Date: 27-08-14 17:56:12

Two-Step Regioselective Synthesis of 3-(Sulfonylamino)imidazo-[1,2-a]pyrimidines from 2-Aminopyrimidines and N-(2,2-Dichloro-2phenylethylidene)arensulfonamides

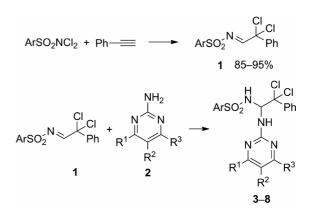
Pages: 12

Igor B. Rozentsveig,*^[a] Valery Yu. Serykh,^[a] Gulnur N. Chernysheva,^[a] Evgeniy V. Kondrashov,^[a] Alena I. Fedotova,^[a] Igor A. Ushakov,^[a] Evgeny V. Tretyakov,^[b] and Galina V. Romanenko^[b]

Keywords: Nitrogen heterocycles / Sulfonamides / Nucleophilic addition / Rearrangement / Regioselectivity

The reaction of 2-aminopyrimidines with N-(2,2-dichloro-2phenylethylidene)arenesulfonamides affords the corresponding products of nucleophilic addition to the azomethine group, N-[2,2-dichloro-2-phenyl-1-(heterylamino)ethyl]sulfonamides, in good yields. The latter are easily cyclized to

Introduction


N-Functionalized polyhaloaldimines and polyhaloketimines are significant representatives of azomethine systems.^[1] Due to the presence of the electron-withdrawing substituents, imines of such type are exceedingly active in reactions with O-, N-, and S-nucleophiles, aromatics and heteroaromatics, providing effective approaches for the preparation of diverse amide derivatives.^[1,2] Polyhaloaldimine or polyhaloketimine molecules contain two electrophilic reactive sites, namely the carbon atom of electron-deficient azomethine group and the carbon atom of the polyhalomethyl group. Thus, haloimines are promising dielectrophiles that can be used as key reagents in the preparation of biologically active amino acids, amidines, and heterocycles.^[1-3]

We have worked out new approaches for the synthesis of sulfonylamino-substituted heterocyclic derivatives^[3d,3e,4] based on phenyldichloroacetaldimines 1. Highly electrophilic imines 1 are available through synthetic methods based on free-radical reaction of N,N-dichlorosulfonamides with phenylacetylene^[5] (Scheme 1).

It was shown^[4] that reaction of imines 1 with 2-aminopyridines or 2-aminothiazole allows the selective one-pot, two-step synthesis of (sulfonylamino)imidazo[1,2-a]pyr-

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201402695.

give imidazo[1,2-a]pyrimidin-3-ylsulfonamides in the presence of NaOH, whereas the expected isomeric imidazo[1,2-a]pyrimidin-2-ylsulfonamides are not formed. A tentative mechanism for the formation of annulated heterocyclic derivatives through Dimroth rearrangement has been proposed.

Scheme 1. Synthesis of phenyldichloroacetaldimines 1a-c and their reaction with 2-aminopyrimidines 2a-f.

idines or (sulfonylamino)imidazo[2,1-b]thiazoles. In a continuation of our previous studies, in the present work we explored the possibility of obtaining (sulfonylamino)imidazo[1,2-a]pyrimidines from imines 1 and 2-aminopyrimidines 2.

It should be noted that amino-substituted imidazo[1,2-a]pyrimidines are valuable reagents^[6a,6b] and biologically active compounds.^[6b–6e] having antimicrobial activity.^[6c] exhibiting the property of potassium channel modulators,^[6d] and they are promising drugs for prophylaxis and treatment of proliferative diseases.^[6e] The development of new synthetic methodologies for the preparation of such derivatives and the synthesis of new representatives of the imidazo[1,2-a]pyrimidine series are thus urgent tasks.

Results and Discussion

It is known that reactions of imines or imine analogues produced in situ, with aminopyrimidines lead to the forma-

[[]a] A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russia E-mail: i_roz@irioch.irk.ru http://www.irkinstchem.ru/index.php/ru/ http://www.isc.irk.ru/Eng/irich_e.htm

[[]b] International Tomography Center, Siberian Branch of the Russian Academy of Sciences,

Institutskaya Str., 3a, Novosibirsk 630090, Russia

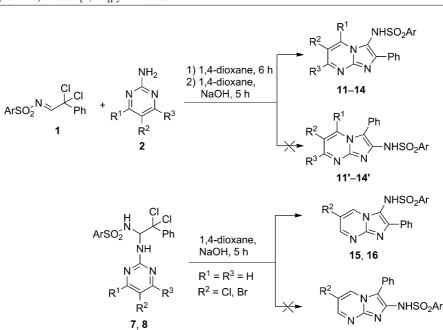
Table 1. Screening of conditions for the reaction of imines 1a-c with aminopyrimidines 2a-h and yields of adducts 3-8.

Entry	Imine 1 (Ar)	2	\mathbb{R}^1	\mathbb{R}^2	R ³	<i>T</i> [°C]	Time [h]	Solvent	Adduct 3-8	Yield [%]
1	1a (4-ClC ₆ H ₄)	2a	Н	Н	Н	room temp.	10	CCl ₄	3a	0
2	$1a (4-ClC_6H_4)$	2a	Н	Н	Н	room temp.	10	toluene	3a	0
3	$1a (4-ClC_6H_4)$	2a	Н	Н	Н	room temp.	10	CH ₃ CN	3a	0
4	$1a (4-ClC_6H_4)$	2a	Н	Н	Н	room temp.	6	DMF	3a	78
5	$1a (4-ClC_6H_4)$	2a	Н	Н	Н	room temp.	6	1,4-dioxane	3a	86
6	1b (Ph)	2a	Η	Н	Н	room temp.	6	1,4-dioxane	3b	63
7	$1c (4-MeC_6H_4)$	2a	Н	Н	Н	room temp.	6	1,4-dioxane	3c	62
8	$1a (4-ClC_6H_4)$	2b	Me	Н	Н	room temp.	6	1,4-dioxane	4a	71
9	1b (Ph)	2b	Me	Н	Н	room temp.	6	1,4-dioxane	4b	91
10	$1c (4-MeC_6H_4)$	2b	Me	Н	Н	room temp.	6	1,4-dioxane	4c	60
11	$1a (4-ClC_6H_4)$	2c	Me	Н	Me	room temp.	6	1,4-dioxane	5a	87
12	1b (Ph)	2c	Me	Н	Me	room temp.	6	1,4-dioxane	5b	65
13	$1c (4-MeC_6H_4)$	2c	Me	Н	Me	room temp.	6	1,4-dioxane	5c	66
14	$1a (4-ClC_6H_4)$	2d	Cl	Н	Me	room temp.	6	1,4-dioxane	6a	90
15	1b (Ph)	2d	Cl	Н	Me	room temp.	6	1,4-dioxane	6b	81
16	$1c (4-MeC_6H_4)$	2d	Cl	Н	Me	room temp.	6	1,4-dioxane	6c	82
17	$1a (4-ClC_6H_4)$	2e	Н	Br	Н	100	10	1,4-dioxane	7a	36
18	$1a (4-ClC_6H_4)$	2e	Н	Br	Н	room temp.	10	DMF	7a	80
19	1b (Ph)	2e	Н	Br	Н	room temp.	10	DMF	7b	70
20	$1c (4-MeC_6H_4)$	2e	Н	Br	Н	room temp.	10	DMF	7c	90
21	$1a (4-ClC_6H_4)$	2f	Н	C1	Н	100	10	1,4-dioxane	8a	0
22	$1a (4-ClC_6H_4)$	2f	Н	Cl	Н	room temp.	10	DMF	8a	25
23	1b (Ph)	2f	Н	Cl	Н	room temp.	10	DMF	8b	39
24	$1c (4-MeC_6H_4)$	2f	Н	Cl	Н	room temp.	10	DMF	8c	44
25	$1a (4-ClC_6H_4)$	2g	Cl	Н	Cl	100	20	DMF	9	0
26	$1a (4-ClC_6H_4)$	2h	thien-2-yl	Н	CF_3	100	20	DMF	10	0

tion of pyrimidine-substituted aminal derivatives,^[7a-7f] which are good reagents^[7e,7f] and biologically active compounds,^[7g] We found that 2-aminopyrimidines **2** react with imines **1** in the same manner to give the products of nucleophilic addition **3–8** (see Scheme 1). The process proceeds selectively with the participation of azomethine groups of imines **1a–c** and exocyclic amino groups of aminopyrimidines **2**. The nature of the solvents had a significant impact on the product yield. The reaction was realized in high polarity solvents such as 1,4-dioxane or *N*,*N*-dimethylform-amide (DMF) (Table 1).

Adducts 3–8 were formed in good yield under mild conditions with 2-aminopyrimidine (2a) and methyl-substituted aminopyrimidines 2b–d when 1,4-dioxane was used as the most appropriate solvent (see Table 1). In the case of 5bromo- or 5-chloro-substituted derivatives 2e or 2f, DMF was used as solvent, because the yields of the corresponding adducts 7 and 8 in dioxane were lower. Aminodichloropyrimidine 2g and trifluoromethyl-substituted aminopyrimidine 2h did not form adducts under the conditions we studied. Clearly, electron-withdrawing substituents deactivate the nucleophilicity of amino pyrimidines and the formation of the expected products 9 and 10 was hindered or completely blocked.

The structures of adducts **3–8** were defined by IR and NMR spectroscopic analysis and supported by elemental analysis. The IR spectra of compounds **3–8** contain characteristic absorption bands attributed to SO₂ and NH groups.


In the ¹H NMR spectra, typical signals of protons of aromatic and pyrimidine rings with corresponding multiplicity and intensity were observed. Moreover, typical signals of the NH-CH-NH fragment were presented, namely a doublet in weak field at $\delta = 8.0-8.5$ ppm from the SO₂NH proton, doublet of doublets at $\delta = 6.1-6.4$ ppm from the CH group (${}^{3}J_{\text{NH-CH}} = 9.2-9.8$ Hz), and a doublet or broad singlet at $\delta = 6.0-7.0$ ppm from the Het-NH fragment. For dimethylpyrimidine derivatives **5a–c**, the protons of methyl groups are equivalent and appear as double-intensity singlets. These features of the ¹H NMR spectra as well as the ¹³C NMR spectroscopic data and the results of 2D NMR experiments unambiguously established the structure of the compounds synthesized. The values of ¹⁵N chemical shifts of adducts **3–8** were determined based on 2D ¹H-¹⁵N HMBC spectra.

It is interesting to note that compounds 6a-c in [D₆]dimethyl sulfoxide (DMSO) exhibit two groups of signals in the ¹H and ¹³C NMR spectra, probably due to different associations or conformers stabilized by hydrogen bonds.

It was shown previously^[4] that heterocyclization of adducts obtained from imines 1 and 2-aminopyridines proceeds smoothly in dioxane in the presence of NaOH. We applied the same conditions for heterocyclization and found that 3–8 were transformed easily into 3-arylsulfonylamino-2-phenylimidazo[1,2-*a*]pyrimidine derivatives 11–16 (Scheme 2, Table 2). The formation of isomeric 2-arylsulfonylamino-3-phenylimidazo[1,2-*a*]pyrimidines 11′–16′ was not detected. In the absence of NaOH, even under heating or in the presence of potassium or sodium carbonates, heterocyclic derivatives were not obtained.

