Kristallstrukturelle, Festkörper-³¹P-CP/MAS-NMR, TOSS, ³¹P-COSY-NMR und mechanistische Beiträge zur Koordinationschemie des Octacarbonyldicobalts mit den Liganden Bis(diphenylphosphanyl)amin, Bis(diphenylphosphanyl)methan und 1,1,1-Tris(diphenylphosphanyl)ethan

Walter Bauer^a*, Jochen Ellermann^b*, Martina Dotzler^b, Diana Pohl^c, Frank W. Heinemann^b, und Matthias Moll^b

^aErlangen, Institut für Organische Chemie der Universität

^bErlangen, Institut für Anorganische Chemie der Universität

^cIngolstadt, Raffinerie der ESSO AG

Bei der Redaktion eingegangen am 6. September 1999.

Professor Wolf-Peter Fehlhammer zum 60. Geburtstag gewidmet

Inhaltsübersicht. Co₂(CO)₈ reagiert mit Bis(diphenylphosphanyl)amin, HN(PPh₂)₂ (Hdppa, 1), unter Valenzdisproportionierung über die erstmals isolierte und kristallographisch charakterisierte Zwischenstufe $[Co(CO)_2(Hdppa-\kappa^2 P) \cdot$ $(Hdppa-\kappa P)$ [Co(CO)₄] · Dioxan · n-Pentan $(5 \cdot \text{Dioxan} \cdot$ n-Pentan) zu der bereits bekannten Verbindung $[Co(CO)(Hdppa-\kappa^2 P)_2][Co(CO)_4] \cdot 2 THF$ (**6a** $\cdot 2 THF$). Das Kation von 5 hat eine verzerrte trigonal-bipyramidale Struktur (5^+). Eingehende ³¹P-NMR-spektrometrische Studien (Festkörper-NMR, ³¹P-COSY, ³¹P-EXSY) zeigen, daß in Aceton-D₆ auch das PH-Tautomere $[Co(CO)_2(Hdppa-\kappa^2 P) \cdot$ $(Ph_2P-N=P(H)Ph_2-\kappa P)]^+$ (5'+) vorliegt. Das Tautomerengleichgewicht ist langsam innerhalb der NMR-Zeitskala. Im Gegensatz zum Festkörper werden in Lösung für 5 nur quadratisch-pyramidale Formen gefunden. Bei -90 °C findet langsamer Austausch zwischen drei diastereomeren Formen 5a⁺, $5b^+$ und $5c^+$ statt. Die Verbindung 5 bildet mit NaBPh₄ in THF unter CO-Eliminierung $[Co(CO)(Hdppa-\kappa^2 P)_2]BPh_4$. THF ($6b \cdot THF$). Die Kristallstrukturanalyse von $6b \cdot THF$ belegt für das Kation (6^+) eine verzerrte trigonal-bipyramidale Struktur. Eine verzerrte tetragonal-pyramidale Struktur wurde dagegen röntgenographisch für das Kation von $[Co(CO)(dppm)_2][Co(CO)_4] \cdot 2 THF$ $(\mathbf{7} \cdot 2 \text{ THF};$ dppm =Bis(diphenylphosphanyl)methan, Ph₂PCH₂PPh₂) festgestellt. Ein Vergleich mit dem bereits bekannten [8] trigonal-bipyramidalen, stereoisomeren Kation aus dem Solvat-freien 7 wird mitgeteilt. Temperaturabhängige ¹³C{¹H}-NMR- sowie ${}^{31}P{}^{1}H{}-NMR-Spektren legen für 6a \cdot 2 THF und 7 \cdot 2 THF in$ Lösung einen CO- und Organophosphan-Austauschmechanismus zwischen Cobalt(I)-Kation und Cobalt(-I)-Anion nahe. Ein Abbruch des Mechanismus erfolgt unter CO-Eliminierung und Bildung von zweikernigen Substitutionsprodukten, wie dies z. B. für $Co_2(CO)_2(\mu$ -CO)_2(μ -dppm)_2 $\cdot 0.83$ THF $(8 \cdot 0.83$ THF) nachgewiesen wurde. Keinen CO- und Triphos-Austausch zwischen Kation und Anion findet man bei $[C_0(CO)_2CH_3C(CH_2PPh_2)_3][Co(CO)_4] \cdot 0.8\overline{3}$ n-Pentan $(9 a \cdot 0.8\overline{3} n$ -Pentan). Metathese mit NaBPh₄ liefert [Co(CO)₂CH₃C(CH₂PPh₂)₃]BPh₄ (9b). Die Kristallstrukturanalyse von 9b ergibt für das CoC₂P₃-Koordinationspolyeder in 9⁺ eine wenig verzerrte tetragonal-pyramidale Struktur.

Chemistry of Polyfunctional Molecules. 133. X-Ray Crystal Structural, Solid-state ³¹P CP/MAS NMR, TOSS, ³¹P COSY NMR, and Mechanistic Contributions to the Co-ordination Chemistry of Octacarbonyldicobalt with the Ligands Bis(diphenylphosphanyl)amine, Bis(diphenylphosphanyl)methane, and 1,1,1-Tris(diphenylphosphanyl)ethane

* Priv. Doz. Dr. Dr. habil. Walter Bauer Universität Erlangen-Nürnberg Institut für Organische Chemie Henkestr. 42
D-91054 Erlangen
Fax: Int + (0)91 31-85-2 2991
e-mail: bauer@organik.uni-erlangen.de

