Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2013, 11, 2693

Received 22nd October 2012, Accepted 12th February 2013 DOI: 10.1039/c3ob40086g

www.rsc.org/obc

Introduction

Heteromultifunctional molecular scaffolds equipped with three (or more) (bio)orthogonal reactive handles are now regarded as versatile and unique tools to make easier access to a myriad of chemically engineered bioconjugates,¹ through synthetic methods involving a sequential combination of chemoselective ligations.^{2,3} Indeed, there is a growing need for such multicomponent biomolecular systems with uniquely combined properties of the individual components, especially for the development of innovative and valuable diagnostic and/or therapeutic tools (e.g., multimodality molecular imaging probes, "smart" drug delivery systems, etc.). The vast majority of heterotrifunctional cross-linking reagents (also named by us "tripods") commercially available and/or reported in the literature are based on amino acid or peptidyl scaffolds that contain either a set of two different functional groups and a biotin affinity tag (e.g., Sulfo-SBED, TRICEPS),4,5 or three

E-mail: pierre-yves.renard@univ-rouen.fr, anthony.romieu@univ-rouen.fr;

The first "ready-to-use" benzene-based heterotrifunctional cross-linker for multiple bioconjugation†

Guillaume Viault,^a Sébastien Dautrey,^a Nicolas Maindron,^a Julie Hardouin,^b Pierre-Yves Renard^{*a} and Anthony Romieu^{*a}

The synthesis and applications of the first water-soluble benzene derivative bearing a set of three different and orthogonal bioconjugatable groups (aminooxy, azido and thiol) are described. The combined use of a 5-amino isophthalic acid scaffold and unusual acid-labile protecting groups for temporarily masking aminooxy and thiol moieties has enabled the development of a highly convergent approach towards the synthesis of such a trivalent bioconjugation platform in good yields. The potential utility of this "ready-to-use" cross-linking reagent for creating complex and fragile tri-component (bio) molecular systems was illustrated through (1) the rapid preparation of a three-colour FRET cascade with valuable spectral properties and (2) the luminescent/fluorescent labelling of peptides and peptide–oligo-nucleotide conjugates. Thus, such (bio)molecular assemblies were readily obtained *via* a three-step process or in a "one-pot" manner, both involving oxime ligation, thiol-alkylation (S_N2 or Michael addition) and copper-catalysed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions.

> different functional groups allowing sequential bioconjugations through biocompatible and/or bioorthogonal "click" reactions.^{3,6,7}

> It is also worth mentioning the recent work of the Santoyo-Gonzalez group related to the facile synthesis of alkyne-vinyl sulfone derivatised tags (AVST) from a PEGylated bis-vinyl sulfone.⁸ Indeed, these non-peptidyl trivalent cross-linkers have enabled the convenient and efficient dual labelling of proteins (*e.g.*, glycoprotein horseradish peroxidase (HRP)) with a biotin and a fluorescent dye, through effective reactions belonging to the "click chemistry" repertoire (*i.e.*, CuAAC and Michael-type addition using a vinyl sulfone as acceptor).

The preparation of such multifunctional architectures relies almost exclusively on classical stepwise peptide synthesis in solution, and so, it is not always easy to rapidly expand their structural diversity (especially for fine-tuning of both physiochemical properties and bioconjugation ability) as well as to greatly simplify their synthetic access. Thus, there is an urgent need for "tripods" derived from structurally simpler molecular scaffolds, and easily accessible using flexible and highly convergent synthetic routes. In that context, our recent research efforts have been focused on design and evaluation of the bioconjugation ability of a non-peptidic cross-linker based on a benzenic core decorated with three different conjugation handles: an aminooxy functional group for oxime ligation, a thiol for reactions with maleimide or α -haloacetyl derivatives, and an azido for copper-mediated azide-alkyne 1,3-dipolar

Published on 14 February 2013 on http://pubs.rsc.org | doi:10.1039/C3OB40086G

Downloaded by Georgetown University Library on 19/04/2013 20:18:50.

View Article Online

^aNormandie Univ, COBRA, UMR 6014 & FR 3038; UNIV Rouen; INSA Rouen; CNRS, 1 Rue Tesnières, 76821 Mont St Aignan Cedex, France.

http://ircof.crihan.fr; Fax: +33 (0)2 35 52 29 71; Tel: +33 (0)2 35 52 24 76 (or 24 27) ^bLaboratory PBS UMR 6270, Bât. Chimie, 76821 Mont St Aignan Cedex, France † Electronic supplementary information (ESI) available: Detailed synthetic procedures for compounds **10–12**, **16**, **18** and **22** and characterisation/spectral data for all compounds and (bio)conjugates. See DOI: 10.1039/c3ob40086g

Fig. 1 Examples of trivalent benzene derivatives bearing two or three identical (photo)reactive groups, published in 2012.

Fig. 2 Structure of heterotrifunctional benzene-based cross-linker 1

cycloaddition (CuAAC) or Staudinger ligation, and pseudo-PEG moieties as neutral water-solubilising moieties.⁹ To the best of our knowledge, only trivalent benzene derivatives bearing two or three identical (photo)reactive groups have already been reported in the literature, especially for applications in peptide/protein bioconjugation (see Fig. 1 for selected examples).¹⁰

In this article, we report the rapid and straightforward synthesis of the first benzene-based "tripod" **1** (Fig. 2) and its application for the preparation of sophisticated three-component conjugates including a three-colour FRET cascade based on cyanine dyes and luminescent peptide–oligonucleotide conjugates (POCs), through sequential mild and biocompatible reactions performed under mild aq. conditions fully compatible with the moderate stability of selected fluorescent labels and biopolymers. Dual fluorescent labelling of peptides through a sequential one-pot derivatisation of **1** that avoids intermediate chromatographic purifications is also presented.

Results and discussion

Synthesis of heterotrifunctional benzene-based cross-linker 1

Compared to the convergent synthetic strategies previously developed to prepare heterotrifunctional peptide-based templates,^{3,6,7} our basic idea is to dramatically simplify the orthogonal protection/deprotection strategy required to ensure the correct assembly of functionalised building blocks. To this end, (1) unusual protecting groups suitable for masking

aminooxy and thiol moieties, both labile under the same acidic conditions were used, and (2) a cheap benzenic building block 2 whose two functional groups (i.e., amino and carboxylic acid) can be easily unveiled through standard and easily implemented reactions (i.e., hydrogenation and saponification) was chosen as starting material. Thus, a short six-step synthetic route was designed as depicted in Scheme 1. First, the nitro group of 2 was converted into primary amine by Pd/C cat. hydrogenation, and the resulting aniline was used as an anchoring point to graft the aminooxy-containing building block. Aminooxyacetic acid (Aoaa) N-protected with the acidlabile 1-ethoxyethylidene group (Eei) was preferred to the standard di-Boc-derivative because it has been shown recently that this oxime is more adequate for stepwise SPPS of Aoaa-containing peptides, especially in preventing the N-overacylation side-reactions frequently encountered during such syntheses.¹¹ Thus, acylation of the aniline derivative with the known NHS active ester 3,11 provided oxime derivative 4 in 55% overall yield for the two steps. Amidification of its carboxylic acid moiety with azido-PEG-amine spacer 5 (for its synthesis, see ESI^{\dagger}) has been readily achieved with BOP/DIEA, in dry CH₃CN to provide 6 in 94% yield. Thereafter, methyl ester 6 was saponificated by treatment with 1.0 M aq. LiOH in MeOH to give the targeted benzoic acid 7. This acid was coupled to S-protected mercaptoamine linker 8 (for its synthesis, see ESI⁺) under the same conditions used for 5, to afford fully protected heterotrifunctional cross-linker 9 in 91% yield. Finally, a single treatment of 9 with a mixture of TFA/TES/H2O has led to heterotrifunctional benzenic derivative 1. The best way to purify this polar compound is to make semi-preparative RP-HPLC which enables to recover 1 as a TFA salt and in a moderate not yet optimised yield (23%). Indeed, the use of RP-HPLC for purifications (followed by lyophilisation) and the small-scale chosen for the deprotection step induced significant loss of material whereas this reaction was found to be almost complete. But compared to the previously reported peptidyl analogue isolated in a very low yield (<5%),⁶ the single deprotection step and the presence of a UV chromophore have made easier the chromatographic purification and helped to

