, DOI: 10.1039/C7CC08178B.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/chemcomm

Published on 12 December 2017. Downloaded by Gazi Universitesi on 13/12/2017 00:23:30



#### Journal Name

#### COMMUNICATION

## Thiomolybdate $[Mo_3S_{13}]^{2-}$ Nanocluster: A Molecular Mimic of $MoS_2$ Active Sites for Highly Efficient Photocatalytic Hydrogen Evolution

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

Yonggang Lei,<sup>a</sup> Meiqun Yang,<sup>a</sup> Jianhua Hou,<sup>a</sup> Fang Wang,<sup>a</sup> Entian Cui,<sup>b</sup> Chao Kong<sup>c</sup> and Shixiong Min<sup>\*a</sup>

Thiomolybdate  $[Mo_3S_{13}]^{2-}$  nanocluster, as a molecular mimic of  $MoS_2$  edge sites, showed high efficiency in catalyzing photochemical H<sub>2</sub> evolution from a molecular system of Ru(bpy)<sub>3</sub>Cl<sub>2</sub>-ascorbic acid (H<sub>2</sub>A) under visible light irradiation ( $\geq$ 420 nm), achieving a turnover number of 1570 and an initial turnover frequency of 335 h<sup>-1</sup> for H<sub>2</sub> evolution based on [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> catalyst.

Artificial photocatalytic H<sub>2</sub> evolution via water splitting provides an appealing solution to convert solar energy into clean fuel.<sup>1-3</sup> Various photocatalytic  $H_2$  evolution systems have been developed yet a highly efficient and cost-effective H<sub>2</sub> evolution catalyst is indispensable to achieve a high efficiency for large-scale H<sub>2</sub> evolution reaction (HER).<sup>4,5</sup> As the bestknown HER catalyst, Pt is sufficiently active but the scarcity and high cost of Pt limit its widespread application, which in turn largely spurred the studies for searching earth-abundant HER catalysts. As one of the most promising candidates to replace Pt, MoS<sub>2</sub> in various forms loaded on a semiconductor or in a photosensitized system has shown high catalytic activity for photocatalytic HER.<sup>6-13</sup> In addition to MoS<sub>2</sub>, a variety of molecular Mo-S complex analogues mimicking edge sites of MoS<sub>2</sub> have also been successfully designed and employed for electrocatalytic HER.<sup>14-19</sup> Among them, the [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> nanoclusters containing three distinct sulfur ligands (Fig. 1a) can be viewed as the edge active sites of MoS<sub>2</sub> with an appropriate atomic structure for effective HER catalysis. In fact, the supported  $\left[\text{Mo}_3\text{S}_{13}\right]^{2\text{-}}$  nanoclusters require a very small overpotential to achieve high current density for electrocatalytic HER.<sup>15,16</sup> In addition, [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> nanoclusters are quite stable in acidic aqueous solution and can achieve a single cluster dispersion on proper supports that not only

This journal is © The Royal Society of Chemistry 20xx

also can be regarded as a molecular HER catalyst achieving a maximum exposure of active sites. However, there are only few cases that reported the use of  $\left[\text{Mo}_3\text{S}_{13}\right]^{2^-}$  as a cocatalyst supported on semiconductors for photo(electro)catalytic HER and dye degradation,  $^{20\text{-}24}$  no studies report on using  $\left[\text{Mo}_3\text{S}_{13}\right]_2^2$  nanoclusters as a HER catalyst to catalyze H<sub>2</sub> evolution from a molecular system. Herein, we report, for the first time, the use of  $\left[\text{Mo}_3\text{S}_{13}\right]^2$  as an efficient HER catalyst in a molecular photocatalytic system consisting of Ru(bpy)<sub>3</sub>Cl<sub>2</sub> as a photosensitizer and ascorbic acid

merge homogeneous and heterogeneous electrocatalysis but

consisting of Ru(bpy)<sub>3</sub>Cl<sub>2</sub> as a photosensitizer and ascorbic acid (H<sub>2</sub>A) as a proton source and sacrificial electron donor. Under visible light irradiation ( $\geq$ 420 nm), a high turnover number of 1570 and an initial turnover frequency of 335 h<sup>-1</sup> based on [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> catalyst could be achieved, which is much higher than that of in-situ photochemically generated Pt, amorphous MoS<sub>x</sub> nanoparticles, and colloidal MoS<sub>2</sub> nanoparticles synthesized by solvothermal method.