Prof. Dr. Jochen Ellermann Universität Erlangen-Nürnberg Institut für Anorganische Chemie Egerlandstr. 1 D-91058 Erlangen Fax: Int + (0)91 31-85-273 67 **Abstract.** Co₂(CO)₈ reacts with bis(diphenylphosphanyl)amine, HN(PPh₂)₂ (Hdppa, **1**), in two steps to afford the known compound [Co(CO)(Hdppa- $\kappa^2 P$)₂][Co(CO)₄] · 2 THF (**6a** · 2 THF). The intermediate [Co(CO)₂(Hdppa- $\kappa^2 P$) · (Hdppa- κP)][Co(CO)₄] · dioxane · n-pentane (**5** · dioxane · n-pentane) was isolated for the first time and was characterized by X-ray analysis. The cation **5**⁺ exhibits a slightly distorted trigonal-bipyramidal geometry. Detailed ³¹P-NMR investigations (solid-state CP/MAS NMR, TOSS, ³¹P-COSY, ³¹P-EXSY) showed that the additional tautomer [Co(CO)₂(Hdppa- $\kappa^2 P$)(Ph₂P–N=P(H)Ph₂- κP)]⁺ (**5**⁺) is present in solution. The tautomer equilibrium is slow in the NMR time scale. In contrast to the solid state only tetragonal pyramidal species of 5 are found in solution. At -90 °C there is slow exchange between the three diastereomeric species $5a^+-5c^+$. Compound 5 forms [Co(CO). $(Hdppa-\kappa^2 P)_2$]BPh₄ · THF (**6b** · THF) in THF with NaBPh₄ under CO-Elimination. A X-ray diffraction investigation shows that the cation 6^+ consists of a slightly distorted trigonal-bipyramidal co-ordination polyeder. However, a distorted tetragonal-pyramidal structure has been found for the cation 7^+ of the related compound $[Co(CO)(dppm)_2][Co(CO)_4]$. 2 THF $(7 \cdot 2 \text{ THF}; \text{ dppm} = \text{bis}(\text{diphenylphosphanyl})\text{methane},$ Ph₂PCH₂PPh₂). A comparison with the known [8] trigonalbipyramidal stereoisomer, ascertained for 7^+ of the solventfree 7, is described. In solutions of $6a \cdot 2$ THF and $7 \cdot 2$ THF ¹³C{¹H}- and ³¹P{¹H}-NMR spectra indicate an exchange of all CO and organophosphane molecules between cobalt(I) cation and cobalt(-I) anion. A concerted mechanism for the

1 Einleitung

Octacarbonyldicobalt(0), Co₂(CO)₈, reagiert mit Bis-(diphenylphosphanyl)amin, HN(PPh₂)₂, (Hdppa, 1) [2-4] in unpolaren Lösungsmitteln wie Benzol und Toluol vorwiegend unter CO-Substitution, während es in polaren Lösungsmitteln, wie Tetrahydrofuran (THF) meist unter Valenzdisproportionierung salzartige Cobalt(+I)/Cobalt(-I)-Carbonyl-Komplexe bildet [5]. Kürzlich berichteten wir über die reduktive Spaltung von 1 durch $Co_2(CO)_8$ und die Stabilisierung der Spaltprodukte in neuartigen, paramagnetischen Dicobalt(+1/2) und diamagnetischen Dicobalt(I)-Verbindungen [6]. Durch Alkin-Derivate des Octacarbonyldicobalts wird 1 teilweise oxidiert und deprotoniert [7]. Schließlich erhält man ausgehend von $Co_2(CO)_8$, dem Tetraphosphadiazen $Ph_2P-N=PPh_2-PPh_2=N-PPh_2$ (2) und Luft einen paramagnetischen Cobalt(III)-Komplex mit fünffach koordiniertem Co-Atom und vier ungepaarten Elektronen [1].

In der vorliegenden Arbeit wird über weitere Ergebnisse aus der Cobaltcarbonylchemie mit **1** berichtet und Vergleiche zu analogen oder ähnlichen Komplexen mit den Liganden Bis(**dip**henyl**p**hosphanyl)**m**ethan, Ph₂PCH₂PPh₂, (dppm **3**), [8–11] und 1,1,1-Tris-(diphenylphosphanyl)ethan, CH₃C(CH₂PPh₂)₃, (triphos, **4**) [12–14] angestellt.

2 Ergebnisse und Diskussion

Die Valenzdisproportionierung von $\text{Co}_2(\text{CO})_8$ mit **1** verläuft in Tetrahydrofuran entsprechend den Teilschritten (1 a, b).

$$Co_{2}(CO)_{8} + 2 \operatorname{Hdppa}$$

$$1$$

$$\xrightarrow{\text{THF}} [Co(CO)_{2}(\operatorname{Hdppa}-\kappa^{2}P)(\operatorname{Hdppa}-\kappa^{1}P)][Co(CO)_{4}] \quad (1 \text{ a})$$

$$5$$

$$5 \xrightarrow{\text{THF}}_{-\text{CO}} [\text{Co(CO)}(\text{Hdppa-}\kappa^2 P)_2][\text{Co(CO)}_4] \cdot 2 \text{ THF}$$
(1 b)
$$6 \mathbf{a} \cdot 2 \text{ THF}$$

exchange process is discussed. CO elimination leads to discontinuance of the cyclic mechanism by forming binuclear substitution products such as the isolated $Co_2(CO)_2 \cdot (\mu$ -CO)_2(μ -dppm)_2 $\cdot 0.83$ THF ($\mathbf{8} \cdot 0.83$ THF), which was characterized by spectroscopy and X-ray analysis. For the dissolved [$Co(CO)_2CH_3C(CH_2PPh_2)_3$][$Co(CO)_4$] $\cdot 0.83$ n-pentane ($\mathbf{9a} \cdot 0.83$ n-pentane) no CO and triphos exchange processes between the cation and the anion are observed. Metathesis of $\mathbf{9a} \cdot 0.83$ n-pentane with NaBPh₄ yields [$Co(CO)_2CH_3C(CH_2PPh_2)_3$]BPh₄ ($\mathbf{9b}$) which has been characterized by single-crystal X-ray analysis. The cation shows a small distorted tetragonal-pyramidal structure.