Scheme 1 Synthesis of benzene-based heterotrifunctional bioconjugate linker 1. Reagents and conditions: (a) $H_2(g)$, Pd/C, EtOH, rt, 3 h; (b) 3, DIEA, CH₃CN, rt, 12 h, 55% for 2 steps; (c) 5, BOP, DIEA, CH₃CN, rt, 12 h, 94%; (d) 1.0 M aq. LiOH, MeOH, rt, 5 h, 93%; (e) 8, DIEA, CH₃CN, rt, 3 h, 91%; (f) TFA-TES-H₂O (95:2.5:2.5, v/v/v), rt, 3 h, 23% after RP-HPLC purification.

dramatically increase the isolated yield. The structure of **1** was unambiguously confirmed by detailed measurements, including ESI-MS and NMR analyses (see ESI[†]). We have observed that this free aminooxy derivative readily reacts with acetone commonly found in chemistry labs' atmosphere, leading to blocking of its third bioconjugatable group as an unreactive oxime. Consequently, this reagent was stored under an argon atmosphere, and at -20 °C to limit also both partial reduction of its azido group through a thiol-mediated redox process,¹² and oxidative dimerisation to disulfide. Indeed, under these storage conditions, such self-reactivity was highlighted by periodical HPLC analyses of **1** and about 30% degradation occurred within two months (see ESI[†]). In this context, it is generally better to perform deprotection of **9** only a few days prior to the use of **1** in bioconjugation.

Synthesis of fluorescent/luminescent (bio)molecular assemblies by sequential triple derivatisation of 1

To demonstrate the facile applicability of the novel bioconjugation reagent 1 toward the construction of three-component (bio)molecular systems under mild conditions, the preparation of a three-colour or triple FRET cascade was first considered (Scheme 2). Such constructs, in which an intermediate energy acceptor relays the energy gained from the donor to a lowerenergy acceptor, offer the advantage that they yield information about the position of the three chromophores relative to each other, they extend the working range compared to conventional FRET systems, and the spectral shift between the excitation of the donor and the emission of the lower-energy acceptor is much more pronounced.¹³ In addition, fewer labelled sample molecules are required to measure relative distances. Despite these obvious advantages, no general synthetic method for their preparation is now available. Recently, the first triple-colour labelling strategy for proteins, using a combination of site-specific labelling via an unnatural amino acid (para-acetylphenylalanine for oxime ligation) and statistical labelling of two cysteine residues (by Michael addition), has been reported,¹⁴ but this approach is not entirely satisfactory due to the lack of three independent chemoselective fluorescent tagging reactions easily implemented to a wide range of bioconjugatable fluorophores. Consequently, most threecolour single-molecule FRET studies were performed on fluorescently-labelled nucleic acids (i.e., DNA duplexes or DNA origami).¹⁵ In this context, the sequential derivatisation of 1 with three different complementary fluorophores appears to be a very promising way and still an unexplored approach to achieve this ambitious goal. Sulfoindocyanine dyes Cy 3.0, Cy 5.0 and Cy 7.0 from GE Healthcare (CyDyeTM) were chosen for the practical implementation of this synthetic strategy.¹⁶ The carboxylic acid function of these dyes was used to introduce the required conjugatable handle α -iodoacetyl (IAc), aldehyde and terminal alkyne respectively (for their synthesis, see ESI⁺). Despite the drawbacks related to the limited fluorescence quantum yield in aqueous solution and poor (photo)chemical stability of cyanine dye Cy 7.0,17 we have chosen to use this fragile fluorescent label rather than more stable NIR fluorophores, especially to demonstrate that the use of cross-linker 1 enables the design of effective bioconjugation schemes under very mild aqueous conditions that maintain the structural integrity of each molecular partner involved in the final targeted assembly. Furthermore, the symmetrical dicarboxylic acid cyanine dye Cy 7.0 was used because the unsymmetrical analogue (bearing N-ethyl and N-carboxypentyl substituents) is prone to aggregation in aqueous environments.¹⁸ As depicted in Scheme 2, sequential derivatisation of 1 was readily and easily achieved under mild aqueous conditions and in the

Scheme 2 Bioconjugation schemes involving 1. *Reagents and conditions*: (a) 0.1 M aq. NaOAc buffer pH 4.2, Cy 5.0–aldehyde 10, or peptide–aldehyde 16, rt, 4 h, 32% and 45%; (b) CH₃CN and 0.1 M aq. NaHCO₃ buffer pH 8.5 (1 : 3, v/v), Cy 3.0–IAB 11 or Eu(iii) chelate–IAB 18, rt, 3 h, 36% and 30%; (c) H₂O, 10 mM aq. CuSO₄, 10 mM aq. sodium ascorbate, Cy 7.0–alkyne 12, rt, 2 h, 47%; (d) H₂O, DMSO 10 mM aq. CuSO₄, 10 mM aq. sodium ascorbate, 10 mM TBTA, 50 mM aq. DIEA, ODN–alkyne 17, rt, 24 h, 66%.

following order: (1) oxime ligation with Cy 5.0–aldehyde **10**, (2) $S_N 2$ thio-alkylation with the α -IAc derivative of Cy 3.0 **11** and (3) CuAAC reaction with Cy 7.0–alkyne **12**. To avoid the premature "capping" of an aminooxy moiety of **1** by prolonged

exposure to "atmospheric" acetone (*vide supra*), it makes sense to perform oxime ligation prior to the other two reactions. Furthermore, as demonstrated by Galibert *et al.*, it is essential to achieve CuAAC after thiol alkylation to avoid copper-mediated

Fig. 3 (a) UV-vis absorption spectrum of 15 in PBS (concentration: 3.5 µM) at 25 °C; (b) normalised fluorescence emission spectra of 15 in PBS at 25 °C upon excitation at 500 nm (—), 600 nm (—) and 730 nm (—); (c) picture of PBS solutions (concentration: 5.0 µM) of Cy 3.0 dye (left) and FRET cascade 15 (right).

oxidation of thiopeptide scaffolds.³ In addition to the final FRET cascade 15, we have chosen to isolate the fluorescent derivatives 13 and 14 formed from their ligation, in a pure form to determine their spectral features under physiological conditions. Thus, each fluorescent "tripod" (i.e., monolabelled, FRET pair and FRET cascade) was isolated by semipreparative RP-HPLC and their structures confirmed by ESI-MS (see ESI⁺). In order to confirm the presence and integrity of the three cyanine units grafted to the same benzene template, the photophysical properties of 15 were determined in phosphate buffered saline (PBS, pH 7.5). As illustrated in Fig. 3a, 15 exhibits three characteristic absorption maxima at 550, 648 and 761 nm assigned to the three different cyanine labels. Thus, the resulting solution colour of 15 is dramatically different than that of the donor Cy 3.0 unit (Fig. 3c). Furthermore, the absorption ratios are in good agreement with the expected dye: tripod molar ratios equal to 1, and are further evidence for the high purity of this fluorescent three-component conjugate. Upon excitation at 500 nm (Cy 3.0 core), 15 exhibits strong red and NIR emission bands centered at 668 and 779 nm respectively, and a weak green emission band at 561 nm, indicating efficient energy transfer between Cy 3.0 and Cy 5.0 (Fig. 3b), this latter cyanine unit serving as an energy relay toward the final acceptor Cy 7.0. The energy transfer efficiency (E.T.E) was calculated based on the equation: E.T.E (free donor Cy 3.0))]%} and found to be equal to 95% (see ESI⁺

for the determination of the corresponding quantum yield $(\Phi_{\rm F})$ values of Cy 3.0). Thus, a large pseudo-Stokes' shift (up to 229 nm) was observed, which is, to the best of our knowledge, one of the few examples of FRET-based systems emitting in the NIR region upon green excitation, and particularly valuable for various applications in the field of DNA analysis and molecular imaging.^{19,20} Interestingly, the second carboxylic acid function of final acceptor Cy 7.0 remains free for further conjugation of this cassette to a biomolecule or a biological target.

