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Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo
Complex by Binding Redox-Inactive Metal Ions
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Abstract: Redox-inactive metal ions are one of the most
important co-factors involved in dioxygen activation and
formation reactions by metalloenzymes. In this study, we
have shown that the logarithm of the rate constants of electron-
transfer and C�H bond activation reactions by nonheme
iron(III)–peroxo complexes binding redox-inactive metal ions,
[(TMC)FeIII(O2)]+-Mn+ (Mn+ = Sc3+, Y3+, Lu3+, and La3+),
increases linearly with the increase of the Lewis acidity of the
redox-inactive metal ions (DE), which is determined from the
gzz values of EPR spectra of O2C

�-Mn+ complexes. In contrast,
the logarithm of the rate constants of the [(TMC)FeIII(O2)]+-
Mn+ complexes in nucleophilic reactions with aldehydes
decreases linearly as the DE value increases. Thus, the Lewis
acidity of the redox-inactive metal ions bound to the mono-
nuclear nonheme iron(III)–peroxo complex modulates the
reactivity of the [(TMC)FeIII(O2)]+-Mn+ complexes in electron-
transfer, electrophilic, and nucleophilic reactions.

Redox-inactive metal ions that function as Lewis acids are
known to play pivotal roles in a variety of oxidation reactions
by oxygen-containing metal intermediates, such as high-
valent metal–oxo species, in biological and biomimetic
systems.[1–3] In particular, a redox-inactive Ca2+ ion is an
essential component in the oxidation of water to evolve
dioxygen in the oxygen-evolving complex (OEC, a heteronu-
clear Mn4CaO5 cubane complex) of Photosystem II
(PS II),[4–6] although the role of the Ca2+ ion in the O�O
bond formation reaction has yet to be clarified. In biomimetic
studies, it has been shown that reactivities of high-valent
metal–oxo complexes in electron-transfer, oxygen atom
transfer, and C�H bond activation reactions are enhanced
markedly upon binding of redox-inactive metal ions, resulting
from the positive shift of one-electron reduction potentials of
the metal–oxo complexes.[7–9] Redox-inactive metal ions are
also reported to bind to various metal–(su)peroxo complexes

(for example, Fe�O2, Ni�O2, and Cu�O2);[10,11] metal–(su)per-
oxo complexes can be either electrophiles, which accept two
electrons, or nucleophiles, which donate two electrons,[12–16]

and binding of redox-inactive metal ions by the metal–
(su)peroxo complexes may affect the electrophilic and
nucleophilic reactivities of the (su)peroxo ligand in oxidation
reactions. However, effects of the redox-inactive metal ions
on the redox reactivity of the metal–(su)peroxo complexes in
electron-transfer and oxidation reactions have yet to be
scrutinized quantitatively.

We report herein that the redox reactivity of a mononu-
clear nonheme iron(III)–peroxo complex bearing a macro-
cyclic N-tetramethylated cyclam ligand, [(TMC)FeIII(O2)]+ (1,
TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetrade-
cane),[17] in electron-transfer, electrophilic, and nucleophilic
reactions changes upon binding of redox-inactive metal ions
(Mn+) at the iron–peroxo moiety (Scheme 1). The change in

the redox reactivity of the iron(III)-peroxo complex (1) by
binding of redox-inactive metal ions is then quantitatively
evaluated as a function of the Lewis acidity of metal ions
(DE), which was determined from the gzz values of EPR
spectra of O2C

�-Mn+ complexes.[18] To the best of our knowl-
edge, the present study reports the first example showing the
effects of the Lewis acidity of redox-inactive metal ions bound
to a peroxo group in a mononuclear nonheme iron(III)–
peroxo complex on the reactivity of the iron–peroxo com-
plexes in electron-transfer and electrophilic and nucleophilic
reactions.