Keywords: *Organo*phosphanyl compounds; Phosphanes; Cobaltcarbonyl complexes; NMR spectroscopy; IR spectroscopy; Crystal structure

Dabei konnte das Zwischenprodukt 5 bisher nur an Hand der IR-aktiven CO-Valenzschwingungsbanden wahrscheinlich gemacht [5], jedoch nicht in Substanz isoliert werden. Tauscht man das Lösungsmittel Tetrahydrofuran gegen Dioxan aus, so läuft die Reaktion nur entsprechend dem Teilschritt (1 a) ab, da 5 in Dioxan schwer löslich ist und als $5 \cdot 0.75$ Dioxan ausfällt. Es entzieht sich so einer Weiterreaktion zu **6a**. Diese kann aber erreicht werden, wenn man $5 \cdot 0.75$ Dioxan in THF löst. Unter CO-Eliminierung entsteht dann gemäß Gl. (1b) 6a · 2 THF. Die Umsetzung verläuft schnell und quantitativ falls man einen Überschuß an Hdppa anwendet [5]. Das bereits bekannte $6a \cdot 2$ THF wurde eindeutig an Hand seiner ³¹P{¹H}-, ¹³C{¹H}und ¹H-NMR- sowie IR-Daten und dem Schmelzpunkt identifiziert.

Obwohl $5 \cdot 0.75$ Dioxan in Dioxan schwerlöslich ist, bleibt nach dem Abfiltrieren der Substanz von ihr noch soviel im Filtrat gelöst, daß auf Zugabe von n-Pentan röntgenfähige, gelb-orange Nadeln von $5 \cdot \text{Dioxan} \cdot \text{n-Pentan}$ auskristallisieren.

Abb. 1 ORTEP-Darstellung der Molekülstruktur des Kations von $5 \cdot \text{Dioxan} \cdot \text{n-Pentan}$ (ohne H-Atome)

	$5 \cdot \text{Dioxan} \cdot n\text{-Pentan}$	6 b · THF	$7 \cdot 2$ THF	9 b
Summenformel	C ₆₃ H ₆₂ Co ₂ N ₂ O ₈ P ₄	C77H70BCoN2O2P4	C ₆₃ H ₆₀ Co ₂ O ₇ P ₄	C ₆₇ H ₅₉ BCoO ₂ P ₃
M _r (g/mol)	1216.89	1248.97	1170.85	1058.79
Farbe, Zustand	gelb-orange Nadeln	oranger Rhombus	Bruchstück eines roten Quaders	oranges Trapezoid
Kristalldimension (mm ³)	$0.62 \times 0.22 \times 0.20$	$0.75 \times 0.60 \times 0.20$	$0.50 \times 0.40 \times 0.30$	$0.80 \times 0.70 \times 0.60$
Kristallsystem	triklin	monoklin	monoklin	monoklin
Raumgruppe	P1 (Nr. 2)	$P2_1/c$ (Nr. 14)	$P2_1/n$ (Nr. 14)	$P2_1/c$ (Nr. 14)
a (pm)	1383.7(2)	1745.4(3)	1148.8(4)	1328.30(10)
b (pm)	1408.2(2)	1682.6(2)	3793(2)	2083.8(2)
c (pm)	1724.8(3)	2272	1428.3(6)	1998.8(3)
α (°)	78.79(1)	90.0	90.0	90.0
β (°)	69.46(1)	100.18(2)	105.50(3)	98.420(10)
v (°)	83.95(1)	90.0	90.0	90.0
Zellvolumen V (nm ³)	3.0846(8)	6.568(5)	5.998(4)	5.4729(11)
Zahl der Formeleinheiten pro Zelle	2	4	4	4
$d_{\text{hor}} \left(g/\text{cm}^3 \right)$	1.310	1.263	1.297	1.285
Absorptionskoeffizient μ (mm ⁻¹)	0.695	0.407	0.710	0.447
F(000)	1264	2616	2432	2216
Meßtemperatur (K)	200(2)	200(2)	298(2)	200(2)
Diffraktometer	Siemens P4	Siemens P4	Nicolet R3m/V	Siemens P4
Strahlung	MoKα	MoKa	MoKa	MoKα
Wellenlänge λ (nm)	71 073	71 073	71 073	71.073
Meßverfahren	()-scan	w-scan	w-scan	()-scan
Winkelbereich (°)	$3.5 < 2\theta < 50.0$	$3.6 \le 2\theta \le 52.0$	3.6 < 2.0 < 54.0	3.66 < 20 < 53.96
Scan-Geschwindigkeit (°/min)	3.0	40-80	10.0	10.0
Indexgrenzen	-16 < h < 1	-22 < h < 21	-14 < h < 14	$-1 \le h \le 16$
mdexgrenzen	$-16 \le k \le 16$	$0 \le k \le 21$	-1 < k < 48	$-26 \le k \le 1$
	$-20 \le 1 \le 10$	$0 \le 1 \le 28$	-1 < 1 < 18	$-25 \le 1 \le 25$
Gemessene Reflexe	12330	15243	15132	14199
Unabhängige Refleve	10849	12902	13000	11881
enabhangige Kenexe	$(\mathbf{R}_{1} = 0.0625)$	$(\mathbf{R}_{1} = 0.1359)$	$(\mathbf{R}_{1} = 0.0741)$	$(\mathbf{R}_{1} = 0.0241)$
Beobachtete Refleve	$(R_{int} = 0.0025)$ 5200 (F > 4.0 σ (F))	$(R_{int} = 0.1557)$ 7624 (E > 4.0 σ (E))	$(R_{int} = 0.0741)$ 2600 (E > 4.0 σ (E))	$(R_{int} = 0.0241)$ 8245 (E > 4.0 σ (E))
Verfeinerte Parameter	762	024 (1° 2 4.00(1)) 070	2000 (1 ° 2 4.00(1)) 668	845
Strukturverfeinerung	Vollmatrix Least-Squares	Vollmatrix Least-Squares	Vollmatrix Least-Squares	Vollmatrix Least-Squares
Strukturverteinerung	an F^2	an F^2	an F^2	an F^2
$Goodness_of_Fit an F^2$	0.983	0.974	0.613	1 024
Endquiltige R-Werte $(I > 2\sigma(I))$	$\mathbf{R}_{1} = 0.0762$; w $\mathbf{R}_{2} = 0.1500$	$\mathbf{R}_{1} = 0.0624$; w $\mathbf{R}_{2} = 0.1501$	$\mathbf{R}_{1} = 0.0524$ wR = 0.0894	$\mathbf{R}_{1} = 0.0536$; w $\mathbf{R}_{2} = 0.1026$
\mathbf{R} -Werte (sämtliche Daten)	$R_1 = 0.0702$, $wR_2 = 0.1300$ $R_2 = 0.1737$; $wR_2 = 0.1935$	$R_1 = 0.0024$, $wR_2 = 0.1301$ $R_2 = 0.1110$; $wR_2 = 0.1861$	$\mathbf{R}_1 = 0.0524$, $\mathbf{w}\mathbf{R}_2 = 0.0094$ $\mathbf{R}_2 = 0.1186$	$R_1 = 0.0030; wR_2 = 0.1020$ $R_2 = 0.0030; wR_3 = 0.1312$
Restelektronendichte	$R_1 = 0.1757, WR_2 = 0.1955$	$R_1 = 0.1117, WR_2 = 0.1001$	$R_1 = 0.2004, WR_2 = 0.1100$ 0.377/_0.302	$R_1 = 0.0000, WR_2 = 0.1012$
max/min (e, $\dot{\Delta}^{-3}$)	0.4977-0.408	0.000/-1.110	0.5777=0.502	0.475/-0.509
verwendete Rechenprogramme:				
Messung	XSCAnS 2 20	XSCAnS 2 20	P3/PC	XSCAnS 2 20
Wessung	(Siemens Analytical	(Siemens Analytical	(Siemens Analytical	(Siemens Analytical
	X Pay Instr 1006)	X Poy Instr 1006)	V Poy Instr 1080)	X Poy Instr 1006)
Detenreduktion	XSCApS 2 20	XSCApS 2 20	XDISK	XSCApS 2 20
Datemeduktion	(Siemens Analytical	(Siemens Analytical	(Siemens Analytical	(Siemens Analytical
	X Pay Instr 1006)	X Poy Instr 1006)	V Poy Inst 1080)	X Poy Instr 1006)
Strukturlösung	SHELYTL NT 5 10	SHELVIL 5.03	SHELYTL 5.03	SHELVIL 5.03
Strukturiosung	(Bruker AVS 1008)	(Siemens Apolytical	(Siemens Apolytical	(Siemens Applytical
	(Druker AAS 1998)	(Stemens Analytical Instr. 1005)	(Stemens Analytical Instr. 1005)	(Stemens Analytical Instr. 1005)
Varfainarung	SHELVIL NT 5 10	SHELXTL 5.03	SHELVTL 5.03	SHELYTL 5.03
verteinerung	(Bruker AXS 1008)	(Siemens Apolytical	(Siemens Apolytical	(Siemens Applytical
	(DIUKEI AAS 1770)	Instr 1995)	Instr 1995)	Instr 1995)
Moleküldarstellung	SHELVIL NT 5 10	SHELYTL 5.03	SHELYTL 5.03	SHELVTL 5.03
molekuldalstellullg	(Bruker AXS 1008)	(Siemens Apolytical	(Siemens Apolytical	(Siemens Applytical
	(DIUKEI AAS 1990)	(Siemens Analytical Instr. 1005)	Instr 1005)	(Siemens Analytical Instr. 1005)
		mott., 1773)	mott., 1775)	mou., 1775)