Synthesis of 11-14 could be realized as a one-pot, twostep procedure without isolation of the intermediate adducts 3-6 (Scheme 2, Table 2). Adducts 7 and 8 were formed with the highest yields in DMF but attempts to perform their subsequent one-pot heterocyclization led to

Synthesis of 3-(Sulfonylamino)imidazo[1,2-*a*]pyrimidines

Scheme 2. Synthesis of imidazo[1,2-a]pyrimidines 11-16.

Table 2. One-pot synthesis of imidazo-pyrimidines 11–14 and heterocyclization of adducts 7 and 8 into imidazo-pyrimidines 15 and 16.

			····· · · · · · · · · · · · · · · · ·						
Entry	Ar	\mathbb{R}^1	R ²	R ³	<i>T</i> [°C]	Time [h]	Solvent	Imidazo-pyrimidine	Yield [%] ^[a]
1	4-ClC ₆ H ₄	Н	Н	Н	room temp.	5	1,4-dioxane	11a	76
2	$4-ClC_6H_4$	Н	Н	Н	room temp.	5	THF	11a	70
3	Ph	Н	Н	Н	room temp.	5	1,4-dioxane	11b	89
4	$4-MeC_6H_4$	Н	Н	Н	room temp.	5	1,4-dioxane	11c	65
5	$4-ClC_6H_4$	Н	Н	Me	room temp.	5	1,4-dioxane	12a	51
6	Ph	Н	Н	Me	room temp.	5	1,4-dioxane	12b	65
7	$4-MeC_6H_4$	Н	Н	Me	room temp.	5	1,4-dioxane	12c	53
8	$4-ClC_6H_4$	Me	Н	Me	room temp.	5	1,4-dioxane	13a	60
9	Ph	Me	Н	Me	room temp.	5	1,4-dioxane	13b	77
10	$4-MeC_6H_4$	Me	Н	Me	room temp.	5	1,4-dioxane	13c	64
11	$4-ClC_6H_4$	Me	Н	Cl	room temp.	5	1,4-dioxane	14a	79
12	Ph	Me	Н	Cl	room temp.	5	1,4-dioxane	14b	73
13	$4-MeC_6H_4$	Me	Н	Cl	room temp.	5	1,4-dioxane	14c	74
14	$4-ClC_6H_4$	Н	Br	Н	50	10	CCl_4	15a	0
15	$4-ClC_6H_4$	Н	Br	Н	100	10	toluene	15a	0
16	$4-ClC_6H_4$	Н	Br	Н	40	10	CH ₃ CN	15a	0
17	$4-ClC_6H_4$	Н	Br	Н	room temp.	10	DMF	15a	0
18	$4-ClC_6H_4$	Н	Br	Н	100	10	DMF	15a	0
19	$4-ClC_6H_4$	Н	Br	Н	room temp.	5	1,4-dioxane	15a	59, 76 ^[b]
20	Ph	Н	Br	Н	room temp.	5	1,4-dioxane	15b	38, 54 ^[b]
21	4-MeC ₆ H ₄	Н	Br	Н	room temp.	5	1,4-dioxane	15c	33, 51 ^[b]
22	$4-ClC_6H_4$	Н	Cl	Н	room temp.	5	1,4-dioxane	16a	47, 88 ^[b]
23	Ph	Н	Cl	Н	room temp.	5	1,4-dioxane	16b	36, 91 ^[b]
24	$4-MeC_6H_4$	Н	Cl	Н	room temp.	5	1,4-dioxane	16c	48, 84 ^[b]

[a] Yield based on starting imines 1a-c. [b] Yield based on adducts 7 and 8, respectively.

strong resinification. We succeeded in preparing the corresponding imidazo-pyrimidines **15** and **16** in satisfactory yields only in dioxane.

The heterocyclization of adducts $4\mathbf{a}-\mathbf{c}$ and $6\mathbf{a}-\mathbf{c}$ resulted in the selective formation of imidazo-pyrimidines $12\mathbf{a}-\mathbf{c}$ and $14\mathbf{a}-\mathbf{c}$, whereas isomeric derivatives with substituents at other positions on the pyrimidine moiety were not formed (Scheme 2, Table 2). This selectivity can probably be explained by the different nucleophilicity of endocyclic nitrogen atoms caused by nonsymmetrical arrangement of the substituents in the starting aminopyrimidines.

15', 16'

NMR and IR spectroscopic analysis of the reaction products **11–16** showed that all of them belong to the same structural type; we therefore carried out X-ray single-crystal analysis for **11c** as a typical derivative (Figure 1).

Date: 27-08-14 17:56:12

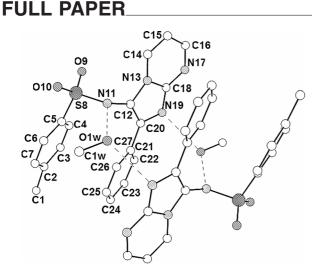
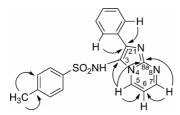



Figure 1. X-ray structure of the dimer {11c·MeOH}₂.

The X-ray diffraction studies revealed that, in the solid state, two molecules of **11c** and two molecules of methanol are connected through hydrogen bonds (N11–H···O1w and O1w–H···N19') forming the centrosymmetrical dimer {**11c**·MeOH}₂. Notably, in every molecule of **11c**, the planes of the two phenyl rings are almost parallel (the angle between the planes is equal to 4.8°) and lie at a distance of approximately 3.3 Å, which corresponds to typical π -stacking.

The structures of the compounds obtained were unambiguously deduced from their ¹H, ¹³C and ¹⁵N NMR spectroscopic data using ¹H-¹³C HSQC, ¹H-¹³C HMBC, ¹H-¹⁵N HMBC, and NOESY 2D NMR experiments. To establish the imidazo-pyrimidine structures HMBC ¹H-¹³C techniques were used (Scheme 3), which were optimized for ¹³C-¹H coupling constants of 10 Hz, which are typical for carbon and proton atoms separated by three bonds.

Scheme 3. Main ¹H-¹³C HMBC correlations for imidazo-pyrimidine **11c**.

The values of ¹⁵N chemical shifts in the 1D ¹⁵N spectrum for **11c** are in agreement with the proposed structure. The determination of ¹⁵N chemical shifts from the 1D ¹⁵N NMR spectra was difficult due to the low solubility of imidazo-pyrimidines **11–16** and because of the long time required to complete the NMR experiments. Thus, the values of ¹⁵N chemical shifts of other imidazo-pyrimidines were obtained only for N-4 and N-8 nitrogen atoms using 2D ¹H-¹⁵N HMBC spectra. This technique also allows the arrangement of R¹ and R³ substituents on the pyrimidine fragment to be determined from their correlations with N-8 (ca. –100 ppm) and N-4 (ca. – 190 ppm) atoms.

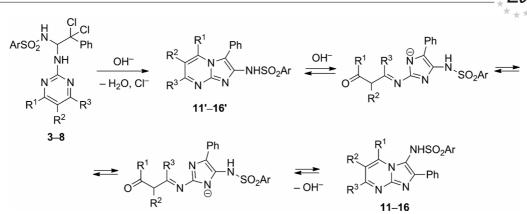

The ¹³C NMR chemical shifts from carbon atoms of a pyrimidine moiety move downfield by 8-14 ppm when they are associated with methyl substituents. This allowed the arrangement of the methyl groups in the pyrimidine ring of imidazo-pyrimidines 12, 13, 14 to be established. For example, the chemical shifts from C-5 and C-7 atoms in the ^{13}C NMR spectrum of **11a** are found at $\delta = 132.6$ and 152.0 ppm, respectively (these NMR spectroscopic data are in agreement with the spectra of unsubstituted imidazo[1,2*a*]pyrimidine^[8]). For 5,7-dimethylimidazo-pyrimidine **13a**, chemical shifts from the C-5 and C-7 carbon atoms move to $\delta = 145.5$ and 160.8 ppm, respectively (Table 3, entries 1 and 3). For monomethyl-substituted imidazo-pyrimidine 12a, atom C-5 resonates at the same field as C-5 for compound 11a (131.7 ppm), but the chemical shift from carbon C-7 (δ = 161.4 ppm) is in the same field as the C-7 resonance of 13a (δ = 160.8 ppm) (entries 1–3). This downfield displacement of the signal from C-7 allows one to make a conclusion about the presence of the methyl substituent at the C-7 carbon atom. For compounds 13a and 14a, the chemical shifts from the C-5 carbon atoms are identical (δ = 145.5 ppm), whereas the C-7 carbon atoms resonate at different frequencies (entries 3 and 4). This is consistent with the assumption that the same substituents (methyl groups) are associated with C-5 carbon atoms and different substituents (methyl group and chlorine atom) are bonded with C-7 carbon atoms.

Table 3. The chemical shifts from C-5 and C-7 carbon atoms in the 13 C NMR spectra of compounds **11a**, **12a**, **13a**, and **14a**.

Entry	Imidazo-pyrimidine Ar = 4 -ClC ₆ H ₄	R ¹	C-5 δ [ppm]	R ³	C-7 δ [ppm]
1	11a	Н	132.6	Н	152.0
2	12a	Η	131.7	Me	161.4
3	13a	Me	145.5	Me	160.8
4	14a	Me	145.5	Cl	151.6

A possible reaction pathway leading to the formation of compounds 11-16 is under discussion. The reaction can proceed through heterocyclization of adducts 3-8 into intermediate imidazo-pyrimidines 11'-16', which undergo further isomerization into the final heterocycles 11-16 according to the Dimroth rearrangement (Scheme 4). It should be noted that based on reported data,^[9] this type of isomerization runs in the reverse direction: in the presence of a base, 3-aminoimidazo[1,2-a]pyrimidines undergo isomerization into 2-aminoimidazo[1,2-a]pyrimidines. This reaction is one of the methods for the preparation of 2-aminoimidazo[1,2*a*]pyrimidine derivatives.^[9] We found that under the conditions described in the method^[9] (alkali in water/methanol solution), the transformation of compounds 11-16 into isomeric imidazo-pyrimidine derivatives 11'-16' does not take place.

To explain the contradiction discussed above, we carried out quantum-chemical calculations [MP2 6-311+G(d,p); Firefly QC package,^[10a] which is partially based on the GAMESS (US)^[10b] source code] of formation energy for 3amino-2-phenylimidazo[1,2-*a*]pyrimidines **11a–c**, model Synthesis of 3-(Sulfonylamino)imidazo[1,2-a]pyrimidines

Scheme 4. Possible reaction pathway for the formation of imidazo-pyrimidine derivatives 11-16.

compounds 17a–e, and isomeric 2-amino-3-phenylimidazo[1,2-*a*]pyrimidines 11'a–c and 17'a–e. The calculations show that the total energy of 2-aminoimidazo-pyrimidines 17'a–e is lower by 2.2–4.1 kcal/mol in comparison with isomeric 3-aminoimidazo-pyrimidines 17a–e (Table 4, entries 1–5). This difference in energies allows the direction of isomerization described in the paper to be explained.^[9] The difference of formation energy between 17' and 17 is reduced to 2.9 and 2.2 kcal/mol in the case of compounds with electron-withdrawing methylsulfonyl and trifluoromethylsulfonyl groups, respectively (entries 4 and 5). Nevertheless, even for compounds with the CF₃SO₂ group, the 2amino substituted derivative is preferable.

