

Accepted Manuscript



A journal for new directions in chemistry

This article can be cited before page numbers have been issued, to do this please use: V. V. Sharutin, O. K. Sharutina, A. S. Novikov and S. A. Adonin, *New J. Chem.*, 2020, DOI: 10.1039/D0NJ02774J.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/njc

1

3

6 7

9

# 2 4 5 8 10 11 12 1000 000 7 J8 39 Dovulcated Dy JPRUNIVATING ANABOURING Likuries A C 7 1 0 6 8 2 9 5 4 0 7 1 0 ublished on 30 Wy 3020.

### COMMUNICATION

Journal Name

### Substituent-dependent reactivity of triarylantimony(III) toward I<sub>2</sub>: isolation of [Ar<sub>3</sub>SbI]<sup>+</sup> salt

Received 00th January 20xx, Accepted 00th January 20xx

Vladimir V. Sharutin,<sup>a</sup> Olga K. Sharutina,<sup>a</sup> Alexander S. Novikov<sup>b</sup> and Sergey A. Adonin\*<sup>a,c</sup>

DOI: 10.1039/x0xx00000x

www.rsc.org/

The outcome of reactions of triarylantimony (Ar<sub>3</sub>Sb) with diiodine in benzene is strongly affected by the identity of substituents. For R = 4-MePh, 3-MePh and 4-FPh, there form Sb<sup>v</sup> deivatives Ar<sub>3</sub>Sbl<sub>2</sub>, while for (2-MeO-5-BrC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>Sb the reaction results in [(2-MeO-5-BrC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>SbI](I<sub>3</sub>) where I is bound to the Sb center. The features of noncovalent interactions in the structure of the latter compound, as well as electronic structure of the [(2-MeO-5-BrPh)<sub>3</sub>SbI]<sup>+</sup> cation, were studied by theoretical methods.

The compounds belonging to the triarylantimony(III) family, Ar<sub>3</sub>Sb, are known for more than a century and it is not unexpected that many aspects of their structural chemistry and reactivity were subjects of a substantial number of reviews and text-book considerations.<sup>1–5</sup> It is generally believed that the most common redox reactivity mode of Ar<sub>3</sub>Sb is their oxidation by dihalogens to give corresponding triarylantimony(V) derivatives, Ar<sub>3</sub>SbX<sub>2</sub>. These reactions are well-studied for X = CI and  $Br^{6,7}$  and, to the best of our knowledge, products or intermediates other than from the most thermodynamically stable Ar<sub>3</sub>SbX<sub>2</sub> were isolated or identified in situ only in few cases.8 For diiodine, this exhaustive oxidation was realized for Ph<sub>3</sub>Sb to furnish Ph<sub>3</sub>SbI<sub>2</sub>.<sup>9,10</sup> Taking into account that diiodine is significantly weaker oxidant under the same conditions than Br<sub>2</sub> and especially Cl<sub>2</sub>, we assumed that its interplay with other Ar<sub>3</sub>Sb could proceed differently to the conventional instances.

By planning this work, in addition, we were also inspired by the reported reactivity of other trialkyl- or arylpnictogens (P and As) toward I<sub>2</sub>. As the closest neighbor to Sb, As demonstrates strikingly different behavior in the reactions between R<sub>3</sub>As and I<sub>2</sub>, forming complexes with either linearly-coordinated I<sub>2</sub>

- <sup>a.</sup> South Ural State University, Lenina St. 76 454080 Chelyabinsk, Russia
- <sup>b.</sup> Saint Petersburg State University, Institute of Chemistry, Universitetskaya Nab. 7-
- 9, 199034 Saint Petersburg, Russia

- Electronic Supplementary Information (ESI) available: Synthetic procedures, XRD and NMR characterization details for 1-3 and 5, computational details. See DOI: 10.1039/x0xx00000x
- 59 60

42

43

44 45

46

47

48

49

50

51 52 53

54

55

56

57

58



 $(R_3A_5-I-I, R = Ph_{,11,12}^{,11,12} 4-Me_{,2}^{,2}-Me_{,13}^{,13} Me_{,14}^{,14} etc.)$  or I (the

cationic R<sub>3</sub>AsI<sup>+</sup>; the I<sup>-</sup> remaining aster I–I bond cleavage bonds

