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Abstract
The catalytic activities of chlorosulfonyl-calix[4]arene-bonded silica gel (CSC[4]A-SG) as a novel heterogeneous catalyst 
was illustrated by efficient reduction of various ketones to their corresponding alcohols. To illustrate the promoting effect of 
the catalyst in the reaction, two more series of parallel experiments were also carried out using bare silica gel and no cata-
lyst. The study suggests that this newly synthesized solid catalyst has high binding tendency toward sodium cations through 
ion- pair interactions and is consequently effective for the reduction of ketones to alcohols using NaBH4 as a hydrogen 
donor. Also to demonstrate the high affinity and strong trap capacity of CSC[4]A-SG toward sodium cation, atomic absorp-
tion spectrometric measurements were performed. As a result, quantitative reduction of ketones was observed in short time 
periods, while the catalyst shows high thermal stability (up to 300 °C) and can be recovered and reused for at least five times 
in a row without loss of its catalytic performance. This is the first report about the application of CSC[4]A-SG as a catalyst 
in the chemical reactions.

Keywords  Chlorosulfonyl-Calix[4]arene-bonded silica gel · Ketone reduction · Sodium borohydride · Heterogeneous 
catalytic system

Introduction

Synthesis of novel heterogeneous catalytic systems has 
become a fascinating area of chemical research due to 
numerous applications these systems have found in both 
academia [1] and industries [2]. Heterogeneous catalyzed 
reactions are widely accepted as environmentally friendly 
alternatives to conventional homogeneous counterparts for 
the synthesis of fine chemicals [3], natural products, and 
pharmaceuticals [4], since they usually end up with more 
convenient workup procedures, higher selectivities, and 
easier recycling of catalysts.

Calix[n]arenes (usually n = 4, 5, 6, 8) and their related 
compounds have received increasing attention in recent 
years from theoretical and practical points of view [5]. They 
are considered as a new class of cavity-shaped macrocycles 
composed of phenolic units linked via alkylidene groups [6] 
and have been widely used as platforms to build receptors for 
binding to ions and molecules with important biological and 
environmental features [7, 8]. The ion binding properties of 
these molecules appear to be highly dependent on the nature 
and the number of donor groups and also on the conforma-
tion of the calix[n]arene moiety [9–15]. Among the calix[n]
arene family, calix[4]arenes present significant advantages 
over the other homologs since calix[n]arene derivatives with 
the n higher than 4, (i.e. 6, 8, 10, …) exhibit different con-
formational orientations and not all the aromatic rings can 
arrange in the same direction, therefore, giving deformed 
macrocycles.

The chemical immobilization of calix[n]arenes moities to 
the surface of particular porous materials can produce new 
classes of heterogeneous systems with many academic and 
technological applications in catalysis [16, 17], adsorption 
[8, 18–21], separation [22–33] and sensors [34–37]. Among 
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various porous materials, silica gel deserves special attention 
due to the presence of very reactive silanol groups on its 
surface which considerably increase the chemical reactivity 
of this adsorbent [28, 38, 39].

Ordinarily, the chemistry of attaching organic functionali-
ties to the silica surface is carried out using standard grafting 
methods [40], where the reaction of a suitable organosilan 
(R4−nSiXn with n = 1–3, X = Cl, OMe, OEt and R = a spacer) 
as a coupling agent with surface silanol groups of silica gel 
occurs [41]. In the case of calixarenes, the use of any cou-
pling agent and spacer may increase conformational flex-
ibility of the anchored site and, as a result, the maximum 
attainable site density would be diminished. In fact, chemical 
bonding of calix[n]arenes on silica surface without using any 
flexible spacer is a very useful approach for ion binding and 
sorption. This is due to the rigid structures that are attainable 
in this way [42, 43]. For this reason, p-tert-butyl calix[4]
arene was first functionalized with chlorosulfonic acid at the 
upper rim to get chlorosulfonyl-calix[4]arene (CSC[4]A). 
Then CSC[4]A was loaded onto activated silica gel to cause 
direct esterification between Si–OH and the chlorosulfonyl 
groups to yield CSC[4]A-bonded silica gel (CSC[4]A-SG) 
as a heterogeneous system (Fig. 1).