To provide additional examples of sequential triple derivatisation of cross-linker 1, we have decided to apply this bioconjugate assembly strategy to the preparation of luminescent peptide-oligonucleotide conjugates (POCs) (Scheme 2). Indeed, it is now well established that linking peptides to ODNs improves some of the desired properties of these DNA fragments to be used as therapeutic agents (cellular delivery, stability to exonucleases, improved binding to complementary sequences and greater rate of hybridization).²¹ To gain relevant in cellulo or in vivo biodistribution data of such potential (antisense) drugs, one of the most practical solutions relies on the use of bis-conjugates of ODNs which combine a luminescent/ fluorescent moiety with the grafted peptide sequences, the fluorophore serving as a probe to detect the transport of the POC.²² The vast majority of that type of optical bioprobes are readily obtained by sequential derivatisation of a 3',5'-bifunctionalised oligonucleotide (produced by solid-phase synthesis) with a peptide and a fluorescent reporter group, for instance

Organic & Biomolecular Chemistry

through the sequential formation of two oxime bonds.²³ However, the success of this approach has required the use of an acid-labile protecting group to temporarily mask the second reactive functionality of ODN (trityl for the aminooxy moiety or benzaldehyde acetal for the diol used as an aldehyde-precursor). In order to shorten the synthetic routes of these useful bioconjugates, "tripod" 1 appears to be a successful solution to "cross-link" rapidly and effectively the three substrates involved. The dodecapeptide Ac-Lys-Gly-Arg-Ala-Asn-Leu-Arg-Ile-Leu-Ala-Arg-Tyr-OH whose *e*-amino group was derivatised with the NHS ester of para-formylbenzoic acid aldehyde (peptide-aldehyde 16) and a synthetic 16-mer oligonucleotide (ODN) 5'-d(TGA ACT GCA GCT CCT U) bearing the alkyne group as a nucleotide modification at the 2'-position of uridine (ODN-alkyne 17) were chosen as representative biopolymers (for their synthesis, see ESI⁺). As a luminescent tag, an original thiol-reactive Eu(m) bispyridinylpyrazine-based chelate 18 was selected, especially for further time-resolved imaging of such POCs within living cells. This bioconjugatable lanthanide (III) complex was easily synthesised by acylation of the parent amino compound recently reported by us,²⁴ with the commercially available heterobifunctional cross-linker SulfoSuccinimidyl(4-Iodoacetyl)AminoBenzoate (i.e., Sulfo-SIAB) in aqueous NaHCO₃ buffer (pH 8.5), and subsequently purified by semipreparative RP-HPLC (see ESI⁺). Since of the three (bio)molecular partners involved in the targeted POC, 16 exhibits the highest chemical stability, oxime ligation was performed first.²⁵ Thereafter, S_N2 thio-alkylation was readily achieved with luminescent IAc derivative 18. Finally, CuAAC reaction

between the luminescent peptide conjugate and ODN-alkyne 17 was performed in H₂O-DMSO (1:1) with the catalytic system (CuSO₄-sodium ascorbate) and DIEA and tris-(benzyltriazolylmethyl)amine (TBTA), a well known stabilising ligand for copper(1) species.²⁶ The corresponding luminescent POC 21 was isolated by RP-HPLC under non-acidic conditions (to avoid premature decomplexation of lanthanide cations) in a good yield (66%) and its structure was unambiguously confirmed by ESI-MS (Fig. 4). The presence and integrity of a grafted Eu(III) chelate were also confirmed by detailed photophysical measurements (see ESI⁺). Interestingly, a relative quantum yield of 9.5% was found in aqueous buffer. This good value is similar to those previously reported for protein conjugates labeling with the same Eu(III) chelate.²⁴ This indicates that the benzene core of 1 does not negatively affect the luminescence properties of such grafted labels.

Synthesis of fluorescent bioconjugates by sequential one-pot derivatisation of 1

The great utility of the trifunctional scaffold 1 as a "ready-touse" and user-friendly bioconjugation reagent was ultimately demonstrated through the one-pot sequential chemoselective ligations of peptide 16 and cyanine dyes Cy 7.0–alkyne 12 and Cy 5.0–maleimide 22 (Scheme 3). For this latter fluorescent marker, maleimide was preferred to α -iodoacetyl as the thiolreactive moiety because the Michael addition (leading to its conjugation to the peptidyl architecture) proceeds rapidly and in good yields in neutral aqueous solutions whereas this is not the case for the S_N2 thio-alkylation involving the

Paper

Scheme 3 One-pot bioconjugation scheme involving 1. *Reagents and conditions*: (a) 0.1 M aq. NaOAc buffer pH 4.2, peptide–aldehyde 16, rt, 2 h, then Cy 5.0– maleimide 22, H₂O, rt, 2 h and finally Cy 7.0–alkyne 12, Cu(0) microsized powder, tBuOH, rt, 12 h, 28% overall yield.

corresponding α-IAc fluorescent derivative, which effectively works only in the pH range 8.0-8.5.27,28 Indeed, for this onepot approach, we have chosen to conduct the two last derivatisations (Michael addition and CuAAC) at neutral pH because it was not easy to accurately adjust the pH mixture as required by the triptych "oxime ligation (performed at pH 4.2), S_N2 thioalkylation (performed at pH 8.5) and CuAAC (performed at neutral pH)", especially when the reactions were conducted in small volumes and with coloured reagents such as cyanine dyes. Chemoselective ligations were carefully monitored by RP-HPLC analysis (Fig. 5). Oxime ligation between 1 and peptide-aldehyde 16 was found to be complete within 2 h (Fig. 5a). Then, Cy 5.0-maleimide 22 (for its synthesis see ESI[†]) was added to the reaction mixture. Thiol-mediated Michael addition was observed at rt providing within 2 h the Cy 5.0-labelled peptide (Fig. 5b). For this latter reaction, we have noticed the formation of side-products that result from hydrolysis of maleimide derivatives, which may make the use of this "tripod" system in some practical one-pot biomolecule labelling and cross-linking applications difficult. The implementation of an alternative bioconjugation reaction not involving thiols is probably the best way to solve this problem (vide infra, Conclusions section). Finally, CuAAC with Cy 7.0alkyne 12 was carried out by adding a Cu(0) microsized powder and at rt overnight (Fig. 5c). The expected FRET cassette (Cy 5.0-Cy 7.0) labelled peptide 23 was isolated by RP-HPLC in a satisfying 28% overall yield. The presence and integrity of cyanine labels grafted to the peptide were confirmed by ESI mass spectrometry (Fig. 5e), UV-vis absorption and fluorescence analyses (see ESI⁺). In the present case, the isolated yield of the three-component bioconjugate is significantly higher than those of compounds 15 and 21 synthesised according to a three-step bioconjugation protocol involving chromatographic isolation of each intermediate (overall yield 5.5% and 9.0% respectively).