Tabelle 1	Kristalldaten un	d Angaben zu	den Strukturlösungen vo	on $5 \cdot \text{Dioxan}$	• n-Pentan, 6b	• THF, 7 •	2 THF und 9 b
-----------	------------------	--------------	-------------------------	----------------------------	-----------------------	-------------------	----------------------

Die Molekülstruktur des Kations von $5 \cdot$ Dioxan \cdot n-Pentan findet sich in Abb. 1. Tabelle 1 enthält die kristallographischen Daten und Angaben zur Strukturlösung. Ausgewählte Bindungslängen und Winkel dieser Verbindung finden sich in Tabelle 2.

In der Elementarzelle sind insgesamt zwei Dioxan-Moleküle enthalten, die jeweils auf kristallographischen Inversionszentren liegen. Das n-Pentan-Molekül ist fehlgeordnet. Während das eine Dioxan-Molekül in der Elementarzelle *intermolekular* nur $[N(1)-H(1A)\cdots O(92)C_4H_8O(92A)\cdots H(1A)-N(1)]$ - Wasserstoff-Brücken-Bindungen ausbildet, formiert das andere Dioxan-Molekül ebenfalls *intermolekular* Wasserstoff-Brücken-Bindungen ausschließlich zwischen N(2)–H(2 A)-Gruppen verschiedener Kationen von 5, z. B.: N(2)–H(2 A)···O(91)C₄H₈O(91 A)···H(2 A)–N(2). Die (NH···O)-Bindungslängen betragen in beiden Fällen etwa 290 pm. Die PN-Bindungslängen sind im chelatartig gebundenen Hdppa geringfügig kürzer (Mittel: 167.9 pm) als im $\kappa^{1}P$ -koordinierten Hdppa (Mittel: 168.5 pm) und liegen zwischen den Werten für PN-Einfach- (177 pm) und PN-Doppelbindungen

Tabelle 2Ausgewählte Bindungslängen/pm und -winkel/°von $5 \cdot Dioxan \cdot n$ -Pentan; Standardabweichungen in Klammern