Fig. 1 (a) Top and side view models of a single  $[Mo_3S_{13}]^{2^{\circ}}$  nanocluster. Blue, Mo; yellow, S. (b) XRD pattern of  $(NH_4)_2Mo_3S_{13^{\circ}}xH_2O$  (x=0-2) with a reference spectrum of the  $(NH_4)_2Mo_3S_{13^{\circ}}2H_2O$  crystals (JCPDS No: 76-2038). (c, d) High-resolution XPS spectra of (c) Mo 3d and (d) S 2p for  $[Mo_3S_{13}]_2^{2^{\circ}}$  nanoclusters.

<sup>&</sup>lt;sup>a</sup>School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, Ningxia Province, People's Republic of China. E-mail: <u>sxmin@nun.edu.cn</u>.

<sup>&</sup>lt;sup>b</sup> Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.

<sup>&</sup>lt;sup>c</sup>School of Chemistry & Chemical Engineering, Longdong University, Qingyang 745000, People's Republic of China.

Electronic Supplementary Information (ESI) available: [Experimental section and the additional figures]. See DOI: 10.1039/x0xx00000x

Published on 12 December 2017. Downloaded by Gazi Universitesi on 13/12/2017 00:23:30

synthesized via a simple wet-chemistry method following the reported procedures by reacting  $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$  with an ammonium polysulfide ((NH<sub>4</sub>)<sub>2</sub>S<sub>x</sub>) solution (see detailed method in ESI<sup>†</sup>).<sup>25</sup> The X-ray diffraction (XRD) pattern of the obtained dark red crystals (see inset in Fig. 1b) is in good agreement with the standard XRD pattern of (NH<sub>4</sub>)<sub>2</sub>Mo<sub>3</sub>S<sub>13</sub>·2H<sub>2</sub>O (JCPDS No: 76-2038). The chemical states of Mo and S elements in  $[Mo_3S_{13}]^{2-}$  nanocluster was examined by X-ray photoelectron spectroscopy (XPS) (Fig. 1c and d). Mo 3d region (Fig. 1c) can be well-fitted with a single doublet of Mo 3d5/2 (229.35 eV) and Mo 3d3/2 (232.45 eV) with a peak separation of 3.1 eV, indicative of Mo with a +4 oxidation state.<sup>15</sup> The appearance of broad S 2s peak at the higher binding energy of the Mo 3d5/2 peak indicates multiple coordinated states of S. The fitting of the S 2p region (Fig. 1d) of  $[Mo_3S_{13}]^{2-}$  nanocluster reveals two distinct doublets (S 2p3/2, S 2p1/2), which could be assigned to terminal S<sub>2</sub><sup>2</sup> ligands (162.1 eV, 163.3 eV) and bridging  $S_2^{2-}$  ligands and the apical S<sup>2-</sup> ligand (163.4 eV, 164.6 eV), respectively.<sup>15</sup> The ratio of latter S ligands to former one is estimated to be 7.2:5.8 by assuming that the single  $[Mo_3S_{13}]^{2-}$  nanocluster contains 13 S atoms. The electronic absorption spectra of (NH<sub>4</sub>)<sub>2</sub>Mo<sub>3</sub>S<sub>13</sub>·xH<sub>2</sub>O dispersed in methanol and dimethyl formamide (DMF) are well consistent with the previous observations (Fig. S1, ESI<sup>†</sup>).<sup>15,20-22</sup>