Conclusions and future work

In summary, we have described the easy and high-yielding functionalisation of a benzene core to get the first heterotrifunctional aromatic scaffold suitable for various challenging bioconjugation applications. We have demonstrated that the selected set of three reactive groups (aminooxy, azido and thiol) is particularly well-suited for rapid derivatisation/ functionalisation of fragile and high-value added biopolymers, through biocompatible reactions easily performed on small scales, either in three steps or in a one-pot sequential manner. We think that this novel cross-linking reagent represents: (1) a significant innovation in the field of chemical biology especially to get highly sophisticated and fragile (bio)conjugates which are not accessible by derivatisation of commercially available bioconjugation reagents (mainly hetero- or homobifunctional cross-linkers), and (2) a valuable tool to make easier the preparation of biological composite nanomaterials through addressing challenges related to the controlled display of biomolecules on nanoparticles.²⁹ Thus, our current efforts are devoted to expanding the functional diversity of heterotrifunctional benzenic scaffolds for the implementation of new and promising "click" reactions such as tetrazine ligation³⁰ and related cycloadditions.³¹

Experimental section[†]

General

Column chromatography purifications were performed on Geduran® Si 60 silica gel (40-63 µm) from Merck. TLC was carried out on Merck DC Kieselgel 60 F-254 aluminium sheets. The spots were visualised by illumination with a UV lamp (λ = 254 nm or 365 nm), by immersion in ninhydrin solution or potassium permanganate solution. Small scale syntheses (i.e., bioconjugation experiments) were performed in standard single-use microtubes (0.5 or 1.7 mL). All solvents were dried following standard procedures (CH₃CN: distillation over CaH₂, CH₂Cl₂: distillation over P₂O₅, THF: distillation over Na^o/benzophenone). Anhydrous DMF was obtained from Carlo Erba-SdS or Fisher Scientific. TEA was distilled from CaH2 and stored over BaO. The HPLC-gradient grade acetonitrile (CH₃CN) was obtained from VWR. Buffers and aq. mobilephases for HPLC were prepared using water purified with a Milli-Q system (purified to 18.2 M Ω cm). Triethylammonium

Fig. 5 (a–c) RP-HPLC elution profiles (system K) for the preparation of FRET cassette (Cy 5.0–Cy 7.0) labelled peptide 23 through a sequential one-pot approach; (d) RP-HPLC elution profile (system K) of purified 23; (e) ESI mass spectrum of purified 23 recorded in the negative mode (calcd mass 3845.73). Under ionisation conditions, only the –2 and –3 charge states were observed.

acetate (TEAA, 2.0 M) and triethylammonium bicarbonate (TEAB, 1.0 M) buffers were prepared from distilled triethylamine and glacial acetic acid or CO_2 gas.

Instruments and methods

The synthesis of dodecapeptide Ac-Lys-Gly-Arg-Ala-Asn-Leu-Arg-Ile-Leu-Ala-Arg-Tyr-OH was carried out on an Applied Biosystems 433A synthesizer using the standard Fmoc/tBu chemistry³² as previously described by us.³³ The synthesis of ODNalkyne 17 was carried out on an Applied Biosystems 392 DNA/ RNA synthesizer as previously described by us.⁶ ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 300 spectrometer (Bruker, Wissembourg, France). Chemical shifts are expressed in parts per million (ppm) and relative to tetramethylsilane from CDCl₃ ($\delta_{\rm H}$ = 7.26, $\delta_{\rm C}$ = 77.16) or D₂O ($\delta_{\rm H}$ = 4.79).³⁴ Infrared (IR) spectra were recorded with a universal ATR sampling accessory on a Perkin Elmer FT-IR Spectrum 100 spectrometer. Analytical HPLC was performed on a Thermo Scientific Surveyor Plus instrument equipped with a PDA detector. Semi-preparative HPLC was performed on a Thermo Scientific SPECTRASYSTEM liquid chromatography system (P4000) equipped with a UV-visible 2000 detector. Low-resolution mass spectra (LRMS) were obtained with a Finnigan LCQ Advantage MAX (ion trap) apparatus equipped with an electrospray source. High-resolution mass spectra (HRMS) were recorded on an LTQ Orbitrap Elite (Thermo Scientific). UV-visible spectra were obtained on a Varian Cary 50 scan spectrophotometer by using a rectangular quartz microcell (Hellma, 108.002-QS, light path: 10 mm, 500 µL). Fluorescence spectroscopic studies (emission/excitation spectra) were performed with a Varian Cary Eclipse spectrophotometer with a fluorescence quartz ultra-microcell (Hellma, 105.251-QS, light path: 3×3 mm, 45μ L). Emission spectra were recorded under the same conditions after excitation at the corresponding wavelength (see Table S1,[†] excitation and emission filters: auto, excitation and emission slit = 5 nm) in PBS. Relative quantum yields were measured in PBS at 25 °C by a relative method using a suitable standard (see Table $S1^{\dagger}$). The following equation was used to determine the relative fluorescence quantum yield:

$$\Phi_{\rm F}(\mathbf{x}) = (A_{\rm S}/A_{\rm X})(F_{\rm X}/F_{\rm S})(n_{\rm X}/n_{\rm S})^2 \Phi_{\rm F}(\mathbf{s})$$

where *A* is the absorbance (in the range 0.01–0.1 A.U.), *F* is the area under the emission curve, *n* is the refractive index of the solvents (at 25 °C) used in measurements, and the subscripts s and x represent standard and unknown, respectively.

High-performance liquid chromatography separations

Several chromatographic systems were used for the analytical experiments and the purification steps: *System A*: RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5 μ m, 2.1 × 100 mm) with CH₃CN and 0.1% aq. trifluoroacetic acid (aq. TFA, 0.1%, v/v, pH 2.2) as eluents [100% TFA (5 min), followed by linear gradient from 0 to 80% (40 min) of CH₃CN] at a flow rate of 0.25 mL min⁻¹. UV-vis detection with the "Max Plot" (*i.e.*,

chromatogram at absorbance maximum for each compound) mode (220-750 nm). System B: semi-preparative RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5 μ m, 21.2 \times 250 mm) with CH₃CN and aq. TFA (0.1%, v/v, pH 2.2) as eluents [100% TFA (5 min), followed by linear gradient from 0 to 20% (12.5 min) and 20 to 60% (80 min) of CH₃CN] at a flow rate of 15 mL min⁻¹. Dual UV detection was achieved at 240 and 297 nm. System C: semi-preparative RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5 μ m, 10 × 100 mm) with CH₃CN and aq. TFA (0.1%, v/v, pH 2.2) as eluents [100% TFA (5 min), followed by linear gradient from 0 to 25% (17.5 min) and 25 to 75% (100 min) of CH_3CN at a flow rate of 4 mL min⁻¹. Dual UV detection was achieved at 240 and 330 nm. System D: system A with CH₃CN and aq. triethylammonium acetate buffer (TEAA, 25 mM, pH 7.0) as eluents. Visible detection at 268, 343 or 646 nm. System E: semi-preparative RP-HPLC (Thermo Hypersil GOLD C_{18} column, 5 µm, 10 × 100 mm) with CH₃CN and aq. triethylammonium bicarbonate buffer (TEAB, 50 mM, pH 7.5) as eluents [100% TEAB (5 min), followed by linear gradient from 0 to 20% (10 min) and 20 to 80% (120 min) of CH₃CN] at a flow rate of 4 mL min⁻¹. Dual visible detection was achieved at 520 and 610 nm. System F: system E with the following gradient [100% TEAB (5 min), followed by linear gradient from 0 to 20% (10 min) and 20 to 40% (80 min) of CH₃CN]. Dual visible detection was achieved at 647 and 700 nm. System G: system C with the following gradient [100% TFA (5 min), followed by linear gradient from 0 to 20% (12.5 min) and 20 to 40% (60 min) of CH₃CN]. Dual UV detection was achieved at 225 and 280 nm. System H: system E with the following gradient [100% TEAB (5 min) followed by linear gradient from 0 to 25% (10 min) and 25 to 70% (100 min) of CH₃CN]. Dual UV detection was achieved at 230 and 340 nm. System I: RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5 µm, 4.6 \times 100 mm) with CH₃CN and TEAA (100 mM, pH 7.0) as eluents [100% TEAA (10 min), followed by linear gradient from 0 to 100% (25 min) of CH_3CN at a flow rate of 1.0 mL min⁻¹. UV detection was achieved at 260 nm. System J: LC-MS under the following conditions: RP-HPLC (Thermo Hypersil GOLD C_{18} column, 5 µm, 2.1 × 150 mm) with CH₃CN and TEAB (25 mM, pH 7.5) as eluents [100% TEAB (5 min) followed by linear gradient from 0 to 80% (40 min) of CH₃CN] at a flow rate of 0.25 mL min⁻¹. Dual UV detection was achieved at 260 and 345 nm. ESI-MS detection in the negative mode (full scan, 150-1500 a.m.u., data type: centroid, sheat gas flow rate: 60 arb unit, aux/sweep gas flow rate: 20, spray voltage: 4.5 kV, capillary temp: 270 °C, capillary voltage: -10 V, tube lens offset: -50 V). System K: system A with the following gradient [100% TFA (5 min), followed by linear gradient from 0 to 100% (35 min) of CH₃CN] at a flow rate of 0.25 mL min⁻¹. UV-vis detection with the "Max Plot" (i.e., chromatogram at absorbance maximum for each compound) mode (220-750 nm). System L: RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5 µm, $4.6 \times 100 \text{ mm}$) with CH₃CN and aq. TFA (0.1%, v/v, pH 2.2) as eluents [100 TFA (5 min), followed by a linear gradient from 0 to 20% (10 min) and 20 to 60% (80 min) of CH₃CN]. Visible detection was achieved at 630 and 700 nm.