Kation:			
Co(1)–C(2)	177.1(8)	Co(1)-C(1)	178.2(7)
Co(1)-P(2)	220.60(19)	Co(1)-P(3)	220.72(19)
P(1)-C(21)	181.2(7)	P(1) - R(1) P(1) - C(11)	109.8(3) 182.4(7)
P(2) - N(1)	166.1(6)	P(3) - N(2)	167.0(6)
P(4) - N(2)	170.0(6)	C(1)–O(1)	113.4(8)
C(2) - O(2)	114.0(8)		
Anion:			
Co(2)-C(10)	171.8(11)	Co(2)-C(40)	173.3(14)
Co(2)-C(30)	175.1(11)	Co(2)-C(20)	175.8(14)
C(10) = O(10) C(30) = O(30)	117.4(12) 114.4(11)	C(20) = O(20) C(40) = O(40)	117.3(14)
B: (1)	11(11)		11/10(11)
Dioxan(1):	140.2(0)	0(01) 0(01)	142 5(10)
O(91)-C(92) C(91)-C(92)#1	142.3(9)	O(91)-C(91) C(92)-C(91)#1	143.5(10) 151.5(11)
C(91) - C(92) + 1	151.5(11)	C(92)-C(91)#1	151.5(11)
Dioxan (2):			
O(92)-C(93)	142.0(9)	O(92)-C(94)	143.6(9)
C(93) - C(94) #2	149.9(10)	C(94) - C(93) # 2	149.9(10)
n-Pentan (fehlgeordnet):		
C(101)-C(102)	154.4(17)	C(102)-C(103)	151.1(17)
C(103)-C(104)	151.1(17)	C(104)-C(105)	150.0(17)
C(106)-C(107) C(108) $C(100)$	154(2)	C(107)-C(108) C(100) $C(110)$	150(2) 148(2)
C(103) - C(103)	130(2)	C(109) = C(110)	140(2)
Wasserstoffbrücken [pn	n und °]:		
$D-H\cdots A$	d(D-H)	$d(H \cdots A) d(D \cdots A)$	<(DHA)
$N(1)-H(1 A) \cdots O(92) #$	1 86	209 289.5(7)	156.6
$N(f) = H(f) \Delta \dots f (f) U = f$	1 86	20210	1625
$\Pi(2) = \Pi(2R) = O(21)^{\#}$	1 00	20) 2)2.0(7)	102.5
(Symmetrietransformat	ion für die äqu	livalenten Atome: #1 x,	y, z + 1)
(Symmetrietransformat	ion für die äqu	livalenten Atome: #1 x,	y, z + 1)
(Symmetrietransformat Kation:	ion für die äqu	$C(2) = C_{2}(1) = D(2)$	y, z + 1)
(Symmetrietransformat Kation: C(2)-Co(1)-C(1) C(1)-Co(1)-P(2)	121.5(3)	C(2)-Co(1)-P(2) C(2)-Co(1)-P(2)	93.6(2) 87.3(2)
$C(2) = C(2R)^{-1} = C(2R)^{-1}$ (Symmetrietransformat Kation: C(2) = Co(1) = C(1) C(1) = Co(1) = P(2) C(1) = Co(1) = P(3)	ion für die äqu 121.5(3) 95.1(2) 90.6(2)	C(2)-Co(1)-P(2) C(2)-Co(1)-P(2) C(2)-Co(1)-P(3) P(2)-Co(1)-P(3)	93.6(2) 87.3(2) 172.72(9)
(2) - $(2R)^{-1}$ $(2R)^{-1}$ $(0,1)^{m}$ (Symmetrietransformat Kation: C(2)- $Co(1)$ - $C(1)C(1)$ - $Co(1)$ - $P(2)C(1)$ - $Co(1)$ - $P(2)C(2)$ - $Co(1)$ - $P(3)C(2)$ - $Co(1)$ - $P(1)$	121.5(3) 95.1(2) 90.6(2) 123.9(2)	C(2)-Co(1)-P(2) C(2)-Co(1)-P(3) P(2)-Co(1)-P(3) C(1)-Co(1)-P(1)	93.6(2) 87.3(2) 172.72(9) 113.7(3)
(2)- (1) $(2X)$ $(0,1)$ # (Symmetrietransformat Kation: C(2)- $Co(1)$ - $C(1)C(1)$ - $Co(1)$ - $P(2)C(1)$ - $Co(1)$ - $P(2)C(2)$ - $Co(1)$ - $P(1)P(2)$ - $Co(1)$ - $P(1)$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1) \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7)
(2)- (1) $(2K)$ $(0,1)$ # (Symmetrietransformat Kation: C(2)- $Co(1)$ - $C(1)C(1)$ - $Co(1)$ - $P(2)C(1)$ - $Co(1)$ - $P(2)C(2)$ - $Co(1)$ - $P(1)P(2)$ - $Co(1)$ - $P(1)P(1)$ - $C(21)P(1)$ - $P(1)$ - $C(21)$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-C(11)\\ N(1)-P(1)-C(1)\\ N(1)-C(1)-C(11)\\ N(1)-C(1)-C(1)\\ N(1)-C(1)-C(1$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3)
$\begin{array}{l} \text{(2)-I1(2A)} & \text{(3)}(7) \\ \text{(Symmetrietransformat)} \\ \text{Kation:} \\ \text{(2)-Co(1)-C(1)} \\ \text{(1)-Co(1)-P(2)} \\ \text{(2)-Co(1)-P(1)} \\ \text{(2)-Co(1)-P(1)} \\ \text{(2)-Co(1)-P(1)} \\ \text{(1)-P(1)-C(21)} \\ \text{(2)-P(1)-C(21)} \\ \text{(2)-P(1)-C(1)} \\ \text{(2)-P(1)-C(1)} \\ \text{(2)-P(1)-C(1)} \\ \text{(2)-P(1)-C(1)} \\ \text{(2)-P(1)-C(1)} \\ \text{(2)-P(1)-C(1)} \\ \text{(3)-P(1)-C(1)} \\ (3)-$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 102.0(2)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-C(11)\\ N(1)-P(1)-Co(1)\\ O(1)-P(1)-Co(1)\\ O(1)-P(1)-CO(1)\\$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2)