In order to verify that the  $[Mo_3S_{13}]^{2-}$  nanoclusters can function as the effective mimics of MoS<sub>2</sub> active sites, the electrocatalytic HER activity of  $[Mo_3S_{13}]^{2-}$  nanoclusters deposited onto carbon paper (10 nmol cm<sup>-2</sup>) were firstly measured (see experimental details in ESI<sup>†</sup>). As indicated in Fig. S2,  $\text{ESI}^{\dagger}$ , the  $[\text{Mo}_3\text{S}_{13}]^{2-}$  nanoclusters show low overpotential of 0.3 V vs. RHE for achieving high activity (5 mA cm<sup>-2</sup>) for proton reduction to H<sub>2</sub>, indicating its high potential as a cocatalyst in catalyzing H<sub>2</sub> evolution from a photocatalytic system.  $[Mo_3S_{13}]^{2}$ Afterwards, the nanocluster catalvzed photocatalytic H<sub>2</sub> evolution reactions were performed in an mixed solution of organic solvent and H<sub>2</sub>O (100 mL) containing  $Ru(bpy)_{3}Cl_{2}$  and  $H_{2}A$  (see experimental details in ESI<sup>+</sup>). As the preliminary experiments, the effect of organic solvents and the volume ratio of organic solvent to  $H_2O$  on the  $H_2$  evolution was first optimized with the system of  $Ru(bpy)_3Cl_2$  and  $[Mo_3S_{13}]^{2-1}$ containing H<sub>2</sub>A as electron donor. The activity of H<sub>2</sub> evolution is highest when the mixture of CH<sub>3</sub>CN and H<sub>2</sub>O at a volume ratio of 9 to 1 was used as solvent (Fig. S3 and S4,  $ESI^{\dagger}$ ). The solvent variation for H<sub>2</sub> evolution from this system probably results from a number of factors including solvent polarity, stabilization of reduction intermediates, solvent coordination ability to  $[Mo_3S_{13}]^{2^-}$ , and the driving force for the electron transfer for inducing H<sub>2</sub> evolution.<sup>26-29</sup> Additionally, the effect of the  $CH_3CN/H_2O$  ratio may be attributable to differences in the solubility of  $\left[Mo_{3}S_{13}\right]^{2\text{-}}$  and  $H_{2}A^{29}$  and the reduction potentials of  $\left[\text{Mo}_3\text{S}_{13}\right]^{2\text{-}}$  in reaction media with different solvent dielectric constant as the CH<sub>3</sub>CN/H<sub>2</sub>O ratio varies. In addition, the effect of various electron donors including triethylamine (TEA), triethanolamine (TEOA), EDTA, acetic acid, lactic acid, and H<sub>2</sub>A on the photocatalytic H<sub>2</sub> evolution activity from  $Ru(bpy)_3Cl_2/[Mo_3S_{13}]^{2-}$  system in  $CH_3CN/H_2O$  (9/1) mixed solution was investigated, revealing that the highest H<sub>2</sub>



Page 2 of 4

Journal Name



**Fig. 2** The turnovers of H<sub>2</sub> evolution from different systems in a mixed solution of CH<sub>3</sub>CN/H<sub>2</sub>O (100 mL, 9/1). Conditions:  $[Mo_3S_{13}]^2$ , Pt, MoS<sub>x</sub>, or colloidal MoS<sub>2</sub> (10  $\mu$ M); Ru(bpy)<sub>3</sub>Cl<sub>2</sub> (100 uM); H<sub>2</sub>A (100 mM); light source, Xe lamp (300 W), ≥420 nm; irradiation time is 5 h. The Pt (10  $\mu$ M) and MoS<sub>x</sub> (10  $\mu$ M) nanoparticles were prepared by in-situ photochemical reduction of H<sub>2</sub>PtCl<sub>6</sub> and (NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub>, respectively. The colloidal MoS<sub>2</sub> (10  $\mu$ M) was prepared according to the procedures reported in ref [11].

evolution activity could be obtained when  $H_2A$  was used because  $H_2A$  can serve as both proton source and electron donor, and can be most easily oxidized (Fig. S5, ESI<sup>†</sup>).<sup>28</sup> In addition, as a cheap alternative to Ru(bpy)<sub>3</sub>Cl<sub>2</sub>, the commonly used organic dye Eosin Y (EY) was also tested as a photosensitizer for  $[Mo_3S_{13}]^2$  catalyzed photocatalytic  $H_2$ evolution reaction from  $CH_3CN/H_2O$  (9/1) mixed solution containing  $H_2A$  or TEOA as an electron donor (Fig. S6, ESI<sup>†</sup>). The results show that no or only trace amount of  $H_2$  is produced, indicating that the EY is inactive as a photosensitizer to induce