I<sub>2</sub> to give triiodide counter-anion<sup>15</sup>). The R<sub>3</sub>AsI<sup>+</sup> are especially

interesting from the viewpoint of electronic structure and their

ability to form noncovalent interactions: it can be expected

that  $R_3AsI^+$  has a energetically deep  $\sigma$ -hole on the I atom, so

that it can become a suitable building block for construction of

Based on abovementioned ideas, we decided to perform a series of experiments of general scheme "Ar<sub>3</sub>Sb + I<sub>2</sub>", involving

Ar<sub>3</sub>Sb precursors with various aryl substituents with either

electron-donating or -withdrawing group or groups (see SI for

details). For Ar = 4-MePh, 3-MePh, and 4-FPh and the

equimolar amount of I2, these reactions proceeded in the

conventional way to achieve  $Ar_3SbI_2$  (Scheme 1; Ar = 4-MePh

(1), 3-MePh (2), 4-FPh (3)) isolated in up to 92% yields (see SI).

In all cases, the coordination environment of Sb is trigonal

bipyramidal (Fig. 1). In the structures of 1–3, the Sb–I and Sb–C

bond lengths are 2.723--2.841, 2.873-2.876, 2.848-2.896 Å

and 2.117, 2.119–2.126, 2.120–2.152 Å, respectively, being

similar to those in Ph<sub>3</sub>Sbl<sub>2</sub>.<sup>9</sup> Both <sup>1</sup>H and <sup>13</sup>C NMR spectra (see

SI, Table S2) agree well with the molecular structures.

halogen bonding-based supramolecular architectures.

| Fig.        | 1. | Structure | of (4- | MePh) | Sbl <sub>2</sub> ; C     | C is grey, | Sb  | dark b | lue, I | purple |
|-------------|----|-----------|--------|-------|--------------------------|------------|-----|--------|--------|--------|
| · · · · · · |    | onactare  | o. ( . |       | , o.o., <sub>2</sub> , c |            | 0.0 |        |        | paipie |

Interestingly, the crystal of 1 selected for XRD revealed the presence of minor quantity of Br ligands co-occupying the

<sup>&</sup>lt;sup>c.</sup> Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentieva St. 3, 630090 Novosibirsk, Russia. E-mail: adonin@niic.nsc.ru

#### COMMUNICATION

1 2

3

4

5

6

7

8

9

10

same position as iodides. Considering that the nature of bulk **1** was independently confirmed by element analysis, <sup>1</sup>H and <sup>13</sup>C NMR (see SI for full details), we suggest that this artefact appears due to contamination by bromide and preferential crystallization of Br-containing substance in the beginning.

The reaction with I<sub>2</sub> (molar ratio 1:1) proceeds dramatically different for  $(2-MeO-5-BrC_6H_4)_3Sb$ ,<sup>16</sup> to give the product which resembles several of the abovementioned organoarsenic derivatives. In this case, there forms the triiodide salt of the [(2-MeO-5-BrPh)<sub>3</sub>Sbl]<sup>+</sup> cation (4) (Fig. 2). To our best knowledge, this is the first structurally characterized example of such Sb derivatives. Earlier, Prtichard et al. reported on the reaction between Ph<sub>3</sub>Sbl<sub>2</sub> and metallic Co that leads to the product with the "Co(SbPh<sub>3</sub>)I<sub>4</sub>" brutto-formula. Since no X-ray characterization was performed, the structure was conditionally attributed to [Ph<sub>3</sub>SbI][Co(SbPh<sub>3</sub>)I<sub>3</sub>], following the analogy with related phosphines.<sup>17</sup> Chlorine-containing compounds with [R<sub>3</sub>SbCl]<sup>+</sup> cations were described as well.<sup>18,19</sup> Also, similar observations were made by Tailor et al.:<sup>8,20</sup> in the course of studies of reactions between Ph<sub>3</sub>Sb and I<sub>2</sub> in watercontaining organic solvents, compounds containing (Ph<sub>3</sub>SbI)<sub>2</sub>O units were isolated and characterized.



Scheme 1. Pathways of reactions between R<sub>3</sub>Sb and I<sub>2</sub>

In **4**, the Sb–C bond lengths fall in the 2.037–2.079 Å range, being noticeably shorter than those in parent compound (2.166–2.174 Å, respectively<sup>16</sup>); this shortening favours strong electron-withdrawing effect of I. The Sb–I distance is 2.639 Å, which is significantly less than those in **1–3**. The tetrahedral geometry of the Sb center in **4** is only slightly distorted ( $\angle$ (X–Sb–X) are 106.6–114.0°).