The iron(III)–peroxo complex, [(TMC)FeIII(O2)]+ (1),
was synthesized by reacting [FeII(TMC)(CF3SO3)2] with
5 equiv H2O2 in the presence of 2 equiv triethylamine in
acetonitrile (MeCN) at �40 8C and isolated as crystals for
further studies.[17] Redox-inactive metal ion-bound iron(III)-
peroxo complexes, [(TMC)FeIII(O2)]+-Mn+ (1-Mn+; Mn+ =

Scheme 1. Molecular structure of [(TMC)FeIII(O2)]
+-Mn+ (1-Mn+;

Mn+ = Sc3+, Y3+, Lu3+, and La3+) and summary of the reactivities of 1-
Mn+ in electron-transfer, electrophilic, and nucleophilic reactions.
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Sc3+, Y3+, Lu3+, and La3+), were generated by adding metal
triflates (Mn+(CF3SO3)n) to the solution of 1 in MeCN at 0 8C
according to previously reported methods (see Figure 1 for
UV/Vis spectra of 1-Mn+).[19] We then investigated the
electron-transfer (ET) reactions of 1-Mn+ complexes with
ferrocene (Fc) derivatives. Upon addition of bromoferrocene
(BrFc, Eox = 0.54 V vs. SCE) to the solution of 1-Mn+ (Mn+ =

Sc3+, Y3+, Lu3+, and La3+) in MeCN at 0 8C, the absorption
band of 1-Mn+ decreased with the concurrent appearance of
absorption bands at 820 nm owing to an iron(IV)–oxo
complex, [(TMC)FeIV(O)]2+,[20] and at 675 nm owing to the
bromoferrocenium ion (BrFc+) (Figure 2). Thus, ET from
ferrocene (Fc) derivatives to 1-Mn+ afforded the formation of

a putative [(TMC)FeII(O2)]-Mn+ species (Scheme 2, reac-
tion a), followed by a heterolytic O�O bond cleavage of the
peroxide ligand in [(TMC)FeII(O2)]-Mn+ to form [(TMC)FeIV-
(O)]2+ (Scheme 2, reaction b), as reported previously in ET
reactions between 1-Mn+ and Fc.[19, 21] The rate of ET was
determined by following the decrease in the absorption band
due to 1-Mn+. The second-order rate constant of ET from
BrFc to 1-Sc3+ was then determined to be 6.4(4) � 103

m
�1 s�1 in

MeCN at 0 8C under second-order kinetic conditions owing to
a fast reaction between 1-Sc3+ and BrFc (Supporting Infor-
mation, Figure S1 a). In the cases of other 1-Mn+ (Mn+ = Y3+,
Lu3+, and La3+) complexes, the rates obeyed first-order
kinetics under the pseudo first-order reaction conditions
([BrFc]/[1-Mn+] > 10). The first-order rate constants
increased linearly with the increase in the BrFc concentration,
and second-order rate constants (k2) were determined at 0 8C
(Supporting Information, Figure S1 b and Table S1). The
logk2 values increased linearly with the Lewis acidity of the
metal ions (DE), which was determined from the gzz values of
EPR spectra of O2C

�-Mn+ complexes, as shown in Figure 3.[18]

The DE is the energy splitting value of the pg levels due to the
binding of Mn+ to a superoxo species.[18] Thus, the DE value
has been regarded as the binding energy of Mn+ to O2C

� ,[18]

which may be comparable to the binding energy of Mn+ to the
peroxo moiety of [(TMC)FeIII(O2)]+. The stronger the Lewis
acidity of Mn+ is, the larger the splitting value is and the larger
the ket value becomes. The slope (18.4) of the linear plot with

Figure 1. UV/Vis spectra of 1 and 1-Mn+ (Mn+ = Sc3+, Y3+, Lu3+, and
La3+) in MeCN at 0 8C.

Figure 2. Stopped-flow absorption spectral changes observed in ET
from BrFc (0.50 mm) to 1-Sc3+ (0.50 mm, red line) in MeCN at 0 8C.
The reaction was completed within 10 s. Inset shows UV/Vis spectra of
1-Sc3+ (0.50 mm, red line) and the final reaction solution (black line);
the absorption bands at 675 and 820 nm correspond to BrFc+ and
[(TMC)FeIV(O)]2+, respectively.

Scheme 2. Proposed mechanism of ET from BrFc to 1-Mn+.

