TRITERPENOID SAPONINS FROM FRUIT OF LAGENARIA BREVIFLORA

ANTHONY A. ELUJOBA,* ANTHONY F. FELL, PETER A. LINLEY and DEREK J. MAITLAND[†]

School of Pharmacy and †Department of Chemistry and Chemical Technology, University of Bradford, Bradford BD7 1DP, UK

(Received 1 December 1989)

Key Word Index-Lagenaria breviflora; Cucurbitaceae, fruit, triterpenoid saponins

Abstract—From the methanol extract of the fruit pulp of *Lagenaria breviflora*, three new saponins were characterized as 3-O- β -galactopyranosyl 28-O- β -xylopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosylolean-12-en-28-oic acid ester, 3-O- β -galactopyranosyl 28-O- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosylolean-12-en-28-oic acid ester and 3-O- β -galactopyranosyl 28-O- α -arabinopyranosyl(1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosyl(1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosyl(1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosyl(1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl(1-6)- β -ylopyranosyl(1-6)- β -ylopyra

INTRODUCTION

Lagenaria breviflora Robert (Adenopus breviflorus Benth) Cucurbitaceae, is an annual climbing plant used in Nigerian traditional medicine and whose antifertility [1, 2] and anticonvulsant [3] activities have been reported There have been no detailed phytochemical reports on the species. A phytochemical study has been undertaken and this paper describes the isolation and structural elucidation of three new triterpenoid saponins, a class of natural products to which a wide range of biological activities has been attributed [4].

RESULTS AND DISCUSSION

Direct acid hydrolysis of the powdered pulp of *L. breviflora* fruit yielded two major aglycones 1 and 2, identified as oleanolic acid and 3-O-acetyloleanolic acid, respectively, by comparison with literature data [5, 6] and authentic samples (co-TLC, co-IR, EIMS, ¹H and ¹³C NMR). The presence of an acetyl group in compound

*Present address: Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife Nigeria

2 was deduced from the EI mass spectrum which indicated a molecular weight of 498 and showed a fragment at m/z 455 $[M-Ac]^+$. The ¹³C NMR spectrum confirmed the presence of an acetyl group with signals at $\delta 170.63$ (MeCO) and 21.15 (MeCO) ppm. In addition, the C-3 signal in compound 2 was shifted (Table 1) to $\delta 80.73$, as opposed to 78.09 for compound 1 Deacetylation of compound 2 by mild alkaline hydrolysis gave 1 confirming its structural relationship to oleanolic acid.

The methanol extract of the fruit pulp showed seven zones on TLC, which on repeated chromatography (prep. TLC) and purification, afforded three compounds 4-6, which foamed vigorously when shaken with distilled water [4]. On acid hydrolysis, compounds 4-6 yielded the same aglycone identified as oleanolic acid and also similar monosaccharides identified as galactose, arabinose, xylose and rhamnose by PC, GC and $^{13}CNMR$ (Table 2) by comparison with the literature data [7, 8]. However, the number of monosaccharides differed in each of the saponins. The ¹³C NMR spectra of compounds 4-6 when compared to that of compound 1 (Table 1) indicated glycosidation shifts [9] at C-2, C-3, C-17 and C-28, suggesting that 4-6 are bisdesmosides of oleanolic acid having sugar linkages at both the C-3 hydroxyl and C-28 carboxyl groups. Signals at δ 88.80 and 171.31 were strongly suggestive of glycosidation at the latter two positions, respectively [8] Alkaline hydrolysis of 4-6 yielded the same monodesmosides (prosapogenin) 7 (co-TLC, co-IR and FABMS). The presence of a carboxylic acid group was confirmed by a ¹³C NMR signal at δ 180.18 (Table 1) The FAB mass spectra of compound 7 showed fragment ions at 641 $[M + Na]^+$ and 477 $[M + Na - Gal]^+$ confirming that only one hexose (identified as galactose by PC of the acid hydrolysate and ³C NMR of 7) was attached to the C-3 of oleanolic acid.