Fig. 2. Structure of the [(2-MeO-5-BrC\_6H\_4)\_3Sbl]<sup>+</sup> cation. C is grey, Sb dark blue, Br olive-green, O red, I purple; H atoms were omitted for the clarity.

Inspection of the halogen…halogen distances in the structure of **4** and their comparison with the sums<sup>D</sup>of<sup>1</sup> the corresponding Bondi van der Waals radii<sup>21,22</sup> indicate the presence of corresponding noncovalent interactions between I ligand and I<sub>3</sub><sup>-</sup> (I…I 3.654 Å), which can be regarded as halogen bonding (XB)<sup>23</sup> (I–I–I 121.9°) based on the IUPAC distance and angle criteria.<sup>24</sup> Besides, we also identified Type I<sup>23</sup> packing-induced interactions involving the Br atom of the 2-MeO-5-Br substituent and the triiodide (Br…I 3.692 Å) so that there form supramolecular dimers (Fig. 3).



Fig. 3. Halogen…halogen contacts (dashed) in the structure of 4.

То estimate the energies of the abovementioned halogen…halogen contacts, we performed DFT calculations at the M06/DZP-DKH level of theory and topological analysis of the electron density distribution (QTAIM method)<sup>25</sup> for the model tetrameric supramolecular associate {[(2-MeO-5-BrPh)<sub>3</sub>  $Sbl]^{+}_{2}\cdots\{l_{3}\}_{2}$  based on the experimental X-ray geometry of 4 (see SI for details; this approach was previously used by us for analysis of other relevant systems<sup>26–30</sup>). Depending on the applied method (see SI<sup>31</sup>), the strength of I---I and I---Br interactions vary in the 2.9-3.0 and 2.1-2.5 kcal/mol ranges; such values are relatively common for typical XBs.<sup>28,32,33</sup> According to the criteria proposed by Espinosa et al.<sup>34</sup> and Johnson et al.,<sup>35</sup> it can be stated that these interactions are purely noncovalent and attractive.

The distribution of frontier molecular orbitals in the optimized equilibrium structure of  $[Ar_3Sbl]^+$  is shown on Fig. 4. LUMO is mainly associated with antibonding  $\sigma^*$ -orbitals located on the Sb–I fragment, whereas HOMO is localized exclusively on the Ar moieties.



Fig. 4. Distribution of frontier molecular orbitals in the optimized equilibrium structure of  $[\text{Ar}_3\text{SbI}]^+$ 

Journal Name

3

4

5

6

7

#### COMMUNICATION

ot Chemistry

JOULNA

ished on 30 July 3020.

<del>3</del>1

42 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

#### Journal Name

Results of electrostatic surface potential (ESP) calculations reveal the presence of  $\sigma$ -hole regions on the Sb (86 kcal/mol, the global surface maxima), I (73 kcal/mol, the local surface maxima) and Br (60 kcal/mol, the local surface maxima) atoms in the optimized equilibrium structure of [Ar<sub>3</sub>Sbl]<sup>+</sup> (Fig. 5). Thus, potentially, this iodine-containing positively charged system is perspective for noncovalent catalyst involving simultaneous pnictogen/halogen bonding.



Fig. 5. Visualization of ESP distribution in the optimized equilibrium structure of  $[Ar_3Sb1]^*$ .

In summary, we provided the experimental evidence that the reactions between Ar<sub>3</sub>Sb and I<sub>2</sub> proceeds by two different routes depending on the identity of Ar: most commonly, those results in the oxidation to give  $R_3Sb^{\nu}I_2$ , and we reported here on the unconventional route to achieve the Ar<sub>3</sub>SbI<sup>+</sup> cation. The latter reactivity mode of Ar<sub>3</sub>Sb is similar to that of R<sub>3</sub>As, and it can be theoretically expected that other scenarios (i.e. "linear coordination" of I<sub>2</sub>) are possible. The facile generation of Ar<sub>3</sub>Sbl<sup>+</sup> deserves further investigation utilizing a broader range of substrates; corresponding experiments are underway in our group. Besides, analysis of the electronic structure of [(2-MeO-5-BrPh)<sub>3</sub>SbI]<sup>+</sup> demonstrates the simultaneous presence of  $\sigma$ holes on I and Sb atom, so that such cations can be considered as very promising building blocks for XB-based supramolecular XB-involving architectures and noncovalent organic catalysis.36-39

#### **Conflicts of interest**

There are no conflicts to declare.