**Fig. 3** (a) H<sub>2</sub> evolution from systems containing Ru(bpy)<sub>3</sub>Cl<sub>2</sub> (100  $\mu$ M), H<sub>2</sub>A (100 mM), and different amount of [Mo<sub>3</sub>S<sub>13</sub>]<sup>2</sup> in a mixed solution of CH<sub>3</sub>CN/H<sub>2</sub>O (100 mL, 9/1). (b) H<sub>2</sub> evolution from systems containing [Mo<sub>3</sub>S<sub>13</sub>]<sup>2</sup> (10  $\mu$ M), H<sub>2</sub>A (100 mM), and different amount of Ru(bpy)<sub>3</sub>Cl<sub>2</sub> in a mixed solution of CH<sub>3</sub>CN/H<sub>2</sub>O (100 mL, 9/1). Light source, Xe lamp (300 W) with a cut-off filter of 420 nm. Insets in panel (a) and (b) are the initial rate of H<sub>2</sub> evolution versus [Mo<sub>3</sub>S<sub>13</sub>]<sup>2</sup> and Ru(bpy)<sub>3</sub>Cl<sub>2</sub> concentrations, respectively.

Published on 12 December 2017. Downloaded by Gazi Universitesi on 13/12/2017 00:23:30

Journal Name

View Article Online DOI: 10.1039/C7CC08178B COMMUNICATION



Fig. 4 Quenching of PL emission of Ru(bpy)<sub>3</sub>Cl<sub>2</sub> (20  $\mu$ M) excited at 450 nm by adding different amounts of (a) H<sub>2</sub>A and (b) [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> catalyst.

an efficient H<sub>2</sub> evolution might due to the incompatibility of EY with H<sub>2</sub>A and weak interaction between excited state EY and  $[Mo_3S_{13}]^{2-}$  nanoclusters. Under optimum reaction conditions of  $Ru(bpy)_3Cl_2/H_2A$  system, the  $H_2$  evolution over time under visible light was continuous during the 5 h reaction. The turnover of H<sub>2</sub> evolution reaches 508 versus the  $[Mo_3S_{13}]^2$ catalyst within 5 h of irradiation. Control experiments indicate that the Ru(bpy)<sub>3</sub>Cl<sub>2</sub> photosensitizer,  $[Mo_3S_{13}]^{2-}$ , H<sub>2</sub>A, and light are all essential for H<sub>2</sub> evolution; the absence of any of them yielded unobservable to trace amount of H<sub>2</sub> (Fig. 2). These results suggest that the  $[Mo_3S_{13}]^{2-}$  could serve as an efficient HER catalyst in catalyzing the H<sub>2</sub> evolution from a molecular system under visible light. In addition, we compared the catalytic H<sub>2</sub> evolution activity of  $[Mo_3S_{13}]^{2-}$  with that of Pt, amorphous MoS<sub>x</sub>, and colloidal MoS<sub>2</sub> nanoparticles in  $Ru(bpy)_3Cl_2/H_2A$  system. The Pt and amorphous  $MoS_x$ nanoparticles were prepared by in-situ photochemical reduction and only show 7 and 10 turnovers for H<sub>2</sub> evolution, respectively, which is much lower than that of  $[Mo_3S_{13}]^{2-}$ . Moreover, the colloidal MoS<sub>2</sub> nanoparticles synthesized by solvothermal method exhibits the lowest turnover (ca.  $\sim$ 2) for  $H_2$  evolution. The high catalytic activity of the  $[Mo_3S_{13}]^{2-}$  for  $H_2$ evolution could be mainly attributed to the high activity of uncoordinated S edge sites of  $[Mo_3S_{13}]^{2^-}$  along with its molecular dispersion feature in reaction media that render the maximum exposure of active sites for  $H^+$  reduction to  $H_2$ .