Compounds 4 and 5 (pentaglycosides) showed five anomeric signals in their ¹³C NMR spectra whilst compound 6 (hexaglycoside) showed six. The anomeric signal $ca \,\delta 93.4$ showed that the arabinosyl residue was attached directly to C-28 [10] in all these three saponins. The C-28 terminal xylose in 4 and terminal arabinose in 6 gave

С	1	2	4	6	7	8	9	10
1	38 96	38 15	38 74	38 75	38 80	38 52	38 58	37 03
2	28 14	30 02	26 59	26 61	25 26	29.75	29.63	26 04ª
3	78 09	80 73	88 87	88 86	88 80	89 78	89.83	98 59
4	39 42	37 88	39 53	39 53	39 51	39 20	39 10	39 1 5
5	55 84	55 51	55 84	55 82	55 79	55 65	55 65	55 71
6	18 82	18 48	18 59	18 57	18 30	17 48	17 45	18 53
7	33 23ª	33 20ª	32 73ª	32 79ª	32 20ª	32 40	32 41	30 87 ^b
8	39 79	39 69	39 88	39 88	39 75	39.85	39 85	39 93
9	48 1 5	47 88	47 98	47 99	47 99	47 96	48 01	48 04
10	37 41	37 16	36 98	36 98	37 38	37 01	36 97	37 03
11	23 79 ^b	23 68 ^b	23 81 ^b	23.22	23 77 ^ь	23 97ª	23 79ª	23 84°
12	122 61	122 39	122.76	122 76	122 57	122 75	122 75	122 99
13	144 86	144 86	144.21	144 21	144.84	144 83	143 97	144 95
14	42 20	42 14	42.12	42 12	42.17	42 23	42 25	42 27
15	28 35°	28 30°	29 90	28 31 ^b	28.31°	26 29	26 27	27 97ª
16	23 85 ^b	23 89 ^b	23 19	23 22	22 95	23 77°	23 71°	21 10
17	46 71ª	46 66 ^d	47 38	47 39	46 66	46 25	47 20	47 28
18	42 04	41 96	41 73	41 71	42 01	41 85	41 87	41 93
19	46 51ª	46 44 ^d	46 25	46 25	46 46	47 25	46 38	46 20
20	31 00	30 99	30 94	30 96	30 97	30 83	30 83	30 00
21	34 23	34.23	34 17	34 17	34 21	34 00	34 04	32.40
22	33 23ª	33 01ª	32 73ª	32 79ª	33.20	32 14	32 13	30.87 ^b
23	28 80°	28.14°	28 28	28 28 ^b	28 80°	27 89	27 90	27.97 ^d
24	16.59	16 99	17 08	17 08	16 58	15 45	15 44	20.48
25	15.58	15 39	15 60	15 58	15 47	14 83	14 30	15 47
26	17 46	17 35	17 54	17 54	17 40	1681	16 74	20 67
27	26 19	26 19	26 08	26 10	26 18	26 02	25 93	26 04ª
28	180 23	180 20	176 31	176 31	180 18	175 93	175 86	175 88
29	33 30ª	33 28ª	33 20	33 22	33 28ª	33 14	33 11	32 95
30	23 85 ^b	23 76 ^b	23 73 ^ь	23 74	23 74 ^b	23 66	22 95	23 84°
MeCO		170 63						
MeCO		21 15						

Table 1 ${}^{13}CNMR$ chemical shifts of aglycone moleties of compounds 1, 2, 4, 6–10 (in pyridine- d_5)

^{a-d}Assignments in any vertical column may be reversed

identical ¹³C NMR signals (Table 2) but as both were pentoses, could not be differentiated by mass spectrometry. However, ¹³C INEPT experiments (no decoupling) confirmed their anomeric configurations as β - and α -, consistent with xylose and arabinose, respectively [11] The inter-sugar connectivities were established by observation of the glycosidation shifts [9] as well as the acetylation shifts [12] between 4, 5, 6 and their respective acetylated derivatives 8, 9, 10 The M_s and sequencing of the sugars in the saponins were established by fast atom bombardment spectrometry (FABMS) in the positive [13] and negative [14] ion modes It was evident that the C-28 ester bond was relatively more vulnerable to fragmentation than the C-3 glycosidic bond since in each case, ions corresponding to the totality of the sugar units at C-28 were prominent.