Synthesised compounds

3-Amino-5-(methoxycarbonyl)benzoic acid was synthesised from nitrobenzene derivative **2** by using a recent literature procedure.³⁵ An *N*-protected derivative of aminooxyacetic acid (Eei-Aoaa-OH) and its NHS active ester were synthesised according to published procedures.¹¹ See ESI† for the synthesis of bioconjugatable cyanine dyes **10–12** and **22**, peptide–aldehyde **16** and thiol-reactive Eu(m) bispyridinylpyrazine-based chelate **18**.

3-(2-(1-Ethoxyethylideneaminooxy)acetamido)-5-(methoxycarbonyl)benzoic acid (4). To a stirred solution of 3-amino-5-(methoxycarbonyl)benzoic acid (1.23 g, 6.31 mmol) in dry CH₃CN (50 mL) were added NHS ester of Eei-Aoaa-OH 3 (2.0 g, 7.75 mmol) and DIEA (3.3 mL, 18.9 mmol). The resulting reaction mixture was stirred at rt for 12 h before it was concentrated in vacuo and diluted with EtOAc (50 mL). The organic layers were washed with 10% aq. citric acid (3×20 mL), dried (over anhydrous Na₂SO₄) and concentrated in vacuo. Flashcolumn chromatography (silica gel, CH₂Cl₂-MeOH, 9:1, v/v) afforded benzoic acid 4 as a colourless solid (1.2 g, yield 56%). $R_{\rm f}$ 0.30 (CH₂Cl₂-MeOH, 9:1, v/v); $\nu_{\rm max}({\rm neat})/{\rm cm}^{-1}$ 3248, 2928, 1736, 1695, 1679, 1639, 1546, 1416, 1309, 1211, 1105, 885, 747, 702; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 10.48 (bs, 1 H), 8.50–8.45 (m, 3 H), 4.51 (s, 2 H), 4.00 (q, J 7.1, 2 H), 3.94 (s, 3 H), 2.06 (s, 3 H), 1.27 (t, J 7.1, 3 H); $\delta_{\rm C}$ (75 MHz; CDCl₃) 170.0, 169.4, 165.8, 165.3, 137.9, 131.6, 130.8, 127.0, 125.6, 125.4, 73.0, 63.0, 52.6, 14.2, 14.1; HRMS (ESI+): m/z 339.1190 $[M + H]^+$, calcd for C₁₅H₁₉N₂O₇⁺ 339.1192.

Azido derivative (6). To a stirred solution of benzoic acid 4 (1.1 g, 3.2 mmol) in dry CH₃CN (30 mL) were added azido amino-PEG linker 5 (0.57 g, 3.2 mmol), BOP reagent (1.44 g, 3.2 mmol) and DIEA (1.7 mL, 9.7 mmol). The resulting reaction mixture was stirred at rt for 3 h before it was concentrated in vacuo and diluted with EtOAc (50 mL). The organic layers were washed with 10% aq. citric acid (3×20 mL), sat. aq. NaHCO₃ (3 \times 20 mL), brine (20 mL), dried (over anhydrous Na₂SO₄) and concentrated *in vacuo*. Flash-column chromatography (silica gel, CH2Cl2-MeOH, 99:1, v/v) afforded azido derivative 6 as a colourless oil (1.37 g, yield 84%). Rf 0.1 (CH₂Cl₂-MeOH, 99:1, v/v); $\nu_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 3315, 2864, 2098, 1723, 1642, 1538, 1450, 1306, 1259, 1116, 1092, 1018, 968, 883, 825; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 8.44 (s, 1 H), 8.31 (s, 1 H), 8.11 (s, 1 H), 8.05 (s, 1 H), 7.07 (bs, 1H), 4.38 (s, 2H), 3.90 (q, J 7.1, 2H), 3.81 (s, 3H), 3.60-3.55 (m, 10 H), 3.26 (t, J 5.1, 2 H), 1.95 (s, 3 H), 1.17 (t, J 7.1, 3 H); δ_C (75 MHz; CDCl₃) 169.1, 166.2, 165.9, 164.9, 138.0, 135.7, 131.1, 123.4, 123.3, 122.9, 72.9, 70.4, 70.2, 69.9, 69.6, 62.8, 52.3, 50.5, 39.9, 14.2, 13.9; HRMS (ESI+) 495.2205 $[M + H]^+$, calcd for C₂₁H₃₁N₆O₈⁺ 495.2203.

Benzoic acid derivative (7). To a stirred solution of azido derivative 6 (110 mg, 0.22 mmol) in MeOH (5 mL) was added 1.0 M aq. LiOH (1 mL). The resulting reaction mixture was stirred at rt for 5 h before it was concentrated *in vacuo* and diluted with CH_2Cl_2 (10 mL) and 1.0 M aq. NaOH (10 mL). The aqueous layer was washed with CH_2Cl_2 (2 × 10 mL), acidified with 1.0 M aq. HCl (15 mL) and diluted with CH_2Cl_2 (10 mL).

The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (4 × 10 mL). The combined organic layers were dried (over anhydrous Na₂SO₄) and concentrated *in vacuo* to afford benzoic acid 7 as a colourless oil (100 mg, yield 93%) directly used without purification. $\nu_{max}(neat)/cm^{-1}$ 3330, 2936, 2108, 1644, 1546, 1451, 1308, 1098; $\delta_{\rm H}(300 \text{ MHz; CDCl}_3)$ 9.85 (bs, 1 H), 8.56 (s, 1 H), 8.42 (s, 1 H), 8.27 (s, 1 H), 8.18 (s, 1 H), 7.72 (s, 1 H), 4.42 (s, 2 H), 3.91 (q, *J* 6.9, 2 H), 3.70–3.55 (m, 10 H), 3.30–3.25 (m, 2 H), 1.97 (s, 3 H), 1.18 (t, *J* 6.9, 3 H); $\delta_{\rm C}(75 \text{ MHz; CDCl}_3)$ 169.4, 168.2, 166.5, 165.0, 137.9, 135.3, 131.1, 124.1, 124.0, 123.7, 72.9, 70.2, 69.9, 62.8, 50.5, 40.0, 14.2, 14.0; HRMS (ESI+): *m*/z 481.2045 [M + H]⁺, calcd for C₂₀H₂₉N₆O₈⁺ 481.2047.