In the system of  $Ru(bpy)_3Cl_2/[Mo_3S_{13}]^{2-}$  with  $Ru(bpy)_3Cl_2$  at fixed concentrations (100  $\mu$ M), the initial rate of H<sub>2</sub> evolution exhibits a first-order dependence on the concentration of  $[Mo_3S_{13}]^{2-}$  (Fig. 3a). At 2  $\mu$ M  $[Mo_3S_{13}]^{2-}$  this system exhibits exceptionally high activity, a turnover number of 1570 versus  $[Mo_3S_{13}]^{2-}$  after 5 h reaction and an initial turnover frequency (TOF) of 335  $h^{-1}$  for H<sub>2</sub> evolution could be achieved (Fig. S7,  $\text{ESI}^{\dagger}$ ). With the increasing  $[\text{Mo}_3\text{S}_{13}]^{2-}$  concentrations, the amount of H<sub>2</sub> evolved is gradually increased, but the TON does not follow the linear relationship with catalyst concentration, and the initial TOF reaches a plateau at higher catalyst concentrations. When the concentration of  $Ru(bpy)_3Cl_2$  is increased from 25 to 800  $\mu$ M at a fixed concentration of  $[Mo_3S_{13}]^{2-}$  (10  $\mu$ M), both TON and initial TOF versus catalyst reaches a maximum at 400 µM Ru(bpy)<sub>3</sub>Cl<sub>2</sub> (Fig. 3b), together with a rapid decrease in TON versus  $Ru(bpy)_3Cl_2$  (Fig. S8,  $ESI^{\dagger}$ ), which indicates that at this concentration of  $Ru(bpy)_3Cl_2$  the  $H_2$ evolution activity of the system becomes limited by the



 $\label{eq:scheme 1} \begin{array}{l} \mbox{Proposed reaction mechanism for the $[Mo_3S_{13}]^2$ catalyzed photocatalytic $H_2$ evolution from a molecular system of $Ru(bpy)_3Cl_2$ and $H_2A$ under visible light irradiation. } \end{array}$ 

catalyst concentration.

To gain an insight into the electron transfer process and the reaction mechanism for photocatalytic H<sub>2</sub> evolution from the  $Ru(bpy)_{3}Cl_{2}/[Mo_{3}S_{13}]^{2}$  system, the photoluminescence (PL) properties of the Ru(bpy)<sub>3</sub>Cl<sub>2</sub> in CH<sub>3</sub>CN/H<sub>2</sub>O (9/1) solution were studied, as shown in Fig. 4. With the addition of different amounts of H<sub>2</sub>A (Fig. 4a), PL emission of Ru(bpy)<sub>3</sub>Cl<sub>2</sub> at ~607 nm by the light excitation of 450 nm is quenched following linear Stern-Volmer behavior (Fig. S9, ESI<sup>+</sup>) with a rate constant  $k_q$  of 1.984×10<sup>7</sup> M<sup>-1</sup>·s<sup>-1</sup>, which is consistent with that H<sub>2</sub>A can act as a proton source and its ascorbate anion (HA<sup>-</sup>) can function as a reductive quencher for excited-state of  $Ru(bpy)_3^{2^+}$  to  $Ru(bpy)_3^{+}$ .<sup>11</sup> Notably,  $[Mo_3S_{13}]^{2^-}$  catalyst can also effectively quench the excited state of  $Ru(bpy)_3^{2^+}$  via a oxidative quenching pathway (Fig. 4b). It is also noted that the fitting of the combined Stern-Volmer plot shows two linear regions with a transition point at 0.5  $\mu$ M [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> (Fig. S10, ESI<sup>+</sup>), from which two rate constants are extracted. Both rate constants (4.04×10<sup>12</sup> and 1.18×10<sup>12</sup>  $M^{-1}$ ·s<sup>-1</sup>) are more than five orders of magnitude faster than that for H<sub>2</sub>A and approach the diffusion-controlled limit, indicating the higher dispersion of  $[Mo_3S_{13}]^{2-}$  catalyst at lower concentrations, while the smaller  $k_{\rm q}$  of 1.18×10<sup>12</sup> M<sup>-1</sup>·s<sup>-1</sup> obtained with higher [Mo<sub>3</sub>S<sub>13</sub>]<sup>2</sup> concentrations suggests a strong interaction probably derived from the electrostatic force between cationic  $Ru(bpy)_3^{2+}$  and anionic  $[Mo_3S_{13}]^{2-}$  nanoclusters.<sup>30</sup>