Table 4. Relative energies of neutral molecules in the gas phase at fully optimized geometries by MP2/6-311+G(d,p) for compounds 17a–e, 17'a–e, 11a–c, and 11'a–c (units in kcal/mol).

	17'a-e, 11'a-c	17a-e, 11a-c	
Entry			NR ₂
1	0 (17'a)	4.11 (17a)	NMe ₂
2	0 (17'b)	4.08 (17b)	NHMe
3	0 (17'c)	3.93 (17c)	NH ₂
4	0 (17'd)	2.89 (17d)	MeSO ₂ NH
5	0 (17'e)	2.21 (17e)	CF ₃ SO ₂ NH
6	2.82 (11'a)	0 (11a)	4-ClC ₆ H ₄ SO ₂ NH
7	2.40 (11'b)	0 (11b)	PhSO ₂ NH
8	3.29 (11'c)	0 (11c)	4-TsNH

In contrast to compounds 17 and 17', 3-arylsulfonylaminosubstituted isomers 11a–c are surprisingly more stable then 2-(arylsulfonylamino)imidazo-pyrimidines 11'a– c by 2.4–3.3 kcal/mol (Table 4, entries 6–8). This stability can probably be explained by the more effective intramolecular π -stacking coordination between the aromatic ring of the arylsulfonic group and the benzene ring at C-2 position. A possibility of intramolecular π -stacking is revealed by the XRD study (see Figure 1). It should be noted that examples of intramolecular π -stacking for some arylsulfonamide derivatives, annulated imidazole and pyrimidine derivatives have been reported.^[11]

Moreover, because sulfonamide derivatives are strong N– H acids, it should be taken into account that under the reaction conditions (alkali medium), compounds 11–16 exist as sulfonamidic anions of the type A or A'. For these anions, the calculations show that sulfonamidic derivatives A are more stable by 7.5–13.5 kcal/mol in comparison with isomeric anions A' (Table 5). Calculations using the PCM solvation method (see Table S3 in the Supporting Information) do not reveal a significant difference between the relative energies of anions A and A'. This energy difference can serve as a driving force for the unusual direction of Dimroth rearrangement and isomerization of 2-(sulfonylamino)imid-azo-pyrimidines 11'-16' into 3-sulfonylamino-substituted derivatives 11-16 according to the Scheme 4.

Table 5. Relative energies of anions A and A' in the gas phase at fully optimized geometries by MP2/6-311+G(d,p) (units in kcal/mol).

Entry	Anions \mathbf{A}' Ph N N N SO_2R	Anions A \bigcirc N-SO ₂ R	R
1	7.54	0	Me
2	10.94	0	CF ₃
3	11.90	0	$4-C1C_6H_4$
4	12.59	0	Ph
5	13.48	0	$4-MeC_6H_4$

Thus, the results of the calculations are consistent with the pathway shown in Scheme 4, with the experimental data presented herein, and with the results described by Carballares et al.^[9] For 2-amino- and 3-amino-substituted imid-azo[1,2-*a*]pyrimidine derivatives, isomerization through the Dimroth rearrangement is directed towards the formation of 2-aminoimidazo-pyrimidines when alkylamino groups are in the structure (compounds mentioned in previous studies^[9]). However, the reaction is directed toward 3-amino-substituted isomers when strong N–H acidic sulfonyl amino groups are presented.

Conclusions

The reaction of 2-aminopyrimidines with N-(sulfonyl)phenyldichloroacetaldimines leads to the formation of the

FULL PAPER

corresponding adducts, which can be transformed into 3-(sulfonylamino)imidazo[1,2-*a*]pyrimidine derivatives in good yields. On the basis of this reaction, an effective synthetic method for the preparation of 3-(sulfonylamino)imidazo[1,2-a]pyrimidines has been worked out. The advantages of this method are available starting reagents, mild conditions, and high selectivity. The known multistage methods,^[6c,12] based on nitration or nitrosation of imidazo-pyrimidine substrate followed by reduction of nitro or nitroso groups, are much more laborious. The method based on 1,2-bis(benzotriazolyl)-1,2-diaminoethanes^[13] is suitable for morpholine derivatives only. Other promising methods based on three-component reactions of isocyanides with aminopyrimidines and aldehydes^[6a,14] require longer time (up to 48 h), expensive catalysts in some cases, and they are never used for the preparation of sulfonylamino-substituted derivatives containing the synthetically useful and pharmacophoric sulfonamide groups. It can be argued that the method proposed herein complements known literary protocols and expands the range of functionalized imidazopyrimidine derivatives, which are now available for further investigation of biological activity and other properties.

Experimental Section

General Remarks: All reagents were of reagent grade. Solvents were dried by standard procedures and distilled prior to use. NMR spectra were recorded with a Bruker DPX 400 spectrometer (¹H, 400.13 MHz; ¹³C, 100.61 MHz; ¹⁵N, 40.53 MHz) at 25 °C with HMDS as an internal standard. Chemical shifts are reported in ppm (δ) and coupling constants (*J*) in Hz. IR spectra were recorded with a Bruker IFS-25 spectrophotometer in KBr. Melting points were measured with a Kofler micro hot-stage apparatus. Elemental analyses for C, H, N, and S were obtained with a Thermo Finnigan Flash series1112 EA analyzer. Cl was determined by titration of the combustion products with mercuric nitrate in the presence of diphenylcarbazone. The GC/MS analyses were performed with a Shimadzu GC–MS-QP5050A instrument (EI, 70 eV).

The intensity data for the single crystal of **11c**·MeOH were collected with a SMART APEX DUO automated diffractometer (Bruker AXS) by using the standard procedure. It should be noted that **11c**·MeOH crystals were very small $(0.02 \times 0.02 \times 0.02 \text{ mm})$ and their reflectance was quite poor. The structures were solved by direct methods and refined by the full-matrix least-squares procedure anisotropically for non-hydrogen atoms. The H atoms were calculated geometrically and included in the refinement as riding groups. All calculations were fulfilled with the SHELXTL 6.14 program package.

CCDC-1003709 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

General Procedure for Synthesis of Imines 1a–c:^[5] *N*,*N*-Dichloroarenesulfonamide (30 mmol) was added portionwise to a solution of phenylacetylene (4.10 g, 40 mmol) in CCl₄ (20 mL) under argon with stirring to avoid overheating to more than 40 °C. Once the self-heating interaction had been stopped, the reaction mixture was stirred for 3 h at 60 °C, then allowed to stand at -5 °C until a precipitate of imines 1–3 was formed. The precipitate was filtered off, washed with cold CCl₄ (3 \times 1 mL), and dried in vacuo with P₂O₅.

N-(2-Phenyl-2,2-dichloroethylidene)-4-chlorobenzenesulfonamide (1a): Yield 10.12 g (93%); colorless solid; m.p. 104–105 °C. IR (KBr): $\tilde{v} = 1170$, 1310 (SO₂), 1630 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 7.35$, 7.90 (m, 9 H, Ph, C₆H₄), 8.60 (s, 1 H, N=CH) ppm. ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 85.70$ (CCl₂), 127.08 (C°'), 129.01 (C°), 129.84 (C^{m'}), 129.87 (C^m), 130.57 (C^{p'}), 135.16 (Cⁱ), 136.26 (C^{i'}), 141.33 (C^p), 168.59 (N=CH) ppm.

N-(2-Phenyl-2,2-dichloroethylidene)benzenesulfonamide (1b): Yield 8.86 g (90%); colorless solid; m.p. 101–102 °C. IR (KBr): $\tilde{v} = 1160$, 1310 (SO₂), 1620 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 7.33$, 7.93 (m, 10 H, 2 Ph), 8.51 (s, 1 H, N=CH) ppm. ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 85.73$ (CCl₂), 127.03 (C°'), 128.36 (C°), 128.95 (C^m'), 129.47 (C^m), 130.48 (C^p'), 134.45 (C^p), 136.39 (Cⁱ), 136.57 (Cⁱ'), 168.22 (N=CH) ppm.

N-(2-Phenyl-2,2-dichloroethylidene)-4-methylbenzenesulfonamide (1c): Yield 9.03 g (88%); colorless solid; m.p. 105–106 °C. IR (KBr): $\tilde{v} = 1150, 1310$ (SO₂), 1630 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, CDCl₃): $\delta = 2.43$ (s, 3 H, CH₃), 7.30, 7.82 (m, 9 H, Ph, C₆H₄), 8.56 (s, 1 H, N=CH) ppm. ¹³C NMR (100.61 MHz, CDCl₃): $\delta = 21.69$ (CH₃), 85.71 (CCl₂), 126.92 (C°'), 128.34 (C°), 128.86 (C^{m'}), 130.07 (C^m), 130.39 (C^{p'}), 133.24 (Cⁱ), 136.32 (C^{i'}), 145.67 (C^p), 167.61 (N=CH) ppm.

General Procedure for Synthesis of Adducts 3–6: 2-Aminopyrimidine **2a–d** (2.8 mmol) was added to a solution of imine **1** (2.8 mmol) in 1,4-dioxane (10 mL) and the solution was stirred on a magnetic stirrer for 6 h at room temp. The reaction mixture was diluted with water (100 mL) and the precipitate was filtered off, dried, and recrystallized from ethanol.

4-Chloro-N-[2,2-dichloro-2-phenyl-1-(pyrimidin-2-ylamino)ethyl]benzenesulfonamide (3a): Yield 1.10 g (86%); colorless solid; m.p. 196–198 °C. IR (KBr): $\tilde{v} = 1164$, 1340 (SO₂), 3331 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 6.30$ (dd, ${}^{3}J = 9.4$, ${}^{3}J = 9.8$ Hz, 1 H, CH), 6.55 (d, ${}^{3}J = 9.8$ Hz, 1 H, NH), 6.58 (t, ${}^{3}J = 9.8$ Hz, 1 H, 5-H), 7.25, 7.61 (AA'BB', 4 H, 4-ClC₆H₄), 7.33–7.40 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 8.09 (d, ${}^{3}J = 4.7$ Hz, 2 H, 4,6-H), 8.43 (d, ${}^{3}J = 9.4$ Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 69.90$ (CH), 95.62 (CCl₂), 112.54 (C-5), 127.88, 128.50, 129.91, 139.08 (C₆H₅), 128.95, 129.19, 137.77, 139.96 (4-ClC₆H₄), 157.94 (C-4,6), 160.55 (C-2) ppm. C₁₈H₁₅Cl₃N₄O₂S (457.76): calcd. C 47.23, H 3.30, Cl 23.23, N 12.24, S 7.00; found C 47.31, H 3.28, Cl 23.37, N 12.11, S 6.92.

N-[2,2-Dichloro-2-phenyl-1-(pyrimidin-2-ylamino)ethyl]benzenesulfonamide (3b): Yield 0.75 g (63%); colorless solid; m.p. 184–185 °C. IR (KBr): $\tilde{v} = 1167$, 1351 (SO₂), 3371 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 6.37$ (dd, ³*J* = 9.0, ³*J* = 9.5 Hz, 1 H, CH), 6.50 (d, ³*J* = 9.5 Hz, 1 H, NH), 6.55 (m, 1 H, 5-H), 7.22 (m, 2 H, 2,6-H C₆H₅SO₂), 7.33–7.38 (m, 4 H, 3,4,5-H C₆H₅, 4-H C₆H₅SO₂), 7.62 (m, 2 H, 3,5-H C₆H₅SO₂), 7.71 (m, 2 H, 2,6-H C₆H₅), 8.08 (m, 2 H, 4,6-H), 8.25 (d, ³*J* = 9.0 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 69.93$ (CH), 95.90 (CCl₂), 112.57 (C-5), 127.19, 127.98, 129.89, 139.14 (C₆H₅), 128.48, 128.84, 132.75, 141.14 (C₆H₅SO₂), 158.11 (C-4,6), 160.64 (C-2) ppm. C₁₈H₁₆Cl₂N₄O₂S (423.32): calcd. C 51.07, H 3.81, Cl 16.75, N 13.24, S 7.57; found C 51.21, H 3.75, Cl 16.59, N 13.35, S 7.48.