Figure 3. Plots of logk2 values of ET from BrFc to 1-Mn+ (blue circles),
C�H bond activation reaction of CHD (black circles), and aldehyde
deformylation reactions of 2-PPA (red circles) and CCA (green circles)
by 1-Mn+ in MeCN at 0 8C against the quantitative measure of the
Lewis acidity of metal ions (DE).
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blue line in Figure 3 indicates that about 100 % of the change
in the spitting energy of the pg levels is reflected as the change
in the transition state energy of ET from BrFc to 1-Mn+ at
0 8C, because F/(2.3RT) at 0 8C = 18.5. Virtually the same
slopes were also obtained in ET from Fc (Eox = 0.37 V vs.
SCE) and dibromoferrocene (Br2Fc; Eox = 0.71 V vs. SCE) to
1-Mn+ complexes (Supporting Information, Figure S2 and
Table S1).

The reactivity of iron(III)–peroxo complexes binding
different redox-inactive metal ions, 1-Mn+, was investigated
in hydrogen atom transfer (HAT) reactions. While 1 was not
able to activate the C�H bonds of 1,4-cyclohexadiene (CHD),
1-Mn+ showed a reactivity with CHD. Upon addition of CHD
to a solution of 1-Sc3+ in MeCN at 0 8C, the UV/Vis
absorption band of 1-Sc3+ disappeared with a pseudo first-
order decay profile (Figure 4a), and product analysis of the
reaction solution revealed the formation of benzene (92�
6%) as a product. Furthermore, [(TMC)FeIII(OH)]+ was
formed as a decay product of 1-Sc3+ in the reaction solution
(Supporting Information, Figure S3 for EPR and CSI-MS
spectra). We have shown recently that a high-spin nonheme
iron(III)–hydroperoxo complex, [(TMC)FeIII(O2H)]2+, is
capable of activating C�H bonds of hydrocarbons with
weak C�H bonds.[17] The first-order rate constant was
proportional to the substrate concentration, from which
a second-order rate constant (k2) was determined (Figure 4b).
The second-order rate constants (k2) of C�H bond activation
of 1,4-cyclohexadiene by other 1-Mn+ (Mn+ = Y3+, Lu3+, and
La3+) complexes were also determined (Supporting Informa-
tion, Figure S4 and Table S1). The logk2 values increase
linearly with increasing the Lewis acidity of metal ions (DE ;
Figure 3, black line), and the slope (8.9) indicates that 48% of

the change in the spitting energy of the pg levels is reflected as
the change in the transition state energy of the C�H bond
activation of CHD by 1-Mn+ at 0 8C. This percent is smaller
than the case of electron-transfer from BrFc to 1-Mn+ (ca.
100 %, see above) because of a partial charge transfer in the
electrophilic reaction instead of a full electron transfer. The k2

values of C�H bond activation by 1-Sc3+ with alkylaromatic
compounds bearing weak C�H bonds, such as xanthene
(75.5 kcal mol�1) and 9,10-dihydroanthracene (DAH, 77 kcal
mol�1), were determined as well (Supporting Information,
Figure S5). The logk2 values increase linearly with decreasing
the C�H bond dissociation energies (BDEs) of the substrates.

The effect of the Lewis acidity of metal ions (DE) on the
reactivity of 1-Mn+ was also investigated in aldehyde defor-
mylation reactions. The nucleophilic character of 1-Mn+ was
demonstrated by the reactions with 2-phenylpropionaldehyde
(2-PPA) in MeCN at 0 8C. Addition of 2-PPA to a solution of
1-Sc3+ caused the decay of the 1-Sc3+ intermediate with the
concomitant formation of the corresponding iron(IV)–oxo
complex, [(TMC)FeIV(O)]2+, as detected by UV/Vis and CSI-
MS (Figure 4c; Supporting Information, Figure S6); we have
shown the formation of [(TMC)FeIV(O)]2+ in the reaction of
[(TMC)FeIII(O2H)]2+ and aldehydes.[17a] The pseudo first-
order rate constant increased proportionally with the increase
of the concentration of 2-PPA, giving k2 value of 2.1 �
10�2

m
�1 s�1 (Figure 4d). The product analysis of the reaction

solutions of 1-Sc3+ with 2-PPA revealed the formation of
acetophenone (90� 5% based on the intermediate). The
second-order rate constants (k2) of the nucleophilic reactions
of other 1-Mn+ (Mn+ = Y3+, Lu3+, and La3+) with 2-PPA were
also determined (Supporting Information, Figure S7 and
Table S1).