$\begin{array}{l} \text{(2)-I1(2 A)} & \text{(3)(3)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C1)-C0(1)-P(2)} \\ \text{(C1)-C0(1)-P(3)} \\ \text{(C2)-C0(1)-P(1)} \\ \text{(C2)-C0(1)-P(1)} \\ \text{(C2)-C0(1)-P(1)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(11)} \\ \text{(C21)-P(1)-C0(1)} \\ \text{(C21)-P(1)-C0(1)} \\ \text{(C21)-P(1)-C0(1)} \\ \text{(C21)-P(1)-C0(1)} \\ \text{(C21)-P(1)-C0(1)} \\ \text{(C31)-P(1)-C0(1)} \\ \text{(C31)-P(1)-P(1)-C0(1)} \\ (C31)-P(1)-P(1)-P(1)-P(1)-P(1)-P(1)-P(1)-P($	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.69(10)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-C(11)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ C(11)-P(2)-Co(1)\\ C(11)-P(2)-Co(1)\\ C(11)-P(2)-Co(1)\\ C(11)-P(1)-Co(1)\\ C(11)-P(1)-C$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{(J)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C2)-Co(1)-C(1)} \\ \text{(C1)-Co(1)-P(2)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(11)} \\ \text{(C21)-P(1)-Co(1)} \\ \text{(C31)-P(2)-Co(1)} \\ \text{(C51)-P(2)-Co(1)} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{(J)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-C(1)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(3)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-P(1)-C(11)} \\ \text{(C)-P(1)-Co(1)} \\ \text{(C)-P(1)-Co(1)} \\ \text{(C)-P(3)-Co(1)} \\ \text{(C)-P(3)-Co(1)} \\ \text{(C)-P(4)-C(81)} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{fm} \\ \text{(Symmetrietransformat} \\ \text{Kation:} \\ \text{(C2)-Co(1)-C(1)} \\ \text{(C1)-Co(1)-P(2)} \\ \text{(C1)-Co(1)-P(3)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(11)} \\ \text{(C21)-P(1)-Co(1)} \\ \text{(C31)-P(3)-Co(1)} \\ \text{(C51)-P(3)-Co(1)} \\ \text{(C71)-P(4)-C(81)} \\ \text{(G3)-N(2)-P(4)} \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 107.1(7)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{O(A)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C2)-Co(1)-P(2)} \\ \text{(C1)-Co(1)-P(3)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(21)} \\ \text{(C21)-P(1)-Co(1)} \\ \text{(C21)-P(1)-Co(1)} \\ \text{(C31)-P(3)-Co(1)} \\ \text{(C51)-P(3)-Co(1)} \\ \text{(C71)-P(4)-C(81)} \\ \text{P(3)-N(2)-P(4)} \\ \text{O(2)-C(2)-Co(1)} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7)	$\begin{array}{l} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-C(1)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-D(1)-P(1)-C(21)} \\ \text{(C)-D(1)-P(1)-C(21)} \\ \text{(C)-D(1)-P(1)-C(21)} \\ \text{(C)-D(1)-P(1)-C(21)} \\ \text{(C)-Co(1)} \\ (C$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-C(11)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1) \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-Co(1)-C(21)-C(21)} \\ \text{(C)-Co(1)-C(21)-C(21)} \\ \text{(C)-Co(1)-C(21)-C(21)} \\ \text{(C)-Co(1)-C(21)-C(21)-C(21)} \\ \text{(C)-Co(1)-Co(21)-C(21)-C(21)} \\ \text{(C)-Co(1)-Co(21)-C(21)-C(21)} \\ (C)-Co(1)-Co(21)-C(2$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7)	$C(2)-Co(1)-P(2) \\ C(2)-Co(1)-P(3) \\ P(2)-Co(1)-P(3) \\ C(1)-Co(1)-P(3) \\ C(1)-Co(1)-P(1) \\ N(1)-P(1)-Co(1) \\ N(1)-P(1)-Co(1) \\ N(1)-P(1)-Co(1) \\ N(2)-P(3)-Co(1) \\ N(2)-P(3)-Co(1) \\ N(2)-P(4)-C(71) \\ P(2)-N(1)-P(1) \\ O(1)-C(1)-Co(1) \\ C(10)-Co(2)-C(30) \\ C(10)-Co(2)$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{/} \text{/} \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(11)} \\ \text{(C)-P(1)-C(11)} \\ \text{(C)-D(1)-P(1)-C(11)} \\ \text{(C)-D(1)-P(1)-C(1)} \\ \text{(C)-D(1)-P(1)-C(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-Co(2)-C(1)} \\ \text{(Anion):} \\ \\ \text{(C)-Co(2)-C(40)} \\ \text{(C)-Co(2)-C(40)} \\ \text{(C)-Co(2)-C(30)} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-C(11)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{fm} \\ \text{(Symmetrietransformat} \\ \text{Kation:} \\ \text{(C2)-Co(1)-C(1)} \\ \text{(C1)-Co(1)-P(2)} \\ \text{(C1)-Co(1)-P(2)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(21)} \\ \text{(C21)-P(1)-C(1)} \\ \text{(C21)-P(1)-C(1)} \\ \text{(C21)-P(1)-C(1)} \\ \text{(C31)-P(2)-Co(1)} \\ \text{(C31)-P(3)-Co(1)} \\ \text{(C31)-P(3)-Co(1)} \\ \text{(C31)-P(4)-C(81)} \\ \text{(P3)-N(2)-P(4)} \\ \text{(O2)-C(2)-Co(1)} \\ \text{Anion:} \\ \\ \text{(C10)-Co(2)-C(40)} \\ \text{(C40)-Co(2)-C(30)} \\ \text{(C40)-Co(2)-C(20)} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-C(11)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{/} \text{/} \\ \text{(Symmetrietransformat} \\ \text{Kation:} \\ \text{(C2)-Co(1)-C(1)} \\ \text{(C1)-Co(1)-P(2)} \\ \text{(C1)-Co(1)-P(2)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-Co(1)-P(1)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C2)-P(1)-C(21)} \\ \text{(C2)-P(1)-C(11)} \\ \text{(C2)-P(1)-Co(1)} \\ \text{(C2)-P(1)-Co(1)} \\ \text{(C3)-P(3)-Co(1)} \\ \text{(C5)-P(3)-Co(1)} \\ \text{(C7)-P(4)-C(81)} \\ \text{(C7)-P(4)-C(81)} \\ \text{(C3)-N(2)-P(4)} \\ \text{(C2)-C(2)-Co(1)} \\ \text{Anion:} \\ \\ \text{(C10)-Co(2)-C(40)} \\ \text{(C40)-Co(2)-C(20)} \\ \text{(C40)-Co(2)-C(20)} \\ \text{(C10)-Co(2)} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12)
$\begin{array}{l} \text{(Z)-II(ZA)} & \text{(G)I} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-D(1)-P(1)-C(21)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-Co(2)-C(20)} \\ \text{(C)-D(1)-Co(2)-C(20)} \\ \text{(C)-D(1)-Co(2)-C(2)} \\ \text{(C)-D(1)-Co(2)-C(2)} \\ \text{(C)-D(1)-Co(2)-C(2)} \\ \text{(C)-D(1)-Co(2)-C(2)} \\ \text{(C)-D(2)-C(2)-C(2)} \\ \text{(C)-D(2)-C(2)-C(2)-C(2)} \\ \text{(C)-D(2)-C(2)-C(2)-C(2)} \\ \text{(C)-D(2)-C(2)-C(2)-C(2)} \\ \text{(C)-D(2)-C(2)-C(2)-C(2)} \\ (C)-D(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12)	$\begin{array}{l} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{(J)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-C(1)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(3)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-C(2)-C(21)} \\ \text{(C)-C(2)-C(20)} $	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12)	$\begin{array}{l} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 107.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{(G)} \text{(J)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-D(1)-P(1)-Co(1)} \\ \text{(C)-D(1)-P(1)-Co(1)} \\ \text{(C)-D(1)-P(1)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(2)-Co(1)} \\ \text{(C)-D(1)-P(3)-Co(1)} \\ \text{(C)-D(2)-P(4)} \\ \text{(C)-D(2)-C(2)-C(40)} \\ \text{(C)-Co(2)-C(40)} \\ \text{(C)-Co(2)-C(20)} \\ \text{(D)-Co(2)-C(20)} \\ $	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12)	$C(2)-Co(1)-P(2) \\ C(2)-Co(1)-P(3) \\ P(2)-Co(1)-P(3) \\ P(3)-Co(1)-P(1) \\ P(3)-Co(1)-P(1) \\ N(1)-P(1)-Co(1) \\ N(1)-P(1)-Co(1) \\ N(2)-P(3)-Co(1) \\ N(2)-P(3)-Co(1) \\ N(2)-P(4)-C(71) \\ P(2)-N(1)-P(1) \\ O(1)-C(1)-Co(1) \\ C(10)-Co(2)-C(20) \\ C(10)-Co(2)-C(20) \\ C(30)-Co(2)-C(20) \\ O(20)-C(20)-Co(2) \\ O(40)-C(40)-Co(2) \\ O(91)-C(91)-C(92)\#1 \\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14)
$\begin{array}{l} \text{(Z)-II(ZA)} & \text{(G)I} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-Co(1)} \\ \text{(C)-P(1)-P(2)-Co(1)} \\ \text{(C)-P(1)-P(2)-Co(1)} \\ \text{(C)-P(1)-P(3)-Co(1)} \\ \text{(C)-P(3)-Co(1)} \\ \text{(C)-P(3)-Co(1)} \\ \text{(C)-P(3)-Co(1)} \\ \text{(C)-P(3)-Co(2)} \\ \text{(C)-Co(2)-C(40)} \\ \text{(C)-Co(2)-C(40)} \\ \text{(C)-Co(2)-C(20)} \\ (C)-Co(2)-C$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ \end{array}$	$\begin{array}{c} 93.6(2)\\ 87.3(2)\\ 172.72(9)\\ 113.7(3)\\ 101.98(7)\\ 104.8(3)\\ 92.0(2)\\ 123.7(2)\\ 111.8(2)\\ 104.6(3)\\ 101.7(3)\\ 177.1(7)\\ 109.8(5)\\ 108.9(6)\\ 111.9(6)\\ 178.7(12)\\ 175.7(14)\\ 109.6(8)\\ 109.5(6)\\ \end{array}$