#### Acknowledgements

The work was supported by Act 211 Government of the Russian Federation, contract No 02.A03.21.0011. ASN is grateful to the Russian Science Foundation for support of his theoretical studies of noncovalent interactions in **5** (Grant No. 19-73-00001). The authors thank Prof. Kukushkin (Saint Petersburg State University) for his valuable suggestions. Also, we kindly thank the Referee responsible for evaluation of XRD part of this work for his/her criticism and suggestions and Dr. P.A. Abramov (NIIC SB RAS) for his recommendations regarding the XRD part.

#### Notes and references

- A. N. Nesmeianov, O. A. Reutov, O. A. Ptitsyna and P. A. Tsurkan, Bull. Acad. Sci. USSR Div. Chem. Sci., 1958, 7, 1384–1392.
   L. Maier, E. G. Rochow and W. C. Fernelius, J. Inorg. Nucl.
  - *Chem.*, 1961, **16**, 213–218.

- R. G. Goel and D. R. Ridley, *Inorg. Nucl. Chem*./Lett<sub>articl</sub>971<sub>bine</sub> 7, 21–23. DOI: 10.1039/DONJ02774J
- R. G. Goel, E. Maslowsky and C. V. Senoff, *Inorg. Chem.,* 1971, **10**, 2572–2577.
- A. Michaelis, A. Michaelis and A. Reese, Justus Liebigs Ann. Chem., 1886, **233**, 39–60.
- V. V. Sharutin and O. K. Sharutina, *Russ. J. Gen. Chem.*, 2016, **86**, 1896–1901.
- V. V. Sharutin, O. K. Sharutina, A. P. Pakusina, T. P. Platonova, A. V. Gerasimenko and A. S. Sergienko, *Koord. Khimiya*, 2002, **28**, 887–890.
- M. J. Taylor, L.-J. Baker, C. E. F. Rickard and P. W. J. Surman, *J. Organomet. Chem*. 1995, **498**, C14-C16.
- H. P. Lane, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, *J. Chem. Soc. Dalt. Trans.*, 1994, 3249–3256.
- N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc. Dalt. Trans., 1994, 1759– 1763.
- B. Beagley, C. B. Colburn, O. El-Sayrafi, G. A. Gott, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, P. P. MacRory and R. G. Pritchard, *Acta Crystallogr. Sect. C Cryst. Struct. Commun.*, 1988, 44, 38–41.
- C. A. McAuliffe, B. Beagley, G. A. Gott, A. G. Mackie, P. P. MacRory and R. G. Pritchard, *Angew. Chem. Int. Ed. English*, 1987, 26, 264–265.
- 13 N. A. Barnes, K. R. Flower, S. M. Godfrey, P. A. Hurst, R. Z. Khan and R. G. Pritchard, *CrystEngComm*, 2010, **12**, 4240– 4251.
- N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R.
  G. Pritchard and J. M. Moreno, J. Chem. Soc. Dalt. Trans., 1995, 3873–3879.
- F. B. Alhanash, N. A. Barnes, S. M. Godfrey, P. A. Hurst, A. Hutchinson, R. Z. Khan and R. G. Pritchard, *Dalt. Trans.*, 2012, 41, 7708–7728.
- V. V. Sharutin, V. S. Senchurin, O. K. Sharutina and O. V.
  Chagarova, *Russ. J. Inorg. Chem.*, 2011, 56, 1561–1564.
- 17 S. M. Godfrey, H. P. Lane, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc. Dalt. Trans., 1993, 1599–1604.
- M. Hall and D. B. Sowerby, J. Chem. Soc. Dalt. Trans., 1983, 1095–1099.
- 19 M. Yang and F. P. Gabbaï, *Inorg. Chem.*, 2017, **56**, 8644–8650.
- M. J. Almond, M. G. B. Drew, D. A. Rice, G. Salisbury and M.
  J. Taylor, J. Organomet. Chem., 1996, 522, 265–269.
- 21 A. Bondi, J. Phys. Chem., 1966, 70, 3006–3007.
- 22 M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. A*, 2009, **113**, 5806–5812.
- G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, *Chem. Rev.*, 2016, **116**, 2478–2601.
- G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt,
  P. Metrangolo, P. Politzer, G. Resnati and K. Rissanen, *Pure Appl. Chem.*, 2013, 85, 1711–1713.
- 25 R. F. W. Bader, *Chem. Rev.*, 1991, **91**, 893–928.
- V. K. Burianova, D. S. Bolotin, A. S. Mikherdov, A. S.
  Novikov, P. P. Mokolokolo, A. Roodt, V. P. Boyarskiy, D.
  Dar'in, M. Krasavin, V. V. Suslonov, A. P. Zhdanov, K. Y.