In contrast to the cases of electrophilic reactions of 1-Mn+,
the log k2 values decrease linearly with increasing the DE
values (Figure 3, red and green lines). The slope (�5.7) of the
linear plot with the red line in Figure 3 indicates that 31 % of
the change in the spitting energy of the pg levels is reflected as
the change in the transition state energy of the nucleophilic
reaction of 2-PPA with 1-Mn+ at 0 8C. It should be noted that
the sign of the slopes of the nucleophilic reactions is negative,
which is different from the positive slopes determined in
electron-transfer and electrophilic reactions (Figure 3), since
the direction of the charge transfer in the transition state is
opposite. The slope (�5.2) of the linear plot with the green
line in Figure 3 for the nucleophilic reaction of CCA with 1-
Mn+ is slightly less negative as compared to the nucleophilic
reaction of 2-PPA with 1-Mn+, indicating that the degree of
the charge transfer is less in this reaction. The nucleophilic
character of 1-Sc3+ was also demonstrated by the reactions
with para-substituted benzaldehydes bearing a series of
electron-donating and -withdrawing substituents at the para-
position of the phenyl group (para-Y-C6H4CHO; Y= OMe,
Me, H, and F); a positive 1 value of 2.0 was obtained in the
Hammett plot (Figure 5; Supporting Information, Table S2).

In conclusion, we have shown that redox-inactive metal
ion-bound iron(III)–peroxo complexes, [(TMC)FeIII(O2)]+-
Mn+ (1-Mn+; Mn+ = Sc3+, Y3+, Lu3+, and La3+), act as both
electrophiles and nucleophiles as well as electron acceptors.
The electron-transfer and electrophilic reactivities of the 1-

Figure 4. a) UV/Vis spectral changes observed in the electrophilic
oxidation of CHD (200 mm) by 1-Sc3+ (0.50 mm) in MeCN at 0 8C.
Inset: time course monitored at 530 nm due to 1-Sc3+. b) Plot of the
pseudo first-order rate constant (kobs) versus the concentration of CHD
to determine the second-order rate constant. c) UV/Vis spectral
changes observed in the nucleophilic oxidation of 2-PPA (200 mm) by
1-Sc3+ (0.50 mm) in MeCN at 0 8C. Inset: time course monitored at
530 nm due to 1-Sc3+. d) Plot of the pseudo first-order rate constant
(kobs) versus the concentration of 2-PPA to determine the second-order
rate constant.
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Mn+ complexes are enhanced with the increase in the Lewis
acidity of the binding Mn+ (DE), whereas the nucleophilic
reactivity of the 1-Mn+ complexes diminishes with the
increase in the Lewis acidity of the Mn+ (DE). Thus, the
reactivity of a mononuclear nonheme iron(III)–peroxo com-
plex in electron-transfer, electrophilic, and nucleophilic
reactions can be finely tuned by binding of redox-inactive
metal ions, and the Lewis acidity of the redox-inactive metal
ions is a determining factor that controls the reactivities of the
mononuclear nonheme iron(III)–peroxo complex in electron-
transfer, electrophilic, and nucleophilic reactions.
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Fine Control of the Redox Reactivity of
a Nonheme Iron(III)–Peroxo Complex by
Binding Redox-Inactive Metal Ions

Inactive but influential : The Lewis acidity
of the redox-inactive metal ions bound to
a mononuclear nonheme iron(III)–peroxo
complex, [(TMC)FeIII(O2)]

+-Mn+ (1-Mn+;
Mn+ = Sc3+, Y3+, Lu3+, and La3+), deter-
mines the reactivities of 1-Mn+ in elec-
tron-transfer, electrophilic, and nucleo-
philic reactions.
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