Full-protected tripod (9). To a stirred solution of benzoic acid 7 (280 mg, 0.58 mmol) in dry CH₃CN (10 mL) were added S-trityl amino-PEG linker 8 (240 mg, 0.58 mmol), BOP reagent (260 mg, 0.59 mmol) and DIEA (0.3 mL, 1.7 mmol). The resulting reaction mixture was stirred at rt for 3 h before it was concentrated in vacuo and diluted with EtOAc (20 mL). The organic layers were washed with 10% aq. citric acid (3 × 10 mL), sat. aq. NaHCO₃ (3 \times 10 mL), brine (20 mL), dried (over anhydrous Na₂SO₄) and concentrated in vacuo. Flashcolumn chromatography (silica gel, CH₂Cl₂-MeOH, 98:2, v/v) afforded the full-protected tripod 9 as a colourless oil (460 mg, yield 91%). $R_{\rm f}$ 0.15 (CH₂Cl₂-MeOH, 98:2, v/v); $\nu_{\rm max}$ (neat)/cm⁻¹ 3306, 2867, 2099, 1645, 1596, 1540, 1444, 1306, 1098, 744, 700; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3) 8.55 \text{ (s, 1 H), } 8.22-8.18 \text{ (m, 2 H), } 7.97 \text{ (s, } 100 \text{ MHz}; \text{CDCl}_3) 8.55 \text{ (s, } 100 \text{ MHz}; \text{CDC}_3) 8.55 \text{ (s, } 100 \text{ MHz}; \text{(s, } 100 \text{ MHz}; \text{(s, } 100 \text{ MHz$ 1 H), 7.45-7.40 (m, 6 H), 7.30-7.20 (m, 11 H), 4.51 (s, 2 H), 4.03 (q, J 7.0, 2 H), 3.70-3.60 (m, 16 H), 3.50-3.45 (m, 2 H), 3.40-3.30 (m, 4 H), 2.43 (t, J 6.4, 2 H), 2.09 (s, 3 H), 1.30 (t, J 6.9, 3 H); $\delta_{\rm C}$ (75 MHz; CDCl₃) 169.1, 166.3, 164.9, 144.7, 138.0, 135.6, 129.5, 127.8, 126.6, 121.1, 73.0, 70.5, 70.3, 70.2, 70.1, 70.0, 69.7, 69.6, 66.6, 62.9, 50.6, 40.0, 31.6, 14.3, 14.1; HRMS (ESI+): m/z 870.3885 [M + H]⁺, calcd for C₄₅H₅₆N₇O₉S⁺ 870.3860.

Benzenic "tripod" (1). The full-protected tripod 9 (130 mg, 0.15 mmol) was dissolved in 5 mL of TFA-TES-H₂O (95:2.5:2.5, v/v/v) and the resulting reaction mixture was stirred at rt for 3 h. Thereafter, the product was isolated after removal of volatiles under reduced pressure, precipitation from Et₂O and semi-preparative RP-HPLC purification (system B) to yield the TFA salt of tripod 1 as a white amorphous powder (30 mg, yield 23%). IR (neat) ν_{max} (neat powder)/cm⁻¹ 3316, 2872, 2109, 1645, 1596, 1547, 1447, 1344, 1295, 1201, 1132, 896, 836, 799, 721; $\delta_{\rm H}(300$ MHz; $\rm D_2O)$ 7.95 (s, 2 H), 7.86 (s, 1 H), 4.74 (s, 2 H), 3.67-3.50 (m, 20 H), 3.33 (t, J 5.1, 2 H), 2.55 (t, J 6.2, 2 H); $\delta_{\rm C}$ (75 MHz; CDCl₃) 168.8, 167.7, 162.8 (q, ${}^{2}J_{CF}$ 35.5, TFA), 137.1, 135.0, 134.9, 122.7, 122.4, 116.3 (q, ${}^{1}J_{CF}$ 291.8, TFA), 72.1, 72.0, 69.5, 69.4, 69.2, 69.1, 68.7, 68.6, 50.0, 39.6, 23.0; HPLC (system A): $t_{\rm R}$ = 23.8 min (purity 91%); LRMS (ESI+): m/z 558.20 [M + H]⁺, 1115.07 [2M + H]⁺; HRMS (ESI+): m/z 558.2350, calcd for C₂₂H₃₆N₇O₈S⁺ 558.2346.

Preparation of three-colour FRET cascade (15)

(a) Oxime ligation with Cy 5.0 aldehyde: Benzenic "tripod" 1 (2.5 mg, 4.48 μ mol) was dissolved in 0.1 M aq. NaOAc buffer

(pH 4.2, 1.0 mL). Cy 5.0 aldehyde **10** (2.8 mg, 3.38 µmol) was added and the resulting mixture was stirred at rt for 4 h. The reaction was checked for completion by RP-HPLC (system A) and then quenched by addition of aq. TFA 0.1% (2 mL). Then, the mixture was purified by semi-preparative RP-HPLC (system C, 2 injections). The product-containing fractions were lyophilised to give the red-fluorescent tripod **13** as a blue amorphous powder (1.5 mg, yield 32%). HPLC (system D): $t_{\rm R} = 28.2$ min (purity > 95%); LRMS (ESI–): m/z 1368.40 [M – H]⁻, calcd for C₆₅H₈₃N₁₁O₁₆S₃ 1369.52; $\lambda_{\rm max}$ (PBS) nm 658 (ε /dm³ mol⁻¹ cm⁻¹ 250 000); $\lambda_{\rm max}$ em (PBS) nm 668 ($\Phi_{\rm F}$ 0.40 in PBS + 5% BSA).

(b) $S_N 2$ reaction with an iodoacetyl derivative of Cy 3.0: Cy 5.0-labelled tripod 13 (1.5 mg, 1.1 µmol) was dissolved in a mixture of CH₃CN and 0.1 M aq. NaHCO₃ buffer (1:3, v/v, 1.0 mL, pH 8.5). Thiol-reactive Cy 3.0 derivative 11 (2.1 mg, 2.2 µmol) was added and the resulting reaction mixture was stirred at rt for 3 h. The reaction was checked for completion by RP-HPLC (system D) and the mixture was dissolved in aq. TEAB (5 mL, 50 mM, pH 7.5) and purified by semi-preparative RP-HPLC (system E). The product-containing fractions were lyophilised to give the doubly fluorescently-labelled azido tripod 14 as a dark blue amorphous powder (0.86 mg, yield 36%). HPLC (system D): $t_{\rm R}$ = 27.3 min (purity >95%); LRMS (ESI–): m/z 1099.93 [M – 2H]^{2–}, calcd for $C_{107}H_{132}N_{16}O_{25}S_5$ 2200.81; λ_{max} (PBS) nm 549 (ϵ /dm³ mol⁻¹ cm⁻¹ 150 000) and 653 (ε /dm³ mol⁻¹ cm⁻¹ 250 000), λ_{max} em (PBS) nm 565 and 670. Please note: semi-preparative purification was performed under non-acidic conditions (i.e., TEAB) to avoid severe degradation of the Cy 3.0 unit.

(c) CuAAC reaction with Cy 7.0-alkyne. Doubly fluorescently-labelled azido tripod 14 (0.86 mg, 0.39 µmol) and Cy 7.0-alkyne 12 (0.26 mg, 0.33 µmol) were dissolved in ultrapure water (0.4 mL). 10 µL of a 10 mM aq. CuSO₄ solution and 10 µL of a 10 mM aq. sodium ascorbate solution were added. The resulting reaction mixture was stirred at room temperature for 2 h. The reaction was checked for completion by RP-HPLC (system D) and then quenched by addition of aq. TEAB (2 mL, 50 mM, pH 7.5). The mixture was purified by semi-preparative RP-HPLC (system F, 2 injections). The product-containing fractions were lyophilised to give the three-colour FRET cascade 15 as a dark blue amorphous powder (0.45 mg, yield 47%). HPLC (system D): $t_{\rm R}$ = 26.1 min (purity > 95%); LRMS (ESI-): m/z1001.73 $[M - 3H]^{3-}$, 1502.80 $[M - 2H]^{2-}$, calcd for $C_{149}H_{183}N_{19}O_{34}S_7$ 3006.12; λ_{max} (PBS) nm 550 (ε /dm³ mol⁻¹ cm^{-1} 150 000), 650 (ϵ/dm^3 mol⁻¹ cm^{-1} 250 000) and 761 $(\varepsilon/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} 200\ 000); \lambda_{\text{max}} \text{ em}$ (PBS) nm 560, 670 and 776. See Table S1⁺ for $\Phi_{\rm F}$ and E.T.E. Please note: semi-preparative purification was performed under non-acidic conditions (i.e., TEAB) to avoid severe degradation of the Cy 7.0 unit.