Recently, we have reported the preparation and full char-
acterization of chlorosulfonyl-calix[4]arene-bonded silica 
gel (CSC[4]A-SG) and used it as a selective and reusable 
sorbent for rubber chemical additives [44, 45]. To evalu-
ate the catalytic behavior of CSC[4]A-SG, we decided to 
employ it for the reduction of ketones, a reaction which is 
one of the most common and useful synthetic transforma-
tions in organic chemistry [46] and has been carried out 
so far using various methods [47, 48]. Among different 
hydrogen donors [47–59], NaBH4 is especially interesting, 
since it demonstrates high selectivity towards C=O groups 
in the presence of other reducible functionalities, while it is 
inexpensive, safe to handle, and environmentally friendly. 
However, NaBH4 requires long reaction times and does 
not reduce ketones efficiently in the absence of activators 
[60]. This background and the fact that calixarenes are effi-
cient and selective sodium ionophores [61–63] persuaded 

us to investigate the catalytic effect of CSC[4]A-SG in the 
reduction of carbonyl groups. It should be mentioned that 
increased interest in organocatalyst is due to its operational 
simplicity, low toxicity and cost. Nowadays, calixarenes and 
its derivatives are easily synthesized in large scale and also 
the immobilization of them onto the surface of various solid 
supports were done by simple methods. Despite the attrac-
tiveness of this reagent, to the best our knowledge, there 
is no report on the catalytic behavior of this catalyst in the 
various chemical reactions.

Experimental

Apparatus and chemicals

Na+ in the aqeous phase was analysed by using atomic 
absorption spectrophotometer (AAS, VARIAN 240) at 
589.0 nm of wavelength. Mesoporous amorphous silica gel 
60 (irregular particles with particle size 220–440 mesh) was 
purchased from Fluka and use as support material. All rea-
gents used for the synthesis of p-tertbutyl calix[4]arene and 
chlorosulfonylated calix[4]arene were obtained from various 
commercial sources and were analytical pure grade. All the 
solvents were analytical grades and were purchased from 
Merck. Generally, they have been dried according to the 
standard procedures and then stored over molecular sieves. 
The doubly distilled water was obtained from GSL system 
(German). All ketone compounds used for the catalytic stud-
ies were purchased from Fluka. Analytical thin layer chro-
matography was performed for monitoring of the reduction 
process using Merck prepared plates (silica gel 60 F254 on 
Aluminium). Since the synthesis of CSC[4]A-bonded silica 
gel carried out under a dry nitrogen gas, all glassware was 
flame dried before use.

Synthesis of CSC[4]A‑SG

The method for the synthesis of CSC[4]A (2) was followed 
as previously reported [64]. After initial activation of silica 
gel, CSC[4]A-SG (4) was prepared in two steps according 
to the our reported method [44]. The preparation scheme of 
CSC[4]A-SG was shown in Fig. 5.

Typical procedure for reduction of ketones

To a mixture of methanol (10 mL), a ketone (1 mmol), 
and 50 mg of freshly prepared CAC[4]-SG (containing 
0.005 mmol CSC[4]A) at 0 °C, was slowly added 200 mg 
NaBH4. The reaction mixture was stirred until TLC showed 
the ketone is consumed. At this point, the reaction mixture 
was vacuum filtered using a sintered glass funnel and the 
filtrate was quenched with diionized water and extracted Fig. 1   Structural representation of CSC[4]A-SG
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with ethyl acetate. The organic layer was dried over sodium 
sulfate and the volatiles were evaporated at reduced pressure 
to obtain the corresponding alcohol. In all cases, products 
were characterized by comparison of their spectroscopic 
data (IR and 1H-NMR spectra) and melting points with 
those of authentic samples. The solid catalyst which was 
separated from the reaction mixture by filtration was then 
washed consecutively with dichloromethane, diethyl ether, 
methanol, and hexane and dried for 12 h at 150 °C. The recy-
cled catalyst was reused in next reactions without loosing its 
activity. Elemental analysis showed no significant changes in 
chemical composition of the catalyst after recovery.