N-[2,2-Dichloro-2-phenyl-1-(pyrimidin-2-ylamino)ethyl]-4-methylbenzenesulfonamide (3c): Yield 0.76 g (62%); colorless solid; m.p. 194–196 °C. IR (KBr): $\tilde{v} = 1157$, 1332 (SO₂), 3344 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.16$ (s, 3 H, CH₃), 6.28 (dd, Date: 27-08-14 17:56:12

Pages: 12

Synthesis of 3-(Sulfonylamino)imidazo[1,2-a]pyrimidines

 ${}^{3}J = 9.1, {}^{3}J = 9.5$ Hz, 1 H, CH), 6.40 (d, ${}^{3}J = 9.5$ Hz, 1 H, NH), 6.56 (t, ${}^{3}J = 4.28$ Hz, 1 H, 5-H), 6.97, 7.48 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.36–7.38 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 8.07–8.11 (m, 3 H, 4,6-H, NHSO₂) ppm. 13 C NMR (100.61 MHz, [D₆]DMSO): $\delta = 69.85$ (CH), 95.85 (CCl₂), 112.32 (C-5), 127.27, 127.93, 129.80, 139.06 (C₆H₅), 128.40, 129.22, 137.98, 142.93 (4-CH₃C₆H₄), 157.80 (C-4,6), 160.54 (C-2) ppm. C₁₉H₁₈Cl₂N₄O₂S (437.34): calcd. C 52.18, H 4.15, Cl 16.21, N 12.81, S 7.33; found C 52.05, H 4.08, Cl 16.36, N 12.62, S 7.24.

4-Chloro-*N*-**{2,2-dichloro-1-[(4-methylpyrimidin-2-yl)amino]-2-phenylethyl}benzenesulfonamide (4a):** Yield 0.94 g (71%); colorless solid; m.p. 179–181 °C. IR (KBr): $\tilde{v} = 1163$, 1338 (SO₂), 3327 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.14$ (s, 3 H, CH₃), 6.27–6.31 (m, 2 H, CH, NH), 6.46 (br.s, 1 H, 5-H), 7.25, 7.61 (AA'BB', 4 H, 4-ClC₆H₄), 7.36–7.40 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 7.92 (br. s, 1 H, 6-H), 8.37 (d, ³*J* = 6.4 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 23.83$ (CH₃), 69.79 (CH), 95.54 (CCl₂), 111.95 (C-5), 127.85, 128.42, 129.84, 139.04 (C₆H₅), 128.85, 129.15, 137.68, 139.64 (4-ClC₆H₄), 157.31 (C-6), 160.31 (C-2), 167.73 (C-4) ppm. C₁₉H₁₇Cl₃N₄O₂S (471.79): calcd. C 48.37, H 3.63, Cl 22.54, N 11.88, S 6.80; found C 48.24, H 3.65, Cl 22.41, N 11.97, S 6.88.

N-{2,2-Dichloro-1-[(4-methylpyrimidin-2-yl)amino]-2-phenylethyl}benzenesulfonamide (4b): Yield 1.11 g (91%); colorless solid; m.p. 180–182 °C. IR (KBr): $\bar{v} = 1166$, 1329 (SO₂), 3329 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.11$ (s, 3 H, CH₃), 6.34–6.39 (m, 2 H, CH, NH), 6.41 (br. s, 1 H, 5-H), 7.20 (m, 2 H, 3,5-H C₆H₅), 7.30–7.37 (m, 4 H, 3,4,5-H C₆H₅), 7.91 (br. s, 1 H, 6-H), 8.28 (d, ³*J* = 5.9 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 23.80$ (CH₃), 69.75 (CH), 95.79 (CCl₂), 111.91 (C-5), 127.06, 127.85, 129.75, 139.08 (C₆H₅), 128.32, 128.65, 132.54, 141.01 (C₆H₅SO₂), 157.16 (C-6), 160.32 (C-2), 167.70 (C-4) ppm. C₁₉H₁₈Cl₂N₄O₂S (437.34): calcd. C 52.18, H 4.15, Cl 16.21, N 12.81, S 7.33; found C 52.03, H 4.11, Cl 16.29, N 12.70, S 7.29.

N-{2,2-Dichloro-1-[(4-methylpyrimidin-2-yl)amino]-2-phenylethyl}-4-methylbenzenesulfonamide (4c): Yield 0.76 g (60%); orange solid; m.p. 166–168 °C. IR (KBr): \bar{v} = 1160, 1329 (SO₂), 3328 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): δ = 2.12 (s, 3 H, CH₃-Pyr), 2.22 (s, 3 H, CH₃), 6.24–6.29 (m, 2 H, CH, NH), 6.44 (br. s, 1 H, 5-H), 6.97, 7.49 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.34–7.39 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 7.90 (br. s, 1 H, 6-H), 8.07 (d, ³J = 6.9 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): δ = 21.31 (CH₃), 23.91 (CH₃-Pyr), 69.88 (CH), 95.90 (CCl₂), 111.81 (C-5), 128.00, 128.41, 129.83, 139.16 (C₆H₅), 127.34, 129.21, 138.01, 142.93 (4-CH₃C₆H₄), 157.43 (C-6), 160.41 (C-2), 167.50 (C-4) ppm. C₂₀H₂₀Cl₂N₄O₂S (451.37): calcd. C 53.22, H 4.47, Cl 15.71, N 12.41, S 7.01; found C 53.14, H 4.42, Cl 15.62, N 12.35, S 7.08.

4-Chloro-*N*-**{2,2-dichloro-1-[(4,6-dimethylpyrimidin-2-yl)amino]-2-phenylethyl}benzenesulfonamide (5a):** Yield 1.18 g (87%); colorless solid; m.p. 184–186 °C. IR (KBr): $\tilde{v} = 1170$, 1344 (SO₂), 3398 (NH) cm^{-1.} ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.09$ (s, 6 H, CH₃), 6.12 (d, ³*J* = 9.4 Hz, 1 H, NH), 6.28 (dd, ³*J* = 8.4, ³*J* = 9.4 Hz, 1 H, CH), 6.32 (s, 1 H, 5-H), 7.24, 7.62 (AA'BB', 4 H, 4-ClC₆H₄), 7.36–7.38 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 8.34 (d, ³*J* = 8.4 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 23.58$ (CH₃), 69.69 (CH), 95.45 (CCl₂), 111.15 (C-5), 127.81, 128.29, 129.74, 138.98 (C₆H₅), 128.68, 129.07, 137.58, 139.53 (4-ClC₆H₄), 160.11 (C-2), 166.72 (C-4,6) ppm. C₂₀H₁₉Cl₃N₄O₂S (485.81): calcd. C 49.45, H 3.94, Cl

21.89, N 11.53, S 6.60; found C 49.33, H 3.89, Cl 21.75, N 11.49, S 6.76.

N-{2,2-Dichloro-1-[(4,6-dimethylpyrimidin-2-yl)amino]-2-phenylethyl}benzenesulfonamide (5b): Yield 0.82 g (65%); light-brown solid; m.p. 172–174 °C. IR (KBr): $\tilde{v} = 1170, 1340$ (SO₂), 3408 (NH) cm^{-1.} ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.06$ (s, 6 H, CH₃), 6.14 (d, ³*J* = 9.6 Hz, 1 H, NH), 6.27 (s, 1 H, 5-H), 6.36 (dd, ³*J* = 9.1, ³*J* = 9.6 Hz, 1 H, CH), 7.20 (m, 2 H, 3.5-H C₆H₅), 7.28– 7.36 (m, 4 H, 3,4,5-H C₆H₅, 4-H C₆H₅SO₂), 7.64 (m, 2 H, 2.6-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 8.28 (d, ³*J* = 9.1 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 23.16$ (CH₃), 69.30 (CH), 95.58 (CCl₂), 110.74 (C-5), 126.65, 127.45, 129.30, 138.71 (C₆H₅), 127.85, 128.13, 132.03, 140.63 (C₆H₅SO₂), 159.76 (C-2), 166.50 (C-4,6) ppm. C₂₀H₂₀Cl₂N₄O₂S (451.37): calcd. C 53.22, H 4.47, Cl 15.71, N 12.41, S 7.10; found C 53.11, H 4.41, Cl 15.87, N 12.37, S 7.17.

N-{2,2-Dichloro-1-[(4,6-dimethylpyrimidin-2-yl)amino]-2-phenylethyl}-4-methylbenzenesulfonamide (5c): Yield 0.86 g (66%); colorless solid; m.p. 188–190 °C. IR (KBr): \tilde{v} = 1163, 1338 (SO₂), 3393 (NH) cm^{-1.} ¹H NMR (400.13 MHz, [D₆]DMSO): δ = 2.07 (s, 6 H, CH₃-Pyr), 2.15 (s, 3 H, CH₃), 6.04 (d, ³*J* = 9.5 Hz, 1 H, NH), 6.25 (dd, ³*J* = 9.3, ³*J* = 9.5 Hz, 1 H, CH), 6.29 (s, 1 H, 5-H), 6.96, 7.50 (AA'BB',4 H, 4-CH₃C₆*H*₄), 7.31–7.39 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 8.06 (d, ³*J* = 9.3 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): δ = 21.26 (CH₃), 23.71 (CH₃-Pyr), 69.83 (CH), 95.87 (CCl₂), 111.03 (C-5), 128.03, 128.35, 129.79, 139.16 (C₆H₅), 127.35, 129.09, 137.99, 142.85 (4-CH₃C₆H₄), 160.27 (C-2), 166.53 (C-4,6) ppm. C₂₁H₂₂Cl₂N₄O₂S (465.40): calcd. C 54.20, H 4.76, Cl 15.24, N 12.04, S 6.89; found C 54.29, H 4.74, Cl 15.11, N 12.09, S 6.95.

4-Chloro-*N*-**{2,2-dichloro-1-[(4-chloro-6-methylpyrimidin-2-yl)**amino]-2-phenylethyl}benzenesulfonamide (6a): Yield 1.28 g (90%); colorless solid; m.p. 159–161 °C. IR (KBr): $\tilde{v} = 1169$, 1343 (SO₂), 3218, 3351 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.15$ and 2.21 (s and s, 3 H, CH₃), 6.26 and 6.08 (br. s and br. s, 1 H, CH), 6.54 and 6.58 (s and s, 1 H, 5-H), 6.98 (br. s, 1 H, NH), 7.30, 7.65 (AA'BB', 4 H, 4-ClC₆H₄), 7.35–7.37 (m, 3 H, 3,4,5-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.41 (d, ³J = 9.5 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 22.98$ and 23.23 (CH₃), 69.43 (CH), 94.44 (CCl₂), 108.09 and 110.28 (C-5), 127.37, 127.89, 129.41, 138.25 (C₆H₅), 128.36, 128.72, 137.37, 138.95 (4-ClC₆H₄), 159.78 (C-2), 169.13 (C-4), 169.76 (C-6) ppm. C₁₉H₁₆Cl₄N₄O₂S (506.23): calcd. C 45.08, H 3.19, Cl 28.01, N 11.07, S 6.33; found C 45.21, H 3.22, Cl 28.15, N 11.19, S 6.29.