#### COMMUNICATION

|    | Zhizhin and N. T. Kuznetsov, New J. Chem., 2018, <b>42</b> , 8693–                                                                                                                                                                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27 | M. V. Il'in, D. S. Bolotin, A. S. Novikov, I. E. Kolesnikov and V. V. Suslonov, <i>Inora. Chim. Acta</i> , 2019, <b>490</b> , 267–271.                                                                                                                                  |
| 28 | M. V. Kashina, M. A. Kinzhalov, A. S. Smirnov, D. M. Ivanov,<br>A. S. Novikov and V. Y. Kukushkin, <i>Chem An Asian J.</i> ,<br>2019, <b>14</b> , 3915–3920.                                                                                                            |
| 29 | A. S. Mikherdov, A. S. Novikov, M. A. Kinzhalov, V. P.<br>Boyarskiy, G. L. Starova, A. Y. Ivanov and V. Y. Kukushkin,<br>Inorg. Chem., 2018, <b>57</b> , 3420–3433.                                                                                                     |
| 30 | S. V. Baykov, U. Dabranskaya, D. M. Ivanov, A. S. Novikov<br>and V. P. Boyarskiy, <i>Cryst. Growth Des.</i> , 2018, <b>18</b> , 5973–<br>5980.                                                                                                                          |
| 31 | E. V Bartashevich and V. G. Tsirelson, <i>Russ. Chem. Rev.,</i> 2014, <b>83</b> , 1181–1203.                                                                                                                                                                            |
| 32 | D. M. Ivanov, A. S. Novikov, I. V. Ananyev, Y. V. Kirina and<br>V. Y. Kukushkin, <i>Chem. Commun.</i> , 2016, <b>52</b> , 5565–5568.                                                                                                                                    |
| 33 | M. A. Kinzhalov, M. V. Kashina, A. S. Mikherdov, E. A.<br>Mozheeva, A. S. Novikov, A. S. Smirnov, D. M. Ivanov, M. A.<br>Kryukova, A. Y. Ivanov, S. N. Smirnov, V. Y. Kukushkin and<br>K. V. Luzyanin, <i>Angew. Chem. Int. Ed.</i> , 2018, <b>57</b> , 12785–<br>12789 |
| 34 | E. Espinosa, I. Alkorta, J. Elguero and E. Molins, <i>J. Chem.</i><br>Phys., 2002, <b>117</b> , 5529–5542.                                                                                                                                                              |
| 35 | E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-<br>García, A. J. Cohen and W. Yang, <i>J. Am. Chem. Soc.</i> , 2010,<br><b>132</b> , 6498–6506.                                                                                                                |
| 36 | H. Yang and M. W. Wong, <i>Molecules</i> 2020, <b>35</b> , 1045.                                                                                                                                                                                                        |
| 37 | J. Bamberger, F. Ostler and O. G. Mancheño,<br>ChemCatChem, 2019, <b>11</b> , 5198–5211.                                                                                                                                                                                |
| 38 | R. L. Sutar and S. M. Huber, <i>ACS Catal.</i> , 2019, <b>9</b> , 9622–<br>9639.                                                                                                                                                                                        |
| 39 | R. Tepper and U. S. Schubert, <i>Angew. Chem. Int. Ed.</i> , 2018, <b>57</b> , 6004–6016.                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                         |

Page 4 of 5

#### Journal Name

View Article Online DOI: 10.1039/D0NJ02774J

This journal is © The Royal Society of Chemistry 20xx

New Journal of Chemistry Accepted Manuscript



## R<sub>3</sub>Sbl⁺: dual σ-hole donor