Compound 4 gave fragment ions at m/z 1183 [M + Na]⁺, 1051 [M + Na - Xyl]⁺, 903 [M + Na - Xyl - Rha]⁺, 773 [M + Na - Xyl - Rha - Xyl]⁺, 641 [M + Na - Xyl - Rha - Xyl - Ara]⁺ and 565 [Xyl + Rha + Xyl + Ara + Na]⁺ Hence, the terminal xylose was linked to rhamnose; arabinose was directly linked to C-28. The sugar sequencing determined by mass spectrometry was supported by partial acid hydrolysis with xylose and

С	4	6	7	8	9	10
3-0-Gal 1	106 93	106 95	106.95	101.33	101.49	104.89
2	75 83	75 85	75 83	73 46	73.47	73 67
3	78 79	78.83	78.79	72.04	72.00	78.35
4	71.83	71 83	71.83	74 09	73 71	72 20
5	71 26	78.09	78 06	71 26	70.67	78 04
6	63 05	63 05	63.03	61.75	61 71	62 64
28-O-Ara 1	93 41	93.29		93 03	93 17	92 82
2	75 42	75 45		74.71	72.97	73 56
3	78.52	78.33		71 48	71 81	75.18
4	68 76	70 88		69.00	69.41	72 08
5	67 15	67 07		67.27	67.35	66.81
28-O-Xyl 1	105 90	105.36		98 67	98.77	101 05
2	75 02ª	75 45		72.91	72.46	73.56
3	79 11	88.14		73 46	73 47	79.76
4	65 80	68.67		64.87	62.96	68 56
5	64.51 ^b	67 07°		64 51ª	62.56	66.96
28-O-Rha 1	100 71	100 74		103 20	103.13	103 15
2	71.66	71 54		71 39	70 67	72.54
3	75.75	75.26		73.13	72.97	75 18
4	82 30	82.40		77.00	79 61	78 39
5	69.24	69 74		68 39	69 74	69.52
6	18 70	18.57		17 50	18.57	18 53
28-O-Xyl 1	105 25	Gal 105 81		Xyl 98.69	Gal 101 82	101.34
2	75.02ª	75.85		71 91	73.71	73.67
3	73.38	78 39		76.26	76 99	79 76
4	68.76	71.83		69 00	71.81	72.20
5	62 64 ^b	75.26		62 18 ^d	69.58	78.29
6		66.37°		_	68.56	68.52
28-0-Ara 1		104.65				100.33
2		75 50				76.40
3		74 34				72.97
4		68 95				69.27
5		62 45				62.45

Table 2 ${}^{13}CNMR$ chemical shifts of sugar moleties of compounds 4, 6-10 in pyridine- d_5

^{a-d}Assignments in any vertical column may be reversed.

galactose appearing (PC) during the first hour of hydrolysis. Close examination of the acetylation and glycosidation shifts [9, 12] confirmed 4-linked rhamnose, 3-linked xylose and 3-linked arabinose. The FAB mass spectrum of the peracetylated derivative of 4 (compound 8) gave a molecular ion at m/z 1729 [M + Na]⁺, corresponding to a total of 13 acetate units, giving compound 8 as 3-O-(2,3,4,6-tetra-O-acetyl)galactosyl 28-O-(2,3,4-tri-O-acetyl) xylosyl-(2,3-di-O-acetyl)rhamnosyl-(2,4-di-O-acetyl)

xylosyl-(2,4-di-O-acetyl) arabinosylolean-12-en-28-oic acid ester

The configurations of the inter-sugar linkages (α or β) were elucidated by using ¹³C NMR INEPT experiments to determine the ¹J_{C-H} coupling constants of the anomeric carbon atoms, because it has been reported [11] that the magnitude of such couplings reflects the nature of linkages; 158–162 Hz and 169–171 Hz for β - and α linkages, respectively. Thus, compound 4 showed reasonances at δ 106.87 (C-1, 159.1 Hz), 105.20 (C-1, 162.3 Hz), 100.65 (C-1, 169.7 Hz), 105.82 (C-1, 161.2 Hz) and 93.33 (C-1, 170.9 Hz), consistent with β -galactopyranosyl, β xylopyranosyl, α -rhamnopyranosyl, β -xylopyranosyl and α -arabinopyranosyl configurations, respectively. Hence, compound 4 was characterized as 3-O- β -galactopyranosyl 28-O- β -xylopyranosyl (1-4)- α -rhamnopyranosyl(1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosylolean-12-en-28-oic acid ester.