N-{2,2-Dichloro-1-[(4-chloro-6-methylpyrimidin-2-yl)amino]-2-phenylethyl}benzenesulfonamide (6b): Yield 1.07 g (81%); colorless solid; m.p. 143–145 °C. IR (KBr): $\tilde{v} = 1165$, 1334 (SO₂), 3372 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.07$ and 2.12 (s and s, 3 H, CH₃), 6.11 and 6.27 (br. s and br. s, 1 H, CH), 6.51 (s, 1 H, 5-H), 6.96 (br. s, 1 H, NH), 7.26 (m, 2 H, 3,5-H C₆H₅SO₂), 7.33–7.37 (m, 4 H, 3,4,5-H C₆H₅SO₂), 8.31 (d, ³J = 9.3 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 22.96$ and 23.26 (CH₃), 69.44 (CH), 94.74 (CCl₂), 110.18 and 110.39 (C-5), 126.75, 127.44, 129.40, 138.36 (C₆H₅), 127.88, 128.21, 132.20, 140.36 (C₆H₅SO₂), 159.44 and 159.84 (C-2), 169.07 (C-4), 169.75 (C-6) ppm. C₁₉H₁₇Cl₃N₄O₂S (471.79): calcd. C 48.37, H 3.63, Cl 22.54, N 11.88, S 6.80; found C 48.49, H 3.59, Cl 22.45, N 11.81, S 6.75.

N-{2,2-Dichloro-1-[(4-chloro-6-methylpyrimidin-2-yl)amino]-2-phenylethyl}-4-methylbenzenesulfonamide (6c): Yield 1.12 g (82%); colorless solid; m.p. 184–186 °C. IR (KBr): $\tilde{v} = 1170$, 1341 (SO₂), 3409 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.14$ (s, 3 H,

FULL PAPER

CH₃), 2.18 (s, 3 H, CH₃), 6.03 and 6.19 (br. s and br. s, 1 H, CH), 6.57 (s, 1 H, 5-H), 6.83 (br. s, 1 H, NH), 7.02, 7.52 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.36–7.38 (m, 3 H, 3,4,5-H C₆H₅), 7.68 (m, 2 H, 2,6-H C₆H₅), 8.09 (d, ${}^{3}J = 9.5$ Hz, 1 H, NHSO₂) ppm. 13 C NMR (100.61 MHz, [D₆]DMSO): $\delta = 20.75$ (CH₃), 22.91 and 23.23 (CH₃), 69.46 (CH), 94.70 (CCl₂), 110.05 (C-5), 126.92, 127.47, 129.38, 138.31 (C₆H₅), 127.86, 128.65, 137.17, 142.62 (4-CH₃C₆H₄), 159.43 and 159.80 (C-2), 169.01 (C-4), 169.69 (C-6) ppm. C₂₀H₁₉Cl₃N₄O₂S (485.81): calcd. C 49.45, H 3.94, Cl 21.89, N 11.53, S 6.60; found C 49.57, H 3.90, Cl 21.99, N 11.60, S 6.51.

General Procedure for the Synthesis of Adducts 7 and 8: 2-Aminopyrimidine 2e,f (2.8 mmol) was added to a solution of imine 1 (2.8 mmol) in DMF (10 mL) and the solution was stirred on magnetic stirrer for 5 h at room temp. The reaction mixture was shaken with acetone (30 mL), diluted with water (100 mL) and allowed to stand for 5 h. The precipitate was filtered off, dried, and recrystallized from ethanol.

N-{1-[(5-Bromopyrimidin-2-yl)amino]-2,2-dichloro-2-phenylethyl}-4chlorobenzenesulfonamide (7a): Yield 1.20 g (80%); colorless solid; m.p. 184–186 °C. IR (KBr): $\tilde{v} = 1166$, 1352 (SO₂), 3228, 3350 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 6.16$ (dd, ³*J* = 9.1, ³*J* = 9.7 Hz, 1 H, CH), 6.99 (d, ³*J* = 9.7 Hz, 1 H, NH), 7.29, 7.62 (AA'BB', 4 H, 4-ClC₆H₄), 7.36–7.40 (m, 3 H, 3,4,5-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.21 (s, 2 H, 4,6-H), 8.48 (d, ³*J* = 9.1 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 70.27$ (CH), 95.19 (CCl₂), 108.02 (C-5), 127.85, 128.57, 129.99, 138.90 (C₆H₅), 129.02, 129.31, 137.98, 139.64 (4-ClC₆H₄), 157.89 (C-4,6), 159.17 (C-2) ppm. C₁₈H₁₄BrCl₃N₄O₂S (536.66): calcd. C 40.29, H 2.63, N 10.44, S 5.97; found C 40.17, H 2.60, N 10.30, S 5.93.

N-{1-[(5-Bromopyrimidin-2-yl)amino]-2,2-dichloro-2-phenylethyl}benzenesulfonamide (7b): Yield 0.98 g (70%); colorless solid; m.p. 166–168 °C. IR (KBr): $\tilde{v} = 1160, 1341$ (SO₂), 3292, 3395 (NH) cm^{-1.} ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 6.24$ (dd, ³*J* = 9.5, ³*J* = 9.6 Hz, 1 H, CH), 6.95 (d, ³*J* = 9.6 Hz, 1 H, NH), 7.24 (m, 2 H, 3.5-H C₆H₅), 7.36–7.40 (m, 4 H, 3,4,5-H C₆H₅), 4-H C₆H₅SO₂), 7.63 (m, 2 H, 2.6-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.19 (s, 2 H, 4,6-H), 8.33 (d, ³*J* = 9.5 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 70.29$ (CH), 95.42 (CCl₂), 107.85 (C-5), 127.23, 127.90, 129.96, 138.98 (C₆H₅), 128.53, 128.92, 132.71, 141.07 (C₆H₅SO₂), 158.09 (C-4,6), 159.21 (C-2) ppm. C₁₈H₁₅BrCl₂N₄O₂S (502.21): calcd. C 43.05, H 3.01, N 11.16, S 6.38; found C 43.15, H 3.05, N 11.32, S 6.24.

N-{1-[(5-Bromopyrimidin-2-yl)amino]-2,2-dichloro-2-phenylethyl}-4methylbenzenesulfonamide (7c): Yield 1.30 g (90%); colorless solid; m.p. 181–183 °C. IR (KBr): \tilde{v} = 1155, 1333 (SO₂), 3329 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): δ = 2.22 (s, 3 H, CH₃), 6.10 (dd, ³*J* = 9.5, ³*J* = 9.5 Hz, 1 H, CH), 6.77 (d, ³*J* = 9.5 Hz, 1 H, NH), 7.01, 7.48 (AA'BB', 4 H, 4-CH₃C₆*H*₄), 7.37–7.39 (m, 3 H, 3,4,5-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.14 (d, ³*J* = 9.5 Hz, 1 H, NHSO₂), 8.18 (s, 2 H, 4,6-H) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): δ = 20.93 (CH₃), 69.79 (CH), 94.95 (CCl₂), 107.37 (C-5), 126.98, 127.48, 129.47, 138.44 (C₆H₅), 128.05, 128.85, 137.42, 142.74 (4-CH₃C₆H₄), 157.53 (C-4,6), 158.74 (C-2) ppm. C₁₉H₁₇BrCl₂N₄O₂S (516.24): calcd. C 44.20, H 3.32, N 10.85, S 6.21; found C 44.05, H 3.29, N 10.79, S 6.18.

4-Chloro-*N*-**{2,2-dichloro-1-[(5-chloropyrimidin-2-yl)amino]-2-phen-ylethyl}benzenesulfonamide (8a):** Yield 0.35 g (25%); colorless solid; m.p. 181–183 °C. IR (KBr): $\tilde{v} = 1162$, 1334 (SO₂), 3383 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 6.17$ (br. s, 1 H, CH), 7.01 (d, ³*J* = 9.1 Hz, 1 H, NH), 7.30, 7.62 (AA'BB', 4 H, 4-

ClC₆H₄), 7.37–7.38 (m, 3 H, 3,4,5-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.16 (s, 2 H, 4,6-H), 8.50 (br. s, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): δ = 70.27 (CH), 95.15 (CCl₂), 119.98 (C-5), 127.77, 128.47, 129.90, 138.82 (C₆H₅), 128.94, 129.22, 137.86, 139.59 (4-ClC₆H₄), 156.03 (C-4,6), 158.96 (C-2) ppm. C₁₈H₁₄Cl₄N₄O₂S (492.21): calcd. C 43.92, H 2.87, Cl 28.81, N 11.38, S 6.51; found C 43.83, H 2.84, Cl 28.75, N 11.25, S 6.47.

N-{2,2-Dichloro-1-[(5-chloropyrimidin-2-yl)amino]-2-phenylethyl}benzenesulfonamide (8b): Yield 0.50 g (39%); colorless solid; m.p. 181–183 °C. IR (KBr): $\tilde{v} = 1162$, 1339 (SO₂), 1627 (C=N), 3417 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 6.25$ (dd, ³J = 9.5, ³J = 9.8 Hz, 1 H, CH), 6.96 (d, ³J = 9.8 Hz, 1 H, NH), 7.24 (m, 2 H, 3.5-H C₆H₅), 7.36–7.39 (m, 4 H, 3,4,5-H C₆H₅), 4.H C₆H₅SO₂), 7.63 (m, 2 H, 2.6-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.15 (s, 2 H, 4,6-H), 8.34 (d, ³J = 9.5 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 70.37$ (CH), 95.46 (CCl₂), 119.84 (C-5), 127.23, 127.90, 129.95, 138.99 (C₆H₅), 128.52, 128.91, 132.71, 141.07 (C₆H₅SO₂), 156.18 (C-4,6), 159.09 (C-2) ppm. C₁₈H₁₅Cl₃N₄O₂S (457.76): calcd. C 47.23, H 3.30, Cl 23.23, N 12.24, S 7.00; found C 47.32, H 3.38, Cl 23.15, N 12.38, S 7.16.

N-{2,2-Dichloro-1-[(5-chloropyrimidin-2-yl)amino]-2-phenylethyl}-4methylbenzenesulfonamide (8c): Yield 0.58 g (44%); colorless solid; m.p. 172–174 °C. IR (KBr): $\tilde{v} = 1156$, 1334 (SO₂), 3330, 3425 (NH) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.19$ (s, 3 H, CH₃), 6.13 (dd, ³*J* = 9.1, ³*J* = 9.5 Hz, 1 H, CH), 6.81 (d, ³*J* = 9.5 Hz, 1 H, NH), 7.01, 7.48 (AA'BB', 4 H, 4-CH₃C₆*H*₄), 7.37– 7.39 (m, 3 H, 3,4,5-H C₆H₅), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.14 (s, 2 H, 4,6-H), 8.16 (d, ³*J* = 9.1 Hz, 1 H, NHSO₂) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 20.84$ (CH₃), 69.88 (CH), 94.99 (CCl₂), 119.38 (C-5), 126.96, 127.48, 129.46, 138.45 (C₆H₅), 128.04, 128.85, 137.47, 142.71 (4-CH₃C₆H₄), 155.45 (C-4,6), 158.63 (C-2) ppm. C₁₉H₁₇Cl₃N₄O₂S (471.79): calcd. C 48.37, H 3.63, Cl 22.54, N 11.88, S 6.80; found C 48.15, H 3.55, Cl 22.42, N 11.79, S 6.75.