Results and discussion

Preparation and characterization of CSC[4]A‑SG

The procedure was described briefly as follows: a mixture of 
p-tert-butyl calix[4]arene (2 mmol)(1) and anhydrous dichlo-
romethane (25 mL) was placed in a three necked 100 mL 
round- bottom flask equipped with a magnetic stirrer, reflux 
condenser and septum. The mixture was stirred for 15 min 
at room temperature in an inert atmosphere of nitrogen gas. 
To this mixture, chlorosufonic acid (5 mL) was slowly added 
by syringe at a rate to keep the temperature between 0 and 
5 °C. When the addition of chlorosulfonic acid was finished, 
the solution mixture was refluxed for 2 h under vigorous 
stirring. After cooling, dry ether (30 mL) was added and 
the resulting oil after separating was triturated several times 
with methanol. CSC[4]A as a tan powder was prepared first. 
yield 50%; mp > 230 dec; 1H NMR: (500 MHz, DMSO-d6, 
TMS), δ(ppm), 3.94 (8H, s, ArCH2Ar), 7.39 (8H, s, Ar–H) 
and 11.39 (4H, s, 8OH) ; 13C NMR: (125 MHz, DMSO-d6), 
δ(ppm), 138.3 (ArC–SO2), 30.4 (ArCH2Ar); MS-FAB: m/z 
817.0 (M+, calcd 817.5).

Subsequently, 100 mL round-bottom flask, equipped 
with a reflux condenser, a gas inlet tube for conducting of 
HCl gas over silver nitrate solution was charged with 50 mL 
anhydrous xylene, 1.5 g of activated silica gel and 1 g of 
CSC[4]A. The mixture was allowed to reflux under con-
tinuous stirring and a dry nitrogen atmosphere at 140 °C 
for 72 h. After carrying out the reaction, the suspension was 
vacuum filtered using a sintered glass funnel (porosity 3) 
and CAC[4]-SG was obtained .The final product was dried 
in an oven at 150 °C for 12 h and kept in the desiccator. 
Quantitative determination of the organic functional group 
covalently anchored onto the surface of silica gel was per-
formed with elemental analysis and titration. The percent-
age of carbon, sulfur, hydrogen which was obtained from 
elemental analysis and resulting acidic properties of CSC[4]
A-SG are listed in the following Table 1. The carbon and 
sulfur content were assigned to the loading of CSC[4]A over 

silica gel. The bonded amount was found to be 92.82 µmol/
gr (0.17 µmol/m2) according to the carbon content shown 
in Table 1. Further, the sulfur content of CSC[4]A-SG was 
0.36 mmol/gr. The number of H+ determined by acid-base 
titration was 0.17 mmol/gr in the hydrolyzed sample. This 
value is half of the sulfur content, indicating that only two 
ester units took place onto CSC[4]A-SG and two acidic sites 
exit on the surface.

Catalytic evaluation

The scope and failure of CSC[4]A-SG as a heterogeneous 
catalyst in reduction of various ketones using NaBH4 as a 
hydrogen donor was evaluated (Scheme 1). To illustrate the 
promoting effect of the catalyst in the reactions, two more 
series of parallel experiments were also carried out using 
bare silica gel and no catalyst. The results (Table 2; Fig. 2) 
clearly show that reductions performed in the presence of 
catalytic amounts of CSC[4]A-SG reach to completion in 
much shorter time periods than those carried out using bare 
silica gel or no catalyst. Sodium borohydride is used in stoi-
chiometric ratio and the completion of the reactions was 
monitored by TLC. The yields which are reported in Table 2, 
are only related to the series of experiments which used cata-
lytic amounts of CSC[4]A-SG as a heterogeneous catalyst 
and it is specified under the “yield column”.