Compound 5 gave fragment ions in the FAB mass spectrum, m/z 1213 [M + Na]⁺, 1051 [M + Na - Gal]⁺, 903 [M + Na - Gal - Rha]⁺, 773 [M + Na - Gal - Rha $-Xyl]^+$, 641 $[M+Na-Gal-Rha-Xyl-Ara]^+$ and 595 $[Gal + Rha + Xyl + Ara + Na]^+$. The fragment at m/z1051 suggested galactose as the terminal sugar which was supported by partial acid hydrolysis. It was noted that the remaining fragments were identical to compound 4. The FAB mass spectrum of the acetylated derivative of 5 (compound 9) gave a molecular ion at m/z 1801 [M + Na]⁺ corresponding to a total of 14 acetyl units, giving compound 9 as 3-O-(2,3,4,6-tetra-O-acetyl) galactopyranosyl 28-O-(2,3,4,6-tetra-O-acetyl) galactopyranosyl-(2,3-di-O-acetyl)rhamnopyranosyl-(2,4-di-O-acetyl)xylopyranosyl-(2,4-di-O-acetyl) arabinopyranosylolean-12en-28-oic acid ester. Close examination of the ¹³C NMR spectrum of its acetate 9, and the acetylation shifts [12] as compared to the spectra of compounds 4 and 8 revealed identical inter-sugar linkages to those in compound 4. Deacetylation of compound 9 gave compound 5 in very low yield and as a consequence, the ¹³CNMR spectrum

for the latter could not be reported in the present work. Analysis of the ${}^{1}J_{C-H}$ couplings of the anomeric carbons in compound 9 by ${}^{13}C$ NMR INEPT spectroscopy gave $\delta 101.5$ (C-1, 165.5 Hz), 101.84 (C-1, 166.6 Hz), 98.74 (C-1, 170.9 Hz), 103.13 (C-1, 163.3 Hz) and 93.19 (C-1, 175.2 Hz), consistent with β -galactopyranosyl, β -galactopyranosyl, α -rhamnopyranosyl, β -xylopyranosyl and α -arabinopyranosyl configurations, respectively. Hence compound 5 was characterized as $3 - O - \beta$ -galactopyranosyl (1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosylolean-12en-28-oic acid ester

Compound 6 gave FAB mass spectrum fragment ions at m/z 1345 $[M + Na]^+$, 903 $[M + Na - Ara - Gal - Rha]^+$, 727 $[Ara + Gal + Rha + Xyl + Ara + Na]^+$, 594 $[Ara+Gal+Rha+Xyl+Na]^+$ and 286 [Xyl+Ara] $+ Na^{+}$ Hence, it was concluded that arabinose, galactose and rhamnose comprised the terminal sugars in some sequence, whilst arabinose was linked to C-28 followed by xylose. The overall sugar sequence (particularly amongst the first three sugars) was completed by FABMS (negative ion mode) [14], m/z 1321 [M-H]⁻, 1190 $[M-H-Ara]^-$ indicating arabinose as the terminal sugar. Fragments 1027 $[M - H - Ara - Gal]^{-}$ and 617 $[M-H-Ara-Gal-Rha-Xyl-Ara]^{-}$, showed that the terminal arabinose was linked to galactose followed by rhamnose. Close examination of the acetylation and glycosidation shifts [9, 12] revealed 6-linked galactose, 4-linked rhamnose, 3-linked xylose and 3linked arabinose. The FAB mass spectrum of the peracetylated derivative of 6 (compound 10) gave FAB mass spectrum molecular ions at m/z 2017 [M + Na]⁺ which suggested the incorporation of 16 acetyl groups giving compound 10 as 3-O-(2,3,4,6-tetra-O-acetyl)galactosyl 28-O-(2,3,4-tri-O-acetyl) arabinosyl-(2,3,4-tri-O-acetyl) galactosyl (2,3-di-O-acetyl)rhamnosyl-(2,4-di-O-acetyl) xylosyl-(2,4-di-O-acetyl)arabinosylolean-12-en-28-oic acid ester. Analysis of the ${}^{1}J_{C-H}$ couplings of the anomeric carbons in compound 6 by ¹³C NMR INEPT spec-