Preparation of luminescent POC (21)

(a) Oxime ligation with peptide–aldehyde: Benzenic "tripod" **1** (2.5 mg, 4.48 μ mol) was dissolved in 0.1 M aq. NaOAc buffer (pH 4.2, 1.0 mL). Peptide–aldehyde **16** (2.8 mg, 1.74 μ mol) was added and the resulting mixture was stirred at rt for 4 h. The

reaction was checked for completion by RP-HPLC (system A) and then quenched by addition of aq. TFA 0.1% (2 mL). The mixture was purified by semi-preparative RP-HPLC (system G, 2 injections). The product-containing fractions were lyophilised to give the peptide–tripod conjugate **19** as a white amorphous powder (1.7 mg, yield 45%). HPLC (system D): $t_{\rm R} = 27.2 \text{ min (purity > 95\%); LRMS (ESI+): } m/z 715.53 [M + 3H]^{3+}, 1072.60 [M + 2H]^{2+}, calcd for C_{95}H_{150}N_{30}O_{25}S 2143.11.$

(b) $S_N 2$ reaction with an iodoacetyl derivative of Eu(m) chelate: Peptide-tripod conjugate 19 (4.0 mg, 1.87 µmol) was dissolved in a mixture of CH₃CN and 0.1 M aq. NaHCO₃ buffer (1:3, v/v, 1.0 mL, pH 8.5). Thiol-reactive Eu(III) chelate 18 was added and the reaction mixture was stirred at rt for 3 h. The reaction was checked for completion by RP-HPLC (system D) and the mixture was dissolved in 50 mM aq. TEAB (2 mL) and purified by semi-preparative RP-HPLC (system H). The product containing fractions were lyophilised to give the luminescent peptide-tripod conjugate 20 as a white amorphous powder (0.23 mg, yield 30%). HPLC (system D): $t_{\rm R}$ = 26.6 min (purity > 95%); MS (ESI-): m/z 1522.48 [M - 2H]²⁻, calcd for $C_{132}H_{1842}EuN_{38}O_{35}S$ 3046.27; λ_{max} (H₂O) nm 262 and 347; λ_{max} em (H₂O) nm 615 (only the most intense emission band corresponding to the $5D_0 \rightarrow 7F_2$ transition is reported, $\Phi_F 0.080$ in H₂O). Please note: semi-preparative purification was performed under non-acidic conditions (i.e., TEAB) to avoid premature decomplexation of lanthanide cations.

(c) CuAAC reaction with ODN-alkyne: Luminescent peptide-tripod conjugate 20 (30 µg, 10 nmol) and ODN-alkyne 17 (82 µg, 17 nmol) were dissolved in H₂O-DMSO (1:1, v/v, 160 μ L). 16 μ L of a 10 mM aq. CuSO₄ solution, 16 μ L of a 10 mM TBTA solution in DMSO, 8 µL of a 50 mM aq. DIEA solution, and 16 µL of 10 mM aq. sodium ascorbate solution were sequentially added. The resulting reaction mixture was stirred at rt for 5 h. The reaction was checked for completion by RP-HPLC (system I). Thereafter, further amounts of ODNalkyne 17 (82 μ g, 17 nmol), CuSO₄ solution (16 μ L) and sodium ascorbate solution (16 µL) were added. The reaction mixture was stirred at rt overnight. Further amounts of ODNalkyne 17 (82 µg, 17 nmol), CuSO₄ solution (16 µL) and sodium ascorbate solution (16 µL) were added again and the reaction mixture was stirred at rt for a further 2 h. The resulting residue was taken up in 0.1 M aq. TEAA buffer pH \sim 7 (3 mL) and purified by RP-HPLC (system I, 1 injection). The product-containing fractions were dried using a concentrator (GeneVac miVac) to give luminescent peptide-ODN conjugate 21 as a white amorphous powder (52 µg, yield 66%). LC-MS (system J): $t_R = 22.7$ min; MS (ESI–): m/z 1978.03, 1978.80 and 1979.70 $[M - 4H]^{4-}$, found 7919.20, calcd 7918.47; λ_{max} (TEAA) nm 262 and 343; λ_{max} em (TEAA) nm 615 (only the most intense emission band corresponding to the $5D_0 \rightarrow 7F_2$ transition is reported, $\Phi_{\rm F}$ 0.095 in TEAA). Please note: semi-preparative purification was performed under non-acidic conditions (i.e., TEAB) to avoid premature decomplexation of lanthanide cations.

Sequential one-pot approach – Preparation of FRET cassette (Cy 5.0-Cy 7.0) labelled peptide (23). Oxime ligation with

Organic & Biomolecular Chemistry

peptide aldehyde: Benzenic "tripod" 1 (0.7 mg, 1.2 µmol) was dissolved in 0.1 M aq. NaOAc buffer (pH 4.2, 0.4 mL). Peptide aldehyde 16 (2.0 mg, 1.2 µmol) was added and the resulting reaction mixture was stirred at rt for 2 h. The reaction was checked for completion by RP-HPLC (system K). Then, Michael addition with Cy 5.0-maleimide: To the previous mixture, a solution of Cy 5.0-maleimide 22 (1.2 mg, 1.3 µmol) in ultrapure water (0.3 mL) was added and the resulting reaction mixture was stirred at rt for 2 h. The reaction was checked for completion by RP-HPLC (system K) and ESI-MS; LRMS (ESI+): m/z 1014.84 $[M + 3H]^{3+}$, 1521.28 $[M + 2H]^{2+}$, calcd for $C_{141}H_{201}N_{35}O_{35}S_3$ 3040.42. Finally, CuAAC reaction with Cy 7.0-alkyne. To 100 µL of the previous mixture, a solution of Cy 7.0-alkyne 12 (0.5 mg, 0.6 µmol) in ultrapure water (40 µL), tBuOH (100 µL) and Cu(0) microsized powder (5 equiv.) were added. The resulting reaction mixture was stirred at rt for 12 h. The reaction was checked for completion by RP-HPLC (system K) and then quenched by addition of aq. TFA 0.1% (2 mL). The mixture was purified by RP-HPLC (system L, 2 injections). The product-containing fractions were lyophilised to give the FRET cascade (Cy 5.0-Cy 7.0) labelled peptide 23 as a dark green amorphous powder (0.19 mg, yield 28%). HPLC (system K): $t_{\rm R}$ = 24.0 min (purity >95%); LRMS (ESI-): m/z 1281.24 [M - 3H]³ [–], 1921.25 [M – 2H]^{2–}, calcd for C₁₈₃H₂₅₂N₃₈O₄₄S₅: 3845.73; $\lambda_{\rm max}~({\rm H_2O})~{\rm nm}~{\rm 649}~(\epsilon/{\rm dm^3}~{\rm mol^{-1}}~{\rm cm^{-1}}~{\rm 250}~{\rm 000})$ and 758 ($\epsilon/$ $dm^3 mol^{-1} cm^{-1} 200\ 000$; $\lambda_{max} em$ (PBS) nm 669 and 773.

Acknowledgements

Financial support from FEDER (TRIPODE, no 33883) for a postdoctoral fellowship to G.V., the CRUNCh program (CPER 2007–2013), l'Agence Nationale de la Recherche (Programme PIRIBio 2009, ANR "CLICKMASSLINK") for a postdoctoral fellowship to S.D. and CNRS for the Ph.D. grant of N.M. are greatly acknowledged. We thank Dr Didier Gasparutto (LAN/ SCIB/INAC, CEA-Grenoble) for the gift of ODN–alkyne 17 and Dr Guillaume Clavé for helpful discussions about bioconjugation reactions in the context of "tripods".