General Procedure for Synthesis of Imidazo-pyrimidines 11–14: 2-Aminopyrimidine 2a-d (2.8 mmol) was added to a solution of imine 1 (2.8 mmol) in 1,4-dioxane (10 mL) and the solution was stirred on a magnetic stirrer for 5 h at room temp. NaOH (0.50 g, 11.2 mmol) and 1,4-dioxane (20 mL) were then added to the reaction mixture and stirring was continued for 5 h at room temp. The reaction mixture was diluted with water (100 mL), then 10% HCl was added to pH 6, the precipitate was filtered off, dried, and recrystallized from ethanol.

N-(2-Phenylimidazo[1,2-*a*]pyrimidine-3-yl)-4-chlorobenzenesulfonamide (11a): Yield 0.81 g (76%); colorless solid; m.p. 265–267 °C. IR (KBr): $\tilde{v} = 1164$, 1331 (SO₂), 1615 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 7.13$ (dd, ³*J* = 4.1, ³*J* = 6.8 Hz, 1 H, 6-H), 7.15–7.20 (m, 3 H, 3,4,5-H C₆H₅), 7.22, 7.40 (AA'BB', 4 H, 4-ClC₆H₄), 7.57 (m, 2 H, 2,6-H C₆H₅), 8.63 (dd, ³*J* = 4.1, ⁴*J* = 2.0 Hz, 1 H, 7-H), 8.77 (dd, ³*J* = 6.8, ⁴*J* = 2.0 Hz, 1 H, 5-H) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 109.56$ (C-6), 111.75 (C-3), 128.60, 129.24, 137.96, 138.44 (4-ClC₆H₄), 128.14, 127.27, 127.99, 131.88 (C₆H₅), 132.63 (C-5), 141.20 (C-2), 145.64 (C-8a), 151.99 (C-7) ppm. C₁₈H₁₃ClN₄O₂S (384.84): calcd. C 56.18, H 3.40, Cl 9.21, N 14.56, S 8.33; found C 56.38, H 3.46, Cl 9.34, N 14.45, S 8.38.

N-(2-Phenylimidazo[1,2-*a*]pyrimidine-3-yl)benzenesulfonamide (11b): Yield 0.96 g (89%); colorless solid; m.p. 273–275 °C. IR (KBr): $\tilde{v} = 1168$, 1331 (SO₂), 1615 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 7.12$ (dd, ³*J* = 4.5, ³*J* = 6.6 Hz, 1 H, 6-H), 7.16–7.18 (m, 3 H, 3,4,5-H C₆H₅), 7.29 (m, 2 H, 3,5-H C₆H₅SO₂), 7.42 (m, 1 H, 4-H C₆H₅SO₂), 7.53 (m, 2 H, 2,6-H

Eurjoc of Organic Che

C₆H₅SO₂), 7.69 (m, 2 H, 2,6-H C₆H₅), 8.61 (dd, ${}^{3}J$ = 4.5, ${}^{4}J$ = 2.0 Hz, 1 H, 7-H), 8.63 (dd, ${}^{4}J$ = 2.0, ${}^{3}J$ = 6.6 Hz, 1 H, 5-H), 10.84 (br. s, 1 H, NH) ppm. 13 C NMR (100.61 MHz, [D₆]DMSO): δ = 109.68 (C-6), 112.32 (C-3), 127.60, 127.55, 128.54, 132.52 (C₆H₅), 128.50, 129.59, 133.71, 140.18 (C₆H₅SO₂), 132.79 (C-5), 141.34 (C-2), 145.94 (C-8a), 152.10 (C-7) ppm. C₁₈H₁₄N₄O₂S (350.39): calcd. C 61.70, H 4.03, N 15.99, S 9.15; found C 61.86, H 3.98, N 15.82, S 9.21.

N-(2-Phenylimidazo[1,2-*a*]pyrimidine-3-yl)-4-methylbenzenesulfonamide (11c): Yield 0.66 g (65%); colorless solid; m.p. 253–255 °C. IR (KBr): $\tilde{v} = 1169$, 1330 (SO₂), 1615 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.19$ (s, 3 H, CH₃), 7.02, 7.33 (AA'BB', 4 H, 4-CH₃C₆*H*₄), 7.12 (dd, ³*J* = 4.1, ³*J* = 6.9 Hz, 1 H, 6-H), 7.15, 7.20 (m, 3 H, 3,4,5-H C₆H₅), 7.62 (m, 2 H, 2,6-H C₆H₅), 8.61 (dd, ³*J* = 4.1, ⁴*J* = 2.0 Hz, 1 H, 7-H), 8.66 (dd, ³*J* = 6.9, ⁴*J* = 2.0 Hz, 1 H, 5-H), 10.71 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 20.87$ (CH₃), 109.09 (C-6), 111.93 (C-3), 126.53, 129.44, 136.32, 143.52 (4-CH₃C₆H₄), 127.84, 127.05, 127.61, 131.99 (C₆H₅), 132.29 (C-5), 140.88 (C-2), 145.37 (C-8a), 151.48 (C-7) ppm. MS (EI): *m*/*z* (%) = 207 (100) [M – ArSO₂-H-H]⁺, 181 (7), 153 (13), 129 (25), 103 (21). C₁₉H₁₆N₄O₂S (364.42): calcd. C 62.62, H 4.43, N 15.37, S 8.80; found C 62.76, H 4.37, N 15.22, S 8.92.

4-Chloro-*N*-**(7-methyl-2-phenylimidazo**[**1**,2-*a*]**pyrimidin-3-yl)benz-enesulfonamide (12a):** Yield 0.57 g (51%); colorless solid; m.p. 223–225 °C. IR (KBr): $\tilde{v} = 1165$, 1322 (SO₂), 1622 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.57$ (s, 3 H, CH₃), 7.06 (d, ³*J* = 6.9 Hz, 1 H, 6-H), 7.13–7.20 (m, 3 H, 3,4,5-H C₆H₅), 7.22, 7.39 (AA'BB', 4 H, 4-ClC₆H₄), 7.56 (m, 2 H, 2,6-H C₆H₅), 8.61 (d, ³*J* = 6.9 Hz, 1 H, 5-H) ppm. ¹³C NMR (100.61 MHz, [D₆]-DMSO): $\delta = 24.45$ (CH₃), 109.97 (C-6), 111.37 (C-3), 125.77, 126.85, 127.49, 131.97 (C₆H₅), 128.33, 128.94, 131.68, 138.01 (4-ClC₆H₄), 138.01 (C-2), 131.67 (C-5), 145.34 (C-8a), 161.35 (C-7) ppm. C₁₉H₁₅ClN₄O₂S (398.87): calcd. C 52.21, H 3.79, Cl 8.89, N 14.05, S 8.04; found C 52.35, H 3.71, Cl 8.98, N 14.25, S 8.15.

N-(7-Methyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (12b): Yield 0.66 g (65%); colorless solid; m.p. 279–281 °C. IR (KBr): $\tilde{v} = 1168$, 1335 (SO₂), 1622 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.55$ (s, 3 H, CH₃), 7.00 (d, ³*J* = 6.8 Hz, 1 H, 6-H), 7.16 (m, 2 H, 3,5-H C₆H₅), 7.16 (m, 1 H, 4-H C₆H₅), 7.28 (m, 2 H, 3,5-H C₆H₅SO₂), 7.42 (m, 1 H, 4-H C₆H₅SO₂), 7.51 (m, 2 H, 2,6-H C₆H₅SO₂), 7.65 (m, 2 H, 2,6-H C₆H₅SO₂), 7.65 (m, 2 H, 2,6-H C₆H₅), 8.44 (d, ³*J* = 6.8 Hz, 1 H, 5-H) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 24.91$ (CH₃), 110.27 (C-6), 111.95 (C-3), 126.95, 127.27, 128.21, 132.58 (C₆H₅), 128.34, 129.44, 133.51, 140.19 (C₆H₅SO₂), 131.95 (C-5), 140.19 (C-2), 145.74 (C-8a), 161.66 (C-7) ppm. C₁₉H₁₆N₄O₂S (364.42): calcd. C 62.62, H 4.43, N 15.37, S 8.80; found C 62.54, H 4.38, N 15.18, S 8.65.

4-Methyl-*N***-**(7-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (12c): Yield 0.56 g (53%); colorless solid; m.p. 252– 254 °C. IR (KBr): $\tilde{v} = 1162$, 1335 (SO₂), 1623 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.20$ (s, 3 H, CH₃), 2.56 (s, 3 H, CH₃), 7.00, 7.33 (AA'BB', 4 H, 4-CH₃C₆*H*₄), 7.03 (d, ³*J* = 6.8 Hz, 1 H, 6-H), 7.12–7.18 (m, 3 H, 3,4,5-H C₆H₅), 7.59 (m, 2 H, 2,6-H C₆H₅), 8.50 (d, ³*J* = 6.8 Hz, 1 H, 5-H), 10.62 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 21.35$ (CH₃), 24.97 (CH₃), 110.30 (C-6), 111.91 (C-3), 127.01, 127.39, 127.90, 132.64 (C₆H₅), 128.26, 129.89, 136.83, 143.96 (4-CH₃C₆H₄), 140.64 (C-2), 132.06 (C-5), 145.83 (C-8a), 161.62 (C-7) ppm. C₂₀H₁₈N₄O₂S (378.45): calcd. C 63.47, H 4.79, N 14.80, S 8.47; found C 63.35, H 4.86, N 14.68, S 8.56. **4-Chloro-***N*-**(5,7-dimethyl-2-phenylimidazo[1,2-***a***]pyrimidin-3-yl)benzenesulfonamide (13a):** Yield 0.69 g (60%); colorless solid; m.p. 244–246 °C. IR (KBr): $\tilde{v} = 1165$, 1343 (SO₂), 1615 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.50$ (s, 3 H, CH₃), 2.96 (s, 3 H, CH₃), 6.88 (s, 1 H, 6-H), 7.14, 7.29 (AA'BB', 4 H, 4-ClC₆H₄), 7.06–7.15 (m, 3 H, 3,4,5-H C₆H₅), 7.48 (m, 2 H, 2,6-H C₆H₅), 10.80 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 18.86$ (CH₃), 24.04 (CH₃), 111.49 (C-6), 111.78 (C-3), 127.32, 127.32, 127.79, 132.33 (C₆H₅), 128.37, 128.80, 138.08, 138.71 (4-ClC₆H₄), 142.25 (C-2), 145.52 (C-5), 146.62 (C-8a), 160.75 (C-7) ppm. MS (EII: *m/z* (%) = 236 (100) [M – ArSO₂H]⁺, 209 (49), 183 (23), 133 (28), 106 (40). C₂₀H₁₇ClN₄O₂S (412.89): calcd. C 58.18, H 4.15, Cl 8.59, N 13.57, S 7.77; found C 58.05, H 4.05, Cl 8.41, N 13.38, S 7.63.