troscopy gave $\delta 106.95$ (C-1, 158.0 Hz), 93.29 (C-1, 171.9 Hz), 105.36 (C-1, 163.3 Hz), 100.71 (C-1, 170.8 Hz), 105.81 (C-1, 160.1 Hz) and 104.65 (C-1, 176.2 Hz), consistent with β -galactopyranosyl, α -arabinopyranosyl, β -xylopyranosyl, α -rhamnopyranosyl and α -arabinopyranosyl, β -xylopyranosyl, α -rhamnopyranosyl and α -arabinopyranosyl configurations, respectively. Hence compound **6** was characterized as $3-O-\beta$ -galactopyranosyl (28- $O-\alpha$ -arabinopyranosyl (1-6)- β -galactopyranosyl(1-4)- α -rhamnopyranosyl (1-3)- β -xylopyranosyl(1-3)- α -arabinopyranosylolean-12-en-28-oic acid ester

Peracetylation was preferred to permethylation for determining the inter-sugar linkages because the parent glycosides can be recovered more easily for further analysis and subsequent biological tests Because neither compound 1 nor 2 was detected in the unhydrolysed extract of the pulp, the occurrence of 2 in the intact saponins must necessitate further investigations.

EXPERIMENTAL

Mps[•] uncorr. IR. nujol, unless otherwise stated ¹H NMR (270 MHz) and ¹³C NMR (67 5 MHz) in pyridine-d₅ with TMS as int standard; chemical shifts were recorded in ppm. ¹³C NMR spectra were used to determine carbon atom type by employing a combination of broad band decoupled and DEPT 90 and/or 135 experiments FABMS was obtained with both positive and negative ion modes (glycerol) TLC of saponins was carried out on Kieselgel 60 GF254 (Merck), zones were detected with I₂ vapour and 10% H₂SO₄ at 110° PC of sugars were run on Whatman No 1 (ascending model) and detected with amline phthalate spray at 110° The following solvent systems were used. (A) hexane–EtOAc (4 1), (B) CHCl₃–MeOH–H₂O (13 7 2, lower phase), (C) hexane–EtOAc (2 3) and (D) *n*-BuOH–toluene–pyridine–H₂O (5 1 3 3) Analytical GC of the TMSi-derivatives (of the sugars or the dried acid hydrolysate of the saponin plus 200 μ l BSTFA with 1% TMCS and 100 μ l pyridine at 80° for 2 hr) was performed on a glass column (2 m × 4 mm 1d) packed with 2% SE-30, N₂ at 40 ml min⁻¹, isothermal at 190°, inj 200° and FID det 300°

Plant material The fruit of Lagenaria breviflora Robert (Cucurbitaceae) was collected from Ile-Ife, Nigeria and authenticated with the herbarium specimen, kept at the Forest Research Institute of Nigeria, Ibadan The fresh fruit was separated into epicarp. mesocarp (pulp) and seed The pulp was dried at 65° , powdered and kept until ready for extraction

Direct acid hydrolysis Dried powdered pulp of L brevifiora fruit (0 1 kg) was refluxed in aq 2 M HCl for 7 hr The marc, following filtration, was extracted with 500 ml CHCl₃, the solvent was removed in vacuo and by prep TLC (system A), compounds 1 (6 5 mg) and 2 (4 1 mg) were obtained

Compound **1** Powder, identified as oleanolic acid: R_f 0.23 (solvent A), mp 295–300° IR ν_{max} cm⁻¹ 3400 (OH), 1680 (COOH), 1620 (unsatn), 1220, 1230 ¹H NMR δ 1.76, 1 67, 1 48, 1 35 1 26, 1 03, 0 97 (s, 7 × Me), 5 52 (H-12), ¹³C NMR (Table 1). EIMS (for C₃₀H₄₈O₃) *m/z* (rel int) 456 [M]⁺ (1 2), 249 (18.8), 248 (100), 203 (88 7), were comparable to the retro-Diels-Alder fragments of authentic oleanolic acid and literature data [7]