Above results suggest that when  $H_2A$  and  $[Mo_3S_{13}]^{2-}$  catalyst coexist in the system, both reductive and oxidative quenching may involve and compete in the electron transfer process for  $H_2$  evolution from excited state of  $Ru(bpy)_3^{2+}$ . However, the oxidative quenching of excited  $Ru(bpy)_3^{2+}$  would dominate because of the much larger  $k_q$  for oxidative quenching than  $k_q$ for reductive quenching even though higher concentration of  $H_2A$  (100 mM) is used relative to  $\left[Mo_3S_{13}\right]^{2\text{-}}$  catalyst (10  $\mu M)$ under  $H_2$  evolution conditions.<sup>31,32</sup> Moreover, it should also be inferred that the  $H_2$  evolution induced by electron transfer from the  ${}^{*}Ru(bpy)_{3}^{2+}$  to  $[Mo_{3}S_{13}]^{2-}$  catalyst via a oxidative quenching pathway would be more feasible since there is a strong electrostatic force between positively charged  ${}^{*}$ Ru(bpy)<sub>3</sub><sup>2+</sup> and negatively charged  $[Mo_{3}S_{13}]^{2-}$  nanoclusters, which would expect to render a fast electron transfer from excited state of  $Ru(bpy)_3^{2+}$  to  $[Mo_3S_{13}]^{2-}$  catalyst. Above results indicate that the photocatalytic H<sub>2</sub> evolution reaction from the Ru(bpy)<sub>3</sub><sup>2+</sup>/[Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup>/H<sub>2</sub>A molecular system most likely proceed via a oxidative quenching mechanism, as shown in

ChemComm Accepted Manuscript

Scheme 1. Under visible light irradiation ( $\geq$ 420 nm), the Ru(bpy)<sub>3</sub><sup>2+</sup> absorbs visible light photon to form excited state <sup>\*</sup>Ru(bpy)<sub>3</sub><sup>2+</sup>, which (*E*(Ru(bpy)<sub>3</sub><sup>3+</sup>/<sup>\*</sup>Ru(bpy)<sub>3</sub><sup>2+</sup>)=-0.79 V vs. SCE)<sup>32</sup> was then oxidatively quenched by direct transferring electrons to the [Mo<sub>3</sub>S<sub>13</sub>]<sup>2-</sup> nanoclusters and then to the undercoordinated S active sites, where the H<sup>+</sup> are reduced to H<sub>2</sub> (*E*(H<sup>+</sup>/H<sub>2</sub>)=-0.10 V vs. SCE). At the same time, the oxidative Ru(bpy)<sub>3</sub><sup>3+</sup> (*E*(Ru(bpy)<sub>3</sub><sup>3+</sup>/Ru(bpy)<sub>3</sub><sup>2+</sup>)=+1.33 V vs. SCE)<sup>32</sup> is reduced back to its ground state by H<sub>2</sub>A (*E*(HA<sup>-</sup>/HA<sup>-</sup>)=+0.47 V vs. SCE)<sup>28</sup>, thereby complete the catalytic cycles.