N-(5,7-Dimethyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (13b): Yield 0.76 g (77%); light-brown solid; m.p. 237–239 °C. IR (KBr): $\tilde{v} = 1160$, 1340 (SO₂), 1615 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.64$ (s, 3 H, CH₃), 3.04 (s, 3 H, CH₃), 7.14–7.19 (m, 4 H, 3,4,5-H C₆H₅, 6-H), 7.23 (m, 1 H, 4-H C₆H₅SO₂), 7.33 (m, 2 H, 3,5-H C₆H₅SO₂), 7.41 (m, 2 H, 2,6-H C₆H₅SO₂), 7.43 (m, 2 H, 2,6-H C₆H₅) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 18.78$ (CH₃), 24.17 (CH₃), 113.62 (C-6), 114.91 (C-3), 126.44, 127.09, 127.68, 129.37 (C₆H₅), 128.31, 128.73, 133.06, 139.60 (C₆H₅SO₂), 135.58 (C-5), 143.81 (C-2), 147.88 (C-8a), 166.09 (C-7) ppm. C₁₈H₁₄N₄O₂S (350.39): calcd. C 61.70, H 4.03, N 15.99, S 9.15; found C 61.86, H 3.95, N 15.82, S 8.97.

4-Methyl-*N*-(**5**,7-dimethyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (13c): Yield 0.70 g (64%); brown solid; m.p. 242–244 °C. IR (KBr): $\tilde{v} = 1161$, 1327 (SO₂), 1623 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.17$ (s, 3 H, CH₃), 2.50 (s, 3 H, CH₃-C5), 2.96 (s, 3 H, CH₃-C7), 6.87, 7.19 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.05 (m, 2 H, 3,5-H C₆H₅), 7.12 (m, 1 H, 4-H C₆H₅), 7.52 (m, 2 H, 2,6-H C₆H₅), 10.81 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 19.34$ (CH₃), 21.35 (CH₃), 24.54 (CH₃), 111.81 (C-6), 112.63 (C-3), 127.49, 127.76, 128.12, 132.92 (C₆H₅), 126.94, 129.55, 137.33, 143.44 (4-CH₃C₆H₄), 142.65 (C-2), 146.04 (C-5), 146.99 (C-8a), 160.96 (C-7) ppm. C₂₁H₂₀N₄O₂S (392.47): calcd. C 64.27, H 5.14, N 14.28, S 8.17; found C 64.15, H 5.06, N 14.08, S 8.06.

4-Chloro-*N*-(7-chloro-5-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (14a): Yield 0.96 g (79%); colorless solid; m.p. 249–251 °C. IR (KBr): $\tilde{v} = 1164$, 1338 (SO₂), 1611 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 3.00$ (s, 3 H, CH₃), 7.08–7.19 (m, 6 H, 6-H, 3,4,5-H C₆H₅, 2,6-H 4-ClC₆H₄), 7.31 (d, 2 H, 3,5-H 4-ClC₆H₄), 7.49 (m, 2 H, 2,6-H C₆H₅), 10.97 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 19.24$ (CH₃), 11.45 (C-6), 113.52 (C-3), 127.84, 128.17, 128.33, 131.91 (C₆H₅), 128.80, 129.28, 138.54 (4-ClC₆H₄), 143.48 (C-2), 145.46 (C-5), 149.45 (C-8a), 151.64 (C-7) ppm. C₁₉H₁₄Cl₂N₄O₂S (433.31): calcd. C 52.67, H 3.26, Cl 16.36, N 12.93, S 7.40; found C 52.60, H 3.29, Cl 16.42, N 12.99, S 7.28.

N-(7-Chloro-5-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (14b): Yield 0.96 g (73%); colorless solid; m.p. 259– 261 °C. IR (KBr): $\tilde{v} = 1165$, 1340 (SO₂), 1610 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 3.00$ (s, 3 H, CH₃), 7.22 (s, 1 H, 6-H), 7.07–7.12 (m, 3 H, 3,4,5-H C₆H₅), 7.16 (m, 2 H, 3,5-H C₆H₅SO₂), 7.31 (m, 1 H, 4-H C₆H₅SO₂), 7.38 (m, 2 H, 2,6-H C₆H₅SO₂), 7.59 (m, 2 H, 2,6-H C₆H₅), 11.26 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 18.92$ (CH₃), 111.38 (C-6), 113.70 (C-3), 126.63, 127.59, 128.83, 131.36 (C₆H₅), 128.08, 128.83, 133.00, 140.25 (C₆H₅SO₂), 144.91 (C-5), 142.61 (C-2),

FULL PAPER

149.41 (C-8a), 151.64 (C-7) ppm. $C_{19}H_{15}ClN_4O_2S$ (398.87): calcd. C 57.21, H 3.79, Cl 8.89, N 14.05, S 8.04; found C 57.35, H 3.82, Cl 8.93, N 14.15, S 8.09.

4-Methyl-*N*-(7-chloro-5-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (14c): Yield 0.86 g (74%); colorless solid; m.p. 256–258 °C. IR (KBr): $\tilde{v} = 1175$, 1334 (SO₂), 1612 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.16$ (s, 3 H, CH₃), 3.00 (s, 3 H, CH₃), 6.88, 7.19 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.06 (m, 2 H, 3,5-H C₆H₅), 7.13–7.16 (m, 2 H, 6-H, 4-H C₆H₅), 7.50 (m, 2 H, 2,6-H C₆H₅), 10.77 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 18.86$ (CH₃), 20.86 (CH₃), 110.90 (C-6), 113.50 (C-3), 127.40, 127.53, 127.81, 131.65 (C₆H₅), 126.52, 129.18, 136.57, 143.25 (4-CH₃C₆H₄), 143.14 (C-2),145.00 (C-5), 149.09 (C-8a), 151.06 (C-7) ppm. C₂₀H₁₇ClN₄O₂S (412.89): calcd. C 58.18, H 4.15, Cl 8.59, N 13.57, S 7.77; found C 58.29, H 4.21, Cl 8.64, N 13.51, S 7.62.

General Procedure for the Synthesis of Imidazo-pyrimidines 15 and 16: 2-Aminopyrimidine 2e,f (2.8 mmol) was added to a solution of imine 1 (2.8 mmol) in DMF (10 mL) and the solution was stirred on a magnetic stirrer for 5 h. The reaction mixture was shaken with acetone (30 mL), diluted with water (100 mL), and allowed to stand for 5 h. The precipitate was filtered off and dried, then dissolved in 1,4-dioxane (30 mL) and NaOH (0.50 g, 11.2 mmol) was added. The reaction mixture was stirred for 5 h, mixed with water (100 mL), and 10% HCl was added to pH 6. The precipitate of the final imidazo-pyrimidine 15, 16 was filtered off, dried, and recrystallized from ethanol.

N-(6-Bromo-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)-4-chlorobenzenesulfonamide (15a): Yield 0.77 g (59%); colorless solid; m.p. 276– 278 °C. IR (KBr): $\tilde{v} = 1165$, 1346 (SO₂), 1613 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 7.19-7.23$ (m, 3 H, 3,4,5-H C₆H₅), 7.25, 7.41 (AA'BB', 4 H, 4-ClC₆H₄), 7.63 (m, 2 H, 2,6-H C₆H₅), 8.66 (d, ⁴J = 2.4 Hz, 1 H, 5-H), 8.86 (d, ⁴J = 2.4 Hz, 1 H, 6-H), 11.02 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]-DMSO): $\delta = 112.55$ (C-6), 117.58 (C-3), 127.44, 128.29, 128.34, 131.81 (C₆H₅), 128.79, 129.42, 138.02, 138.66 (4-ClC₆H₄), 130.21 (C-5), 142.56 (C-2), 144.05 (C-8a), 150.55 (C-7) ppm. C₁₈H₁₂BrClN₄O₂S (463.74): calcd. C 46.62, H 2.61, N 12.08, S 6.91; found C 46.73, H 2.63, N 12.18, S 6.94.

N-(6-Bromo-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide(15b): Yield 0.77 g (38%); colorless solid; m.p. 302–304 °C. IR (KBr): $\tilde{v} = 1163$, 1332 (SO₂), 1608 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 7.21-7.22$ (m, 3 H, 3,4,5-H C₆H₅), 7.32, 7.44 (m, 3 H, 3,4,5-H C₆H₅SO₂), 7.75 (m, 2 H, 2,6-H C₆H₅), 8.64 (d, ⁴J = 2.2 Hz, 1 H, 7-H), 8.57 (d, ⁴J = 2.2 Hz, 1 H, 5-H) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 104.76$ (C-6), 112.69 (C-3), 127.06, 127.58, 128.83, 132.06 (C₆H₅), 128.56, 129.66, 133.89, 139.98 (C₆H₅SO₂), 132.06 (C-5), 142.29 (C-2), 144.49 (C-8a), 152.12 (C-7) ppm. C₁₈H₁₃BrN₄O₂S (429.29): calcd. C 50.36, H 3.05, N 13.05, S 7.47; found C 50.26, H 3.08, N 13.00, S 7.57.

N-(6-Bromo-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)-4-methylbenzenesulfonamide (15c): Yield 0.41 g (33%); colorless solid; m.p. 287– 289 °C. IR (KBr): $\tilde{v} = 1161$, 1332 (SO₂), 1598 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.24$ (s, 3 H, CH₃), 7.08, 7.37 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.22 (m, 1 H, 4-H C₆H₅), 7.24 (m, 2 H, 3,5-H C₆H₅), 7.75 (m, 2 H, 2,6-H C₆H₅), 8.64 (d, ⁴J = 2.4 Hz, 1 H, 7-H), 8.49 (d, ⁴J = 2.4 Hz, 1 H, 5-H), 10.74 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 20.94$ (CH₃), 104.22 (C-6), 112.50 (C-3), 126.58, 129.65, 136.40, 143.89 (4-CH₃C₆H₄), 127.17, 127.98, 128.03, 131.69 (C₆H₅), 131.52 (C-5), 141.86 (C-2), 143.49 (C-8a), 151.46 (C-7) ppm. C₁₉H₁₅BrN₄O₂S (443.32): calcd. C 51.48, H 3.41, N 12.64, S 7.23; found C 51.55, H 3.44, N 12.59, S 7.30.

4-Chloro-*N***-(6-chloro-2-phenylimidazo[1,2-***a***]pyrimidin-3-yl)benzene-sulfonamide (16a):** Yield 0.55 g (47%); colorless solid; m.p. 292–294 °C. IR (KBr): $\tilde{v} = 1164$, 1343 (SO₂), 1612 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 7.18-7.25$ (m, 3 H, 3,4,5-H C₆H₅), 7.26 (AA'BB', 2 H, 2,6-H 4-ClC₆H₄), 7.43 (AA'BB', 2 H, 3,5-H 4-ClC₆H₄), 7.65 (m, 2 H, 2,6-H C₆H₅), 8.68 (d, ⁴*J* = 2.4 Hz, 1 H, 5-H), 8.84 (d, ⁴*J* = 2.4 Hz, 1 H, 7-H), 11.00 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 104.56$ (C-6), 112.36 (C-3), 127.46, 128.30, 128.37, 131.81 (C₆H₅), 128.79, 129.46, 138.07, 138.71 (4-ClC₆H₄), 132.12 (C-5), 142.28 (C-2), 144.00 (C-8a), 152.05 (C-7) ppm. C₁₈H₁₂Cl₂N₄O₂S (419.28): calcd. C 51.56, H 2.88, Cl 16.91, N 13.36, S 7.65; found C 51.64, H 2.86, Cl 16.84, N 13.28, S 7.71.