Notes and references

- 1 D. M. Beal and L. H. Jones, *Angew. Chem., Int. Ed.*, 2012, 51, 6320.
- 2 For the most relevant examples, see: (a) M. Galibert,
 P. Dumy and D. Boturyn, Angew. Chem., Int. Ed., 2009, 48, 2576; (b) P. Kele, G. Mezo, D. Achatz and O. S. Wolfbeis, Angew. Chem., Int. Ed., 2009, 48, 344; (c) R. Mhidia,
 A. Vallin, N. Ollivier, A. Blanpain, G. Shi, R. Christiano,
 L. Johannes and O. Melnyk, Bioconjugate Chem., 2010, 21, 219.
- 3 M. Galibert, O. Renaudet, P. Dumy and D. Boturyn, *Angew. Chem., Int. Ed.*, 2011, **123**, 1941.
- 4 G. T. Hermanson, in *Bioconjugate Techniques*, Academic Press, London, Editon edn., 2008, p. 337.

- 5 A. P. Frei, O.-Y. Jeon, S. Kilcher, H. Moest, L. M. Henning,
 C. Jost, A. Pluckthun, J. Mercer, R. Aebersold,
 E. M. Carreira and B. Wollscheid, *Nat. Biotechnol.*, 2012, 30, 997.
- 6 G. Clavé, H. Volland, M. Flaender, D. Gasparutto, A. Romieu and P.-Y. Renard, *Org. Biomol. Chem.*, 2010, 8, 4329.
- 7 D. M. Beal, V. E. Albrow, G. Burslem, L. Hitchen,
 C. Fernandes, C. Lapthorn, L. R. Roberts, M. D. Selby and
 L. H. Jones, *Org. Biomol. Chem.*, 2012, 10, 548.
- 8 J. Morales-Sanfrutos, F. J. Lopez-Jaramillo, F. Hernandez-Mateo and F. Santoyo-Gonzalez, *J. Org. Chem.*, 2010, 75, 4039.
- 9 For comprehensive reviews about bioorthogonal chemistry, see: (a) M. D. Best, *Biochemistry*, 2009, 48, 6571;
 (b) E. M. Sletten and C. R. Bertozzi, *Angew. Chem., Int. Ed.*, 2009, 48, 6974; (c) J. C. Jewett and C. R. Bertozzi, *Chem. Soc. Rev.*, 2010, 39, 1272; (d) R. K. V. Lim and Q. Lin, *Chem. Commun.*, 2010, 46, 1589.
- 10 (a) A. Angelini, P. Diderich, J. Morales-Sanfrutos, S. Thurnheer, D. Hacker, L. Menin and C. Heinis, *Bioconjugate Chem.*, 2012, 23, 1856; (b) M. B. Baker, I. Ghiviriga and R. K. Castellano, *Chem. Sci.*, 2012, 3, 1095; (c) L. E. J. Smeenk, N. Dailly, H. Hiemstra, J. H. van Maarseveen and P. Timmerman, *Org. Lett.*, 2012, 14, 1194; (d) A. Welle, F. Billard and J. Marchand-Brynaert, *Synthesis*, 2012, 44, 2249.
- 11 S. Foillard, M. Ohsten Rasmussen, J. Razkin, D. Boturyn and P. Dumy, *J. Org. Chem.*, 2008, 73, 983.
- 12 A. L. Handlon and N. J. Oppenheimer, *Pharm. Res.*, 1988, 5, 297.
- 13 R. Roy, S. Hohng and T. Ha, Nat. Methods, 2008, 5, 507.
- 14 S. Milles, C. Koehler, Y. Gambin, A. A. Deniz and E. A. Lemke, *Mol. BioSyst.*, 2012, **8**, 2531.
- 15 For recent examples, see: (a) I. H. Stein, C. Steinhauer and P. Tinnefeld, J. Am. Chem. Soc., 2011, 133, 4193;
 (b) A. Altevogt, R. Flehr, S. Gehne, M. U. Kumke and W. Bannwarth, Helv. Chim. Acta, 2012, 95, 543.
- 16 R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis and A. S. Waggoner, *Bioconjugate Chem.*, 1993, 4, 105.
- (a) C. M. S. Yau, S. I. Pascu, S. A. Odom, J. E. Warren,
 E. J. F. Klotz, M. J. Frampton, C. C. Williams,
 V. Coropceanu, M. K. Kuimova, D. Phillips, S. Barlow,
 J.-L. Bredas, S. R. Marder, V. Millar and H. L. Anderson, *Chem. Commun.*, 2008, 2897; (b) N. Karton-Lifshin,
 L. Albertazzi, M. Bendikov, P. S. Baran and D. Shabat, *J. Am. Chem. Soc.*, 2012, 134, 20412.
- 18 The aggregation propensity of non-symmetrical Cy 7.0 in water was highlighted by us but never published.
- 19 S. Kumar, C.-Y. Chen and C. W. Fuller, Synthesis and spectroscopic analysis of energy transfer dye-labeled nucleotides and oligonucleotides for multiplex applications, S.G. Pandalai, 2004.
- 20 (a) E. A. Jares-Erijman and T. M. Jovin, *Curr. Opin. Chem. Biol.*, 2006, **10**, 409; (b) T. Ueno and T. Nagano, *Nat. Methods*, 2011, **8**, 642.

- 21 For recent reviews, see: (a) K. Lu, Q.-P. Duan, L. Ma and D.-X. Zhao, *Bioconjugate Chem.*, 2010, 21, 187;
 (b) R. L. Juliano, X. Ming and O. Nakagawa, *Acc. Chem. Res.*, 2012, 45, 1067.
- 22 P. Järver, T. Coursindel, S. EL Andaloussi, C. Godfrey, M. J. A. Wood and M. J. Gait, *Mol. Ther. Nucleic Acids*, 2012, 1, e27.
- 23 O. P. Edupuganti, Y. Singh, E. Defrancq and P. Dumy, *Chem.-Eur. J.*, 2004, **10**, 5988.
- 24 N. Maindron, S. Poupart, M. Hamon, J.-B. Langlois, N. Plé, L. Jean, A. Romieu and P.-Y. Renard, *Org. Biomol. Chem.*, 2011, 9, 2357.
- 25 For a comprehensive review about the synthesis of POCs through site-specific bioconjugation, see: Y. Singh, P. Murat and E. Defrancq, *Chem. Soc. Rev.*, 2010, 39, 2054.
- 26 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, *Org. Lett.*, 2004, **6**, 2853.
- 27 For a recent minireview about bioconjugation using thiols, see: M. H. Stenzel, *ACS Macro Lett.*, 2013, 2, 14.
- 28 The main drawbacks associated with the use of malemidethiol adducts in bioconjugation are poor hydrolytic stability and propensity for retro and exchange reactions in reducing biological environments, see (a) J. Kalia and R. T. Raines, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 6286;

- (*b*) A. D. Baldwin and K. L. Kiick, *Bioconjugate Chem.*, 2011, 22, 1946.
- 29 W. R. Algar, D. E. Prasuhn, M. H. Stewart, T. L. Jennings, J. B. Blanco-Canosa, P. E. Dawson and I. L. Medintz, *Bioconjugate Chem.*, 2011, 22, 825.
- 30 (a) M. L. Blackman, M. Royzen and J. M. Fox, *J. Am. Chem.* Soc., 2008, 130, 13518; (b) N. K. Devaraj and R. Weissleder, Acc. Chem. Res., 2011, 44, 816; (c) J. D. Thomas, H. Cui, P. J. North, T. Hofer, C. Rader and T. R. Burke, *Bioconjugate* Chem., 2012, 23, 2007.
- 31 (a) H. Stockmann, A. A. Neves, S. Stairs, K. M. Brindle and F. J. Leeper, *Org. Biomol. Chem.*, 2011, 9, 7303; (b) C. Sabot, E. Oueis, X. Brune and P.-Y. Renard, *Chem. Commun.*, 2012, 48, 768.
- 32 G. B. Fields and R. L. Noble, *Int. J. Pept. Protein Res.*, 1990, 35, 161.
- 33 T. Priem, C. Bouteiller, D. Camporese, A. Romieu and P.-Y. Renard, *Org. Biomol. Chem.*, 2012, **10**, 1068.
- 34 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176.
- 35 N. Fujimoto, M. Matsumura, I. Azumaya, S. Nishiyama,H. Masu, H. Kagechika and A. Tanatani, *Chem. Commun.*, 2012, 48, 4809.