In addition, the  $H_2$  evolution stability of the  $Ru(bpy)_3^{2+}$ - $[Mo_3S_{13}]^{2}$ -H<sub>2</sub>A system is examined. Fig. S11 in the ESI<sup>+</sup> shows that the H<sub>2</sub> evolution reaction ceases after 6 h light irradiation. The same system is then evacuated and subject to light irradiation; however, no observable H<sub>2</sub> formation could be detected (not shown). Subsequently, when 100  $\mu$ M Ru(bpy)<sub>3</sub><sup>2+</sup> was added into above system, the H<sub>2</sub> evolution could be revived but the efficiency is decreased by ~50%, implying that the deactivation of the system is most likely because of the degradation of the  $Ru(bpy)_3^{2+}$  (Fig. S12, ESI<sup>+</sup>) and the  $[Mo_3S_{13}]^{2-}$ catalyst is more stable. In fact, the UV-vis spectra of  $\left[\text{Mo}_3\text{S}_{13}\right]^{2\text{-}}$ catalyst aged in CH<sub>3</sub>CN/H<sub>2</sub>O (9/1) solution in the presence or absence of H<sub>2</sub>A shows no any obvious change after 24 h in darkness, and the aged  $\left[Mo_{3}S_{13}\right]^{2\text{-}}$  catalyst shows nearly the same  $H_2$  evolution activity as the fresh  $[Mo_3S_{13}]^{2-}$  catalyst (Fig. S13 and S14, ESI<sup>+</sup>). In the third run, the system only produce trace amount of  $H_2$  even although additional fresh 100  $\mu M$  $Ru(bpy)_{3}^{2+}$  was added. This imply that the  $[Mo_{3}S_{13}]^{2-}$  catalyst might eventually decompose and convert to certain species that is inactive in catalyzing H<sub>2</sub> evolution. Attempts to isolate the deactivated catalyst is failed and further studies is ongoing to unravel the deactivation mechanism of the  $[Mo_3S_{13}]^2$ catalyst during the visible-light-induced H<sub>2</sub> evolution processes.

In summary, we have shown that  $[Mo_3S_{13}]^{2-}$  nanoclusters is an effective mimic of edge sites of MoS<sub>2</sub> crystals in efficiently catalyzing H<sub>2</sub> evolution reaction from a molecular photocatalytic system of Ru(bpy)32+-H2A under visible light irradiation. The single cluster dispersion feature of  $[Mo_3S_{13}]^{2^-}$ in a proper solvent render a maximum exposure of active sites at molecular level, thus  $[Mo_3S_{13}]^{2-}$  nanoclusters were found to have higher activity for H<sub>2</sub> evolution than the most-active Pt, amorphous MoS<sub>x</sub>, and colloidal MoS<sub>2</sub> nanoparticles. This work not only shows the capability of  $[Mo_3S_{13}]^{2-}$  nanoclusters as a highly active H<sub>2</sub> evolution catalyst in the molecular systems for solar to chemical fuel conversion, but also provides a new insight to understand the relationship of Mo-S based homogeneous and heterogeneous HER catalysts. Our continuous efforts are now focused on the immobilization of  $[Mo_3S_{13}]^{2-}$  on the conductive substrates or photoactive materials to construct recoverable, more stable, and efficient photocatalytic H<sub>2</sub> evolution systems for long-term application.

This work is supported by the National Natural Science Foundation of China (Grant No. 21763001, 21463001), the Key Scientific Research Projects of the Higher Education Institutions of Ningxia Hui Autonomous Region (Grant No. NCX2017143), and the Key Scientific Research Projects in 2017 at North Minzu University (Grant No. 2017KJ20).