N-(6-Chloro-2-phenylimidazo[1,2-*a*]pyrimidin-3-yl)benzenesulfonamide (16b): Yield 0.39 g (36%); colorless solid; m.p. 290–292 °C. IR (KBr): $\tilde{v} = 1164$, 1334 (SO₂), 1611 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 7.18-7.22$ (m, 3 H, 3,4,5-H C₆H₅), 7.31 (m, 2 H, 3,5-H C₆H₅SO₂), 7.44 (m, 1 H, 4-H C₆H₅SO₂), 7.54 (m, 2 H, 2,6-H C₆H₅SO₂), 7.73 (m, 2 H, 2,6-H C₆H₅N), 8.61 (d, ⁴J = 2.4 Hz, 1 H, 5-H), 8.63 (d, ⁴J = 2.4 Hz, 1 H, 7-H), 10.91 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 112.90$ (C-6), 117.51 (C-3), 127.04, 127.52, 128.72, 130.09 (C₆H₅), 128.47, 129.55, 133.75, 139.94 (C₆H₅SO₂), 132.05 (C-5), 142.50 (C-2), 144.04 (C-8a), 150.52 (C-7) ppm. C₁₈H₁₃ClN₄O₂S (384.84): calcd. C 56.18, H 3.40, Cl 9.21, N 14.56, S 8.33; found C 56.25, H 3.44, Cl 9.28, N 14.45, S 8.39.

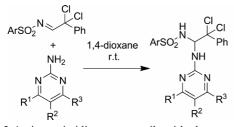
4-Methyl-*N*-(**6-chloro-2-phenylimidazo**[**1**,2-*a*]**pyrimidin-3-yl**)**benz-enesulfonamide** (**16c**): Yield 0.57 g (48%); colorless solid; m.p. 288–290 °C. IR (KBr): $\tilde{v} = 1163$, 1336 (SO₂), 1613 (C=N) cm⁻¹. ¹H NMR (400.13 MHz, [D₆]DMSO): $\delta = 2.22$ (s, 3 H, CH₃), 7.05, 7.35 (AA'BB', 4 H, 4-CH₃C₆H₄), 7.18–7.24 (m, 3 H, 3,4,5-H C₆H₅), 7.70 (m, 2 H, 2,6-H C₆H₅), 8.55 (d, ⁴J = 2.4 Hz, 1 H, 5-H), 8.63 (d, ⁴J = 2.4 Hz, 1 H, 7-H), 10.76 (br. s, 1 H, NH) ppm. ¹³C NMR (100.61 MHz, [D₆]DMSO): $\delta = 20.84$ (CH₃), 112.58 (C-6), 117.02 (C-3), 126.56, 129.55, 136.24, 143.80 (4-CH₃C₆H₄), 127.12, 127.80, 127.91, 132.22 (C₆H₅), 131.62 (C-5), 142.18 (C-2), 143.53 (C-8a), 149.95 (C-7) ppm. C₁₉H₁₅ClN₄O₂S (398.87): calcd. C 57.21, H 3.79, Cl 8.89, N 14.05, S 8.04; found C 57.33, H 3.84, Cl 8.93, N 14.13, S 8.11.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra of all compounds, qantum chemical data, crystal data, and details of X-ray experiments.

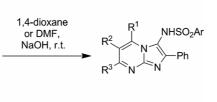
- a) N. De Kimpe, R. Verhé, L. De Buyck, N. Schamp, Org. Prep. Proc. Int. 1980, 12, 49–180; b) N. De Kimpe, R. Verhé, The Chemistry of a-Haloketones, a-Haloaldehydes and a-Haloimines, Wiley, Chichester, UK, 1988, p. 460; c) S. Mangelinckx, N. Giubellina, N. De Kimpe, Chem. Rev. 2004, 104, 2353–2399; d) G. G. Levkovskaya, T. I. Drozdova, I. B. Rozentsveig, A. N. Mirskova, Russ. Chem. Rev. 1999, 68, 581–604.
- [2] a) G. N. Rozentsveig, I. B. Rozentsveig, G. G. Levkovskaya, I. T. Evstaf'eva, A. N. Mirskova, *Russ. J. Org. Chem.* 2001, *37*, 1297–1301; b) E. V. Kondrashov, I. B. Rozentsveig, G. G. Levkovskaya, A. N. Mirskova, *Mendeleev Commun.* 2003, *13*, 25– 27; c) G. Verniest, R. Surmont, E. Van Hende, A. Deweweire, F. Deroose, J. W. Thuring, N. De Kimpe, *J. Org. Chem.* 2008, *73*, 5458–5461; d) M. Zajac, R. Peters, *Org. Lett.* 2007, *9*, 2007– 2010; e) S. M. Weinreb, R. K. Orr, *Synthesis* 2005, 1205–1227.
- [3] a) A. N. Mirskova, E. V. Rudyakova, I. B. Rozentsveig, A. G. Stupina, G. G. Levkovskaya, A. I. Albanov, *Pharm. Chem. J.* 2001, 35, 311–314; b) I. B. Rozentsveig, G. G. Levkovskaya,

Synthesis of 3-(Sulfonylamino)imidazo[1,2-*a*]pyrimidines

G. N. Rozentsveig, A. N. Mirskova, L. B. Krivdin, L. I. Larina, A. I. Albanov, *Tetrahedron Lett.* **2005**, *46*, 8889–8893; c) N. Giubellina, S. Mangelinckx, K. W. Törnroos, N. De Kimpe, *J. Org. Chem.* **2006**, *71*, 5881–5887; d) I. B. Rozentsveig, A. V. Popov, G. N. Rozentsveig, V. Y. Serykh, K. A. Chernyshev, L. B. Krivdin, G. G. Levkovskaya, *Mol. Diversity* **2010**, *14*, 533–541; e) I. B. Rozentsveig, G. N. Rozentsveig, V. Yu. Serykh, K. A. Chernyshev, G. G. Levkovskaya, *Eur. J. Org. Chem.* **2011**, *23*, 4415–4421.


- [4] I. B. Rozentsveig, V. Yu. Serykh, G. N. Chernysheva, K. A. Chernyshev, E. V. Kondrashov, E. V. Tretyakov, G. V. Romanenko, *Eur. J. Org. Chem.* 2013, 368–375.
- [5] I. B. Rozentsveig, G. N. Rozentsveig, A. N. Mirskova, K. A. Chernyshev, L. B. Krivdin, G. G. Levkovskaya, *Russ. J. Gen. Chem.* 2008, 78, 1371–1379.
- [6] a) A. V. Ivachtchenko, Y. A. Ivanenkov, V. M. Kysil, M. Y. Krasavin, A. P. Ilyin, *Russ. Chem. Rev.* 2010, *79*, 787–817; b) E. V. Koroleva, K. N. Gusak, Z. V. Ignatovich, *Russ. Chem. Rev.* 2010, *79*, 655–681; c) Y. Rival, G. Grassy, G. Michel, *Chem. Pharm. Bull.* 1992, *40*, 1170–1176; d) T. E. Christos, G. S. Amato, R. N. Atkinson, M. G. Barolli, L. A. Wolf-Gouveia, M. J. Suto, Icagen Inc., Patent CA 2788783; e) I. Bruce, D. M. Legrand, J. Dale, T. A. Hunt, Novartis AG, Patent US 8,053,574 B2.
- [7] a) V. F. Sedova, T. Yu. Mustafina, V. P. Mamaev, *Chem. Heterocycl. Compd.* **1981**, *17*, 1105–1112; b) G. Musumarra, C. Sergi, *Heterocycles* **1994**, *37*, 1033–1039; c) L. V. Baikalova, I. A. Zyryanov, A. V. Afonin, B. A. Trofimov, *Russ. J. Org. Chem.* **2002**, *38*, 1674–1680; d) A. V. Mareev, E. Yu. Mareeva, M. V. Andreev, S. S. Gulyaev, I. V. Mitroshina, A. S. Medvedeva, *Russ. J. Org. Chem.* **2011**, *47*, 1544–1550; e) A. R. Katritzky, S. Rachwal, B. Rachwal, *J. Chem. Soc. Perkin Trans. 1* **1987**, *4*, 799–804; f) A. Olyaei, M. K. Karimi, R. Razeghi, *Tetrahedron Lett.*

2013, *54*, 5730–5733; g) R. Pucher, H. Griengl, *Monatsh. Chem.* **1988**, *119*, 1415–1426.


- [8] R. J. Pugmire, J. C. Smith, D. M. Grant, B. Stanovnik, M. Tišler, B. Verček, J. Heterocycl. Chem. 1987, 24, 805–809.
- [9] S. Carballares, M. M. Cifuentes, G. A. Stephenson, *Tetrahe*dron Lett. 2007, 48, 2041–2045.
- [10] a) A. A. Granovsky, *Firefly*, v. 8.0, www http://classic.chem.msu.su/gran/firefly/index.html; b) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.* 1993, 14, 1347–1363.
- [11] a) K. A. Lyssenko, A. O. Borissova, A. S. Burlov, I. S. Vasilchenko, A. D. Garnovskii, V. I. Minkin, M. Yu. Antipin, *Mendeleev Commun.* 2007, 17, 164–166; b) U. Yadava, M. Singh, M. Roychoudhury, *Comput. Theor. Chem.* 2011, 977, 134–139.
- [12] T. Pyl, W. Baufeld, Justus Liebigs Ann. Chem. 1966, 699, 112-126.
- [13] A. R. Katritzky, Y.-J. Xu, H. Tu, J. Org. Chem. 2003, 68, 4935– 4937.
- [14] a) H. Bienaymé, K. Bouzid, Angew. Chem. Int. Ed. 1998, 37, 2234–2237; Angew. Chem. 1998, 110, 2349; b) G. S. Mandair, M. Light, A. Russell, M. Hursthouse, M. Bradley, Tetrahedron Lett. 2002, 43, 4267–4269; c) M. A. Lyon, T. S. Kercher, Org. Lett. 2004, 6, 4989–4992; d) V. Z. Parchinsky, O. Shuvalova, O. Ushakova, D. V. Kravchenko, M. Krasavin, Tetrahedron Lett. 2006, 47, 947–951; e) M. Krasavin, S. Tsirulnikov, M. Nikulnikov, Y. Sandulenko, K. Bukhryakov, Tetrahedron Lett. 2008, 49, 7318–7321; f) M. J. Thompson, J. M. Hurst, B. Chen, Synlett 2008, 3183–3187; g) A. Sharma, H.-y. Li, Synlett 2011, 1407–1412.

Received: June 5, 2014 Published Online: ■ Date: 2

Heterocyclic Chemistry

2-Aminopyrimidines react easily with electrophilic N-(arylsulfonyl)phenyldichloroacetaldimines to give the corresponding addition products of the amine moiety to the

azomethine group. The obtained compounds were successfully utilized to synthesize imidazo[1,2-*a*]pyrimidin-3-ylsulfonamides regioselectively.

I. B. Rozentsveig,* V. Y. Serykh,					
G. N. Chernysheva, E. V. Kondrashov,					
A. I. Fedotova, I. A. Ushakov,					
E. V. Tretyakov,					
G. V. Romanenko	1–12				

Two-Step Regioselective Synthesis of 3-(Sulfonylamino)imidazo[1,2-*a*]pyrimidines from 2-Aminopyrimidines and *N*-(2,2-Dichloro-2-phenylethylidene)arensulfonamides

Keywords: Nitrogen heterocycles / Sulfonamides / Nucleophilic addition / Rearrangement / Regioselectivity