Overall, a major advantage of the present protocol is 
the relative low reaction times required for the reactions to 
completion. It should be noted that phenolic oxygen at the 
lower rim of CSC[4]A-SG have high binding affinity toward 
sodium cations through ion-pair interactions (Fig. 3) [65]. 
To indicate the cooperation of sodium cations in the cata-
lytic mechanisms, the reduction of acetone (Table 2, entry 
1) was selected as a model. The reaction was carried out 

Table 1   The results of elemental analysis and titration of CSC[4]-
bonded silica gel

Compound Elemental analysis Titration

%C %H %S Bonded amount 
(µmol/gr)

Acid capacity 
(mmol H+/g)

CSC[4]
A-bonded 
silica gel

3.11 6.14 1.11 92.82 0.17

Scheme 1   Typical reduction of ketone
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Table 2   Catalytic investigation of CSC[4]A-SG in the reduction of various ketones with NaBH4

a Products were identified by comparison of the physical and spectral data with those of authentic samples
b Second cycle
c Third cycle
d Fourth cycle

Entry Ketone Producta Reaction time (min) Yield

None Activated 
silica

CSC[4]A-SG CSC[4]A-SG (%)

1

H3C C
O

CH3

140 90 10 90

2

C
O

CH3 C
H

OH
CH3

120 80 7 98

3
C
O

CH3Br C
H

OH
CH3Br

110 80 10 100

4

C
H

OH 120 85 12,11b,10c,10d,9e 77

5

C
O

C
H

OH 90 70 5 62

6

C
O

C
H

OH 90 70 5 76

7

C
O

Cl 100 75 5 88

8

C
H

OH
Cl 130 90 12 85

Fig. 2   The catalytic activity of 
CSC[A]-SG in the reduction of 
ketones
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using CSC[4]A-SG in the high concentration of sodium 
cations under similar reaction conditions. As expected, the 
catalytic activities of catalyst were affected by the presence 
of large excesses of Na+. The reaction time was consider-
ably increased and were almost equal to that one carried 
out in the absence of CSC[4]A-SG. This is due to the fact 
that phenoxide ions of CSC[4]A-SG show more binding 
abilities toward sodium cations in the aqueous solution. 
Consequently, the catalytic activities of CSC[4]A-SG in the 
reduction of various ketones to their corresponding alcohols 
can be attributed to the high affinity of CSC[4]A-SG toward 
sodium cations in the presence of NaBH4 as a hydrogen 
donor. This phenomenon plays a key role in catalytic per-
formance of CSC[4]A-SG in the reduction of ketones. As 
a result, while Na+ ions coordinate to calix[4]arene moie-
ties, the negatively charged hydride complex i.e. BH4

− (the 
counter ion) can freely react with the carbonyl group. On the 
other hand, the alcohol (the solvent) facilitates the reduction 

by hydrogen bonding interactions between the carbonyl oxy-
gen and the acidic hydroxyl group of the alcohol. The result-
ing [BH3OMe]− anion is still reactive and can cause further 
reduction cycles.

In order to demonstrate the high affinity and strong trap 
capacity of CSC[4]A-SG toward sodium cations, atomic 
absorption spectrometric measurements were performed. 
For this procedure, 50 mg of CSC[4]A-SG was suspended 
in a 10 mL aqueous solution of sodium ions with concen-
trations varying from 50–400 mg L−1. The samples were 
mechanically shaken at 175 rpm for 1 h, after which the solid 
was separated by vacuum filtration using a sinter glass fun-
nel. The results of the analysis of the supernatant at 589 nm 
are presented in Fig. 4 and Table 3.