#### Notes and references

- 1 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, **38**, 253.
- 2 X. Chen, S. Shen, L. Guo and S. Mao, *Chem. Rev.*, 2010, **110**, 6503.
- 3 Y. Ma, X. Wang, Y. Jia, X. Chen, H. Hai and C. Li, *Chem. Rev.*, 2014, **19**, 9987.
- 4 J. Yang, D. Wang, H. Han and C. Li., Acc. Chem. Res., 2013, 46, 1900.
- X. B. Li, Y. J. Gao, Y. Wang, F. Zhan, X. Y. Zhang, Q. Y. Kong, N. J. Zhao, Q. Guo, H. L. Wu, Z. J. Li, Y. Tao, J. P. Zhang, B. Chen, C. H. Tung and L. Z. Wu, J. Am. Chem. Soc., 2017, 139, 4789.
- 6 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc., 2008, 130, 7176.
- 7 S. Min and G. Lu. J. Phys. Chem. C., 2012, **116**, 25415.
- 8 Q. Xiang, J. Yu and M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575.
- 9 C. G. Morales-Guio, S. D. Tilley, H. Vrubel, M. Gratzel and X. Hu, *Nat. Commun.*, 2014, **5**, 3059.
- 10 H. Yu, P. Xiao, P. Wang and J. Yu, Appl. Catal. B. Environ., 2016, 193: 217.
- 11 X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun and C. Li, *Chem Commun.*, 2009, **30**, 4536.
- 12 X. Zong, Z. Xing, H. Yu, Y. Bai, G. Lu and L. Wang, J. Catal., 2014, **310**, 51.
- 13 X. B. Li, Y. J. Gao, H. L. Wu, Y. Wang, Q. Guo, M. Y. Huang, B. Chen, C. H. Tung and L. Z. Wu, *Chem Commun.*, 2017, 53, 5606.
- 14 H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, *Science* 2012, **335**, 698.
- 15 J. Kibsgaard, T. F. Jaramillo and F. Besenbacher, Nat. Chem., 2014, 6, 248.
- 16 Y. N. Shang, X. Xu, B. Y. Gao and Z. F. Ren, ACS Sustainable Chem. Eng., 2017, 5, 8909.
- 17 Z. Huang, W. Luo, L. Ma, M. Yu, X. Ren, M. He, S. Polen, K. Click, B. Garrett, J. Lu, K. Amine, C. Hadad, W. Chen, A. Asthagiri and Y. Wu, Angew. Chem. Int. Ed., 2015, 54, 15181.
- 18 B. R. Garrett, K. A. Click, C. B. Durr, C. M. Hadad and Y. Wu, J. Am. Chem. Soc., 2016, 138, 13726.
- 19 B. R. Garrett, S. M. Polen, M. Pimplikar, C. M. Hadad and Y. Wu, *J. Am. Chem. Soc.*, 2017, **139**, 4342.
- 20 D. Yue, X. Qian, Z. Zhang, M. Kan, M. Ren and Y. Zhao, ACS Sustainable Chem. Eng., 2016, 4, 6653.
- 21 D. Yue, Z. Zhang, Z. Tian, T. Zhang, M. Kan, X. Qian and Y. Zhao, *Catal. Today* 2016, **274**, 22.
- 22 D. Yue, T. Zhang, M. Kan, X. Qian and Y. Zhao, *Appl. Catal. B. Environ.*, 2016, **183**, 1.
- 23 Y. Hou, Z. Zhu, Y. Xu, F. Guo, J. Zhang and X. Wang, Int. J. Hydrog. Energy 2017, **42**, 2838.
- 24 M. Kan, J. P. Jia and Y. X. Zhao, RSC Adv., 2016, 6, 15610.
- 25 A. Müller, E. Krickemeyer, A. Hadjikyriacou and D. Coucouvanis, *Inorganic Syntheses, Wiley*, 2007, **27**, 47.
- 26 29 E. D. Cline, S. E. Adamson and S. Bernhard, *Inorg. Chem.*, 2008, 47, 10378.
- 27 30 P. W. Du, J. Schneider, G. G. Luo, W. W. Brennessel and R. Eisenberg, *Inorg. Chem.*, 2009, 48, 4952.
- 28 31 F. Y. Wen, X. L. Wang, L. Huang, G. J. Ma, J. H. Yang and C. Li, *ChemSusChem* 2012, 5, 849.
- 29 W. N. Cao, F. Wang, H. Y. Wang, B. Chen, K. Feng, C. H. Tung and L. Z. Wu, Chem. Commun., 2012, 48, 8081.
- 30 J. Dong, M. Wang, P. Zhang, S. Yang, J. Liu, X. Li and L. Sun, J. *Phys. Chem. C* 2011, **115**, 15089.
- 31 Z. Han, W. R. McNamara, M.-S. Eum, P. L. Holland and R. Eisenberg, *Angew. Chem. Int. Ed.*, 2012, **51**, 1667.
- 32 Y. Na, P. C. Wei and L. Zhou, Chem. Eur. J., 2016, 22, 10365.

4 | J. Name., 2012, 00, 1-3