Compound 2 Pinkish-brown powder, identified as 3-O-acetyloleanolic acid $R_f \ 0.38$ (solvent A), mp 240–243°, IR ν_{max} cm⁻¹ 3200 (OH of carboxyl), 1720 (vs, Ac), 1680 (COOH), 1620 (unsaturation), 1380, 1330, 1300, 1260, 1160, 1010, 980, 900 ¹H NMR $\delta 1.77$, 1 67, 1 47, 1 43, 1 29, 1 02, 0 97 (s, 7 × Me), 5 49 (H-12), ¹³C NMR (Table 1) EIMS for C₃₂H₅₀O₄, *m/z* (rel. int.) 498 [M]⁺ (0.2), 483 [M-Me]⁺ (0 1), 455 [M-Ac]⁺ (0 1), 439 [M-Me-COO]⁺ (3 1), 423 (1.8), 410 (0 1), 249 (20), 248 (100), 203 (77 3), were comparable to lit data [6] and to the data obtained from the acetylated (Ac₂O in pyridine) sample of compound **1**

Extraction and isolation of saponins Powdered pulp (0 12 kg) was defatted with petrol and successively extracted with EtOAc and MeOH The MeOH extract was concd to half vol at red pres and the insol gummy ppt discarded After evapn of the solvent, the residue was dissolved in H_2O and successively partitioned with Et_2O and *n*-BuOH (satd with H_2O) The *n*-BuOH fraction was evapd to afford a crude saponin mixture from which an impure compound 3 (mixture of compounds 4 and 5) and compound 6 were isolated by repeated prep TLC on 10 mm silica gel layers (solvent B) and bands recovered into MeOH.

Purification of compound 3 A dull white powder, R_f 0.38 (solvent B) mp 219–225°, IR v_{max} cm⁻¹ 3375 (OH), 1720–1540 (ester and unsatn), 1310, 1260, 1160, 1080, 1060, 1040, FABMS (positive ion mode), m/z 1183 ($M_1 + Na$]⁺ and 1213 [M_2 + Na]⁺, 1051 [$M_1 + Na - 132$]⁺ or [$M_2 + Na - 162$]⁺ and 641 [$M_1 + Na - 132 - 146 - 132 - 132$]⁺ or [$M_2 + Na - 162 - 146$ - 132 - 132]⁺ Compound 3 was peracetylated to give two clearly separated bands on prep TLC as before (R_f 0.67 and 0.30) in solvent C, which on mild alkaline hydrolysis afforded the parent saponins 4 and 5, respectively

Compound 4 A white amorphous powder R_f 0 38 (solvent B), mp 260-266°, IR ν_{max} cm⁻¹ 3350 (OH), 1730-1680 (ester CO), 1620 (unsaturation), 1260, 1060, 1040, ¹³C NMR decoupled spectrum (Table 1), 13 C NMR INEPT (no decoupling) C-1, ppm (${}^{1}J_{C-H}$): 106.87 (159.1 Hz), 105 20 Hz (162.3 Hz); 100.65 (169.7 Hz), 105.82 (161 2 Hz) and 93 33 (170.9 Hz) FABMS (positive ion mode), m/z (rel. int) 1183 [M + Na]⁺ (65.4), 1051 [M + Na - 132]⁺ (15), 903 [M + Na - 132 - 146]⁺ (8 7), 773 [M + Na - 132 - 146 - 132]⁺ (10 8), 641 [M + Na - 132 - 146 - 132] - 132]⁺ (15 4), 565 [M + Na - 618]⁺ (57 7), 437 [M + Na - 162 - 132 - 146 - 132 - 132]⁺ (10 8), 145 (100), negative ion mode: 1159 [M - H)⁻, 1027 [M - H - 132]⁻, 617 [M - H - 132 - 146 - 132 - 146 - 132 - 132]⁻, 437 [M - H - 132 - 146 - 132 - 132 - 132]⁻, calculated for C₅₇H₉₂O₂₄, *M*, 1160.