The % adsoption of sodium ions was then calculated as 
shown in Eq. 1, where Ci and Cf (mg L−1) is the initial and 
the final concentrations of sodium cation solutions before 
and after sorption, respectively. The adsorption capacity was 
calculated as shown in Eq. 2, where qe is the adsorption 
capacity (mg g−1), Ci and Ce are the initial and equilibrium 
concentrations (mg L−1), respectively, V is the volume (mL) 
of the solution, and m is the mass (mg) of the adsorbent.

R
C
O

R'

Na+

NaBH4 BH4
-

silica gel silica gel

R
C
H

OBH3

R'R
C
H

OH

R' MeOH

BH3OMe

CSC[4]A-SG CSC[4]A-SG

Fig. 3   The proposed mechanism

Fig. 4   Initial concentration effect of Na+ sorption on CSC[4]A-SG

Table 3   The ability of CSC[4]A-SG for removal of Na+

a Solid phase, CSC[4]A-SG = 50  mg, Aqueos phase, NaCl solu-
tion = 10 mL at 25 °C for 1 h

Entry Initial 
[Na+]
(ppm)

Final [Na+](ppm)a % Sorption Sorption 
capacity 
(mg g−1)

1 50 17.71 64.58 6.45
2 100 36.93 63.07 12.72
3 200 81.09 59.45 23.78
4 300 155.48 48.17 28.90
5 400 218.84 45.29 36.23
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The results show that the ion sorption capacity increases 
with the increase in initial concentration of Na+. As reported 
in the literature [66], at lower concentrations, all metal ions 
in solution could react with the binding sites and thus the 
percentage of the sorption would be higher than what is 
observed for higher initial metal ion concentrations. At 
higher concentration, lower sorption percentage is due to 
the saturation of binding sites. These results are not only in 
support of the high affinity of CSC[4]A-SG toward sodium 
ions but can also justify the high reactivity of the catalyst 
in reduction of carbonyl compounds to their corresponding 
alcohols in the presence of NaBH4. Figure 5 summaries the 
achievement of the present work.

Since the reusability of heterogeneous systems is of high 
importance from commercial points of view, we therefore 
investigated the possibility of recovery and reusability of 
CSC[4]A-SG in the synthesis of benzhydrol from benzo-
phenone (Table 2, Entry 4). The catalyst was recovered 

(1)% Sorption =
(

Ci − Cf∕Cf

)

× 100

(2)qe =
(

Ci − Ce

)

v/m

after each run, washed consecutively with dichloromethane, 
diethyl ether, methanol, and hexane and dried at 150 °C for 
12 h prior to next use. The recovery and reusability experi-
ments showed the catalyst efficiency was not compromised 
after several usage-regeneration cycles (Fig. 6). Further-
more, elemental analysis confirmed that both carbon and 
sulfur contents of CSC[4]A-SG do not change significantly 
after each cycle under the employed conditions, indicating 
that the recovered CSC[4]A-SG is as reactive as the fresh 
catalyst.

Conclusions

In conclusion, this work shows that CSC[4]A-SG is a 
remarkably efficient heterogeneous system for the reduction 
of carbonyl compounds using NaBH4. The catalytic activity 
of CSC[4]A-SG in reduction of ketones was shown to be 
directly due to high affinity of the catalyst for sodium ions. 
The present protocol is associated with several advantages 
such as mild conditions, short reaction time periods, simple 
experimental procedure and reusability of the catalyst. The 
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Fig. 5   The route of preparation of CSC[4]A-SG (suggested on the basis of elemental analysis) and their ability to trap metal ions
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catalyst shows high thermal stability (up to 300 °C according 
to TGA curves), while it can be recovered and reused over 
several cycles without remarkable loss of activity. Moreo-
ver, NaBH4 is used in stoichiometric amounts which is very 
important from atom economic and green chemistry per-
spectives and minimizes the overall cost and waste produc-
tion. Other applications of the present method to various 
functional group transformations are under investigation in 
our laboratory.
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