Compound 5. A white amorphous powder, R_f 0 38 (solvent B), IR ν_{max} cm⁻¹: 3350 (OH), 1725–1680 (ester CO), 1620 (unsatn), 1060, 1040, 980, 920. ¹³C NMR INEPT (no decoupling), C-1, ppm; (¹J_C-H). 101 5 (165.5 Hz), 103.13 (163 3 Hz); 98 74 (170 9 Hz), 93 19 (175 2 Hz) and 101 84 (166.6 Hz). FABMS (positive ion mode), m/z (rel. int.) 1213 [M + Na]⁺ (35.5), 1051 [M + Na - 162]⁺ (15), 903 [M + Na - 162 - 146]⁺ (8 3), 773 [M + Na - 162 - 146 - 132]⁺ (10 8), 641 [M + Na - 162 - 146 - 132 - 132]⁺ (15), 595 [M + Na - 618]⁺ (26.9), 437 [M + Na - 162 - 146 - 132 - 132 - 162 - 18]⁺ (8), negative ion mode: 1189 [M - H]⁻, 1027 [M - H - 162]⁻, 617 [M - H - 162 - 146 - 132 - 132]⁻, 455 [M - H - 162 - 146 - 132 - 132 - 162]⁻, 437 [M - H - 162 - 146 - 132 - 132 - 162 - 18]⁻, calculated for C₅₈H₉₄O₂₅, M_r 1190.

Compound 6. A white powder, R_f 0.32 (solvent B); mp 230–232°, IR ν_{max} cm⁻¹: 3350 (OH), 1760–1680 (ester CO), 1620 (unsatn), 1060, 1020, 960 1 H NMR δ 1.66, 163, 1.45, 1.32, 1.30, 1 02, 0 94 (s, $7 \times Me$), 5.50 (H-12), 4.29 (1H, d, J = 4.4 Hz, anomeric proton of Ara), 1 75 (3H, d, J = 4 9 Hz, H-6 of Rha), 4.52 (1H, d, J = 6.9 Hz, anomeric proton of 28-O-Ara), 46 (1H, J = 81 Hz, anomeric proton of term Gal), 4.97 (1H, d, J = 7.7 Hz, anomeric proton of Xyl), 5.23 (1H, d, J = 3.7 Hz, anomeric proton of Gal). 5.7 (1H, d, J=37 Hz, anomeric proton of Rha) ¹³C NMR INEPT, C-1, ppm, (¹J_{C-H}): 106 95 (158 Hz), 105.81 (160.1 Hz); 105 36 (163.3 Hz), 104.65 (176.2 Hz), 100.71 (170 8 Hz) and 93.29 (171 9 Hz) ¹³C NMR (Table 1). FABMS (positive ion mode), m/z (rel. int) $1345 [M+Na]^+$ (48), 903 [M+Na-132-162] $-146]^+$ (8 3), 727 $[M + Na - 618]^+$ (20), 594 $[M + Na - 618]^+$ -132]⁺ (6.3), 286 [M + Na - 618 - 132 - 162 - 146]⁺ (100), 437 $[M + Na - 132 - 162 - 146 - 132 - 132 - 162 - 18]^+$ (8.7); (negative ion mode), m/z 1321 $[M-H]^-$, 1190 $[M-H-132]^-$, 1027 $[M-H-132-162]^{-}$, 617 [M-H-132-162-146-132] $-132]^{-}$, calculated for C₆₃H₁₀₂O₂₉, *M*, 1322.

Compound 7 A brown solid, obtained by alkaline hydrolysis of compounds 4–6, $R_f 0.87$ (solvent B); $IR v_{max} cm^{-1} 3425$ (OH), 1720 (COOH), 1620 (unsatn), 1040, 920. ¹³C NMR decoupled spectrum (Table 1) FABMS (positive ion mode) m/z, (rel. int.)⁶⁴¹ [M+Na]⁺ (100), 493 [M+Na-Me]⁺ (18), 477 [M+Na - 162]⁺ (28), 459 [M+Na-162-18]⁺ (87), calculated for $C_{36}H_{36}O_8$, M_r 618 identified as 3-O- β -galactopyranosylolean-12-en-28-oic acid.

Acid hydrolysis Compounds 4-6, individually refluxed in 2 M HCl for 5 hr gave oleanolic acid, identical to compound 1 (co-TLC, co-IR, ¹³C NMR, EIMS) PC (solvent D) of the hydrolysates showed similar sugars R_t 0.28 (Gal), 0.33 (Ara), 0.43 (Xyl) and 0.51 (Rha); GC of TMSi-derivatives, R_r , min: 13.3, 16.5 (Gal), 5.0, 6.3 (Ara), 5.3, 7.5 (Xyl), and 5.3, 7.0 (Rha). Mild acid hydrolysis was carried out with 1 M HCO₂H and was similarly examined for sugars every 30 min.

Alkaline hydrolysis Compounds 4-6, individually refluxed in 2 M NaOH for 3 hr, neutralized and partitioned with n-BuOH

(satd with H_2O) Prep. TLC of the organic layer gave compound 7 (TLC, FABMS, IR) while PC (solvent D) of the hydrolysate (after further acid hydrolysis) gave similar sugars as above. Mild alkaline hydrolysis of the acetylated derivatives was performed at room temp. for 24 hr and the appropriate *n*-BuOH layer was evapd to recover the parent saponins. Compound **2** was similarly deacetylated.

Peracetylation. Compounds 1, 4, 5 and 6, were individually treated with Ac_2O in pyridine at room temp. for 48 hr and purified by prep. TLC (solvent C) to give compounds 2, 8, 9 and 10, respectively.

Compound 8. Brown solid R_f 0.67 (solvent C); IR v_{max} cm^{-1.} 1740 (-Ac), 1620 (unsatn), 1450, 1370, 1040, 980. FABMS (positive ion mode), m/z 1729 [M + Na]⁺ for C₈₃H₁₁₈O₃₈, M, 1708.

Compound 9. Brown solid, R_f 0.30 (solvent C), IR $v_{max} \text{ cm}^{-1}$ 1740 (-Ac), 1620 (unsatn), 1420, 1370, 940. FABMS (positive ion mode), m/z 1801 $[M+Na]^+$ for $C_{85}H_{120}O_{38}$, M_r 1778

Compound 10. Dark semi-solid, R_f 0.69 (solvent C), IR- v_{max} cm⁻¹ 1740 (-Ac), 1620 (unsatn), 1560, 1430, 1370, 1040, 940; FABMS (positive ion mode), m/z 2017 [M+Na]⁺ for C₉₅H₁₂₄O₄₅, M_r 1994

Acknowledgements—Dr A A. Elujoba is grateful to The Royal Society, London, for a Developing Country Fellowship, to the School of Pharmacy, University of Bradford for equipment and research materials and to the Department of Chemistry and Chemical Technology, University of Bradford, for the provision of FT NMR and EIMS facilities For the FABMS data, the authors wish to thank Dr M. Claeys [University of Antwerp (UIA), Belgium], Dr G. B Lockwood (Manchester University) and Dr Ballantine (SERC MS facility, Swansea University) Dr Howarth, SERC NMR facility, University of Warwick is thanked for NMR data on compound 10 (Bruker AM 400).

REFERENCES

- 1. Elujoba, A. A., Olagbende, S O. and Adesina, S K. (1985) J. Ethnopharmacol 13, 281.
- 2. Elujoba, A. A and Hymete, A (1987) Fitoterapia 57, 97
- 3 Adesina, S. K. (1983) Niger. J. Pharm. 14, 21.
- 4. Mahato, S B., Sarkar, S K. and Podder, G. (1988) Phytochemistry 27, 3037.
- 5. Paphassarang, S, Raymond, J, Lussignol, M. and Bechu, M (1989) Phytochemistry 28, 1539
- 6. Adesina, S K. and Reich, J (1985) Phytochemistry 24, 3003.
- 7 Srivastava, S K and Jain, D. C. (1989) Phytochemistry 28, 644.
- 8 Nie, R, Morita, T, Kasai, R, Zhou, J, Wu, C and Tanaka, O (1983) Planta Med 50, 322.
- 9 Tori, K., Seo, S., Yoshimura, Y., Nakamura, M., Tomita, Y and Ishii, H. (1976) Tetrahedron Letters 4167
- 10 Ishu, H., Tori, K., Tozyo, T and Yoshimura, Y. (1984) J. Chem. Soc. Perkin Trans I 661
- 11. Bock, K., Lundt, I and Pedersen, C. (1973) Tetrahedron Letters 1037
- 12. Terui, Y, Tori, K. and Tsuji, N. (1976) Tetrahedron Letters 621
- 13. Nie, R, Takahiro, T., Miyakoshi, M, Kasai, R., Morita, T. Zhou, J. and Tanaka, O. (1989) Phytochemistry 38, 1711.
- 14 Sati, D. P., Bahuguwa, S., Uniyal, S and Bhakuni, D S. (1989) Phytochemistry 28, 575