$\begin{aligned} & \text{(Z)-F1(Z-A)} & \text{(C)} \\ & \text{(Symmetrietransformat)} \\ & \text{(Symmetrietransformat)} \\ & \text{(Symmetrietransformat)} \\ & \text{(C)-Co(1)-C(1)} \\ & \text{(C)-Co(1)-P(2)} \\ & \text{(C)-Co(1)-P(3)} \\ & \text{(C)-Co(1)-P(1)} \\ & \text{(C)-Co(1)-P(1)} \\ & \text{(C)-Co(1)-P(1)-C(21)} \\ & \text{(C)-P(1)-C(21)} \\ & \text{(C)-P(1)-C(21)} \\ & \text{(C)-P(1)-C(21)} \\ & \text{(C)-P(1)-C(11)} \\ & \text{(C)-P(1)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(21)} \\ & \text{(C)-P(1)-C(2)-C(20)} \\ & \text{(C)-P(1)-C(2)-C(20)} \\ & \text{(C)-P(1)-C(22)-C(20)} \\ & \text{(C)-P(1)-C(22)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(22)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(22)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(22)-C(21)} \\ & \text{(C)-P(1)-P(1)-C(22)-C(21)-C(21)} \\ & (C)-P(1)-P(1)-C(22)-C(21)-C(2$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12) 110.1(6) 109.9(7) 111.0(7)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(3)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ C(10)-Co(2)-C(20)\\ C(30)-Co(2)-C(20)\\ C(30)-Co(2)-C(20)\\ C(30)-Co(2)-C(20)\\ O(20)-C(20)-Co(2)\\ O(40)-C(40)-Co(2)\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14) 109.6(8) 109.5(6) 109.9(7)
$\begin{array}{l} \text{(Z)-H(ZA)} & \text{O}(71)^{\#} \\ \text{(Symmetrietransformat} \\ \text{Kation:} \\ \text{(C2)-Co(1)-C(1)} \\ \text{C(1)-Co(1)-P(2)} \\ \text{C(1)-Co(1)-P(3)} \\ \text{C(2)-Co(1)-P(1)} \\ \text{P(2)-Co(1)-P(1)} \\ \text{P(2)-Co(1)-P(1)} \\ \text{P(2)-Co(1)-P(1)-C(21)} \\ \text{C(21)-P(1)-C(21)} \\ \text{C(21)-P(1)-C(21)} \\ \text{C(21)-P(1)-C(21)} \\ \text{C(21)-P(1)-C(21)} \\ \text{C(21)-P(1)-C(31)} \\ \text{C(21)-P(1)-C(31)} \\ \text{C(21)-P(1)-C(31)} \\ \text{C(21)-P(1)-C(31)} \\ \text{C(21)-P(1)-C(31)} \\ \text{C(21)-P(1)-C(31)} \\ \text{C(31)-P(2)-C(31)} \\ \text{C(40)-Co(2)-C(40)} \\ \text{C(40)-Co(2)-C(40)} \\ \text{C(40)-Co(2)-C(30)} \\ \text{C(40)-Co(2)-C(30)} \\ \text{C(40)-Co(2)-C(20)} \\ \text{O(10)-C(10)-Co(2)} \\ \text{O(30)-C(30)-Co(2)} \\ \text{Dioxan:} \\ \\ \text{C(92)-O(91)-C(91)} \\ \text{O(92)-C(93)-C(94) \#2} \\ \text{n-Pentan:} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12) 110.1(6) 109.9(7) 111.0(7)	$\begin{array}{c} C(2)-Co(1)-P(2)\\ C(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ C(1)-Co(1)-P(1)\\ P(3)-Co(1)-P(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(1)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(3)-Co(1)\\ N(2)-P(4)-C(71)\\ P(2)-N(1)-P(1)\\ O(1)-C(1)-Co(1)\\ C(10)-Co(2)-C(30)\\ C(10)-Co(2)-C(30)\\ C(10)-Co(2)-C(20)\\ C(30)-Co(2)-C(20)\\ O(20)-C(20)-Co(2)\\ O(40)-C(40)-Co(2)\\ O(91)-C(91)-C(92)\#1\\ C(93)-O(92)-C(94)\\ O(92)-C(94)-C(93)\#2\\ \end{array}$	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14) 109.6(8) 109.5(6) 109.9(7)
$\begin{array}{l} \text{(Z)-II(ZA)} & \text{(G)I} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(Symmetrietransformat)} \\ \text{(C)-Co(1)-C(1)} \\ \text{(C)-Co(1)-P(2)} \\ \text{(C)-Co(1)-P(3)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)} \\ \text{(C)-Co(1)-P(1)-C(21)} \\ \text{(C)-P(1)-C(21)} \\ \text{(C)-P(1)-C(22)-C(20)} \\ \text{(C)-P(1)-P(1)-C(22)-C(20)} \\ \text{(C)-P(1)-P(1)-C(22)-C(20)} \\ \text{(C)-P(1)-P(1)-C(22)-C(20)} \\ (C)-P(1)-P(1)-P(1)-P(1)-P(1)-P(1)-P(1)-P(1$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12) 110.1(6) 109.9(7) 111.0(7) 94.3(19)	C(2)-Co(1)-P(2) C(2)-Co(1)-P(3) P(2)-Co(1)-P(3) P(2)-Co(1)-P(3) P(1)-Co(1)-P(1) P(3)-Co(1)-P(1) N(1)-P(1)-Co(1) C(11)-P(1)-Co(1) N(2)-P(3)-Co(1) N(2)-P(3)-Co(1) N(2)-P(3)-Co(1) N(2)-P(3)-Co(1) N(2)-P(4)-Co(1) C(10)-Co(2)-C(30) C(10)-Co(2)-C(30) C(10)-Co(2)-C(20) C(30)-Co(2)-C(20) O(20)-C(20)-Co(2) O(40)-C(40)-Co(2) O(91)-C(91)-C(92)#1 C(93)-O(92)-C(94) O(92)-C(94)-C(93)#2 C(104)-C(103)-C(102)	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14) 109.6(8) 109.5(6) 109.9(7)
$\begin{array}{l} \text{(Z)} -\text{II}(2\text{ X}) & \text{O}(71)^{\#} \\ \text{(Symmetrietransformat} \\ \text{Kation:} \\ \text{(C2)} -\text{Co}(1) -\text{C}(1) \\ \text{C1}(1) -\text{Co}(1) -\text{P2}(2) \\ \text{C1}(1) -\text{Co}(1) -\text{P2}(2) \\ \text{C2}(1) -\text{Co}(1) -\text{P2}(1) \\ \text{C2}(1) -\text{Co}(1) -\text{P2}(1) \\ \text{C2}(1) -\text{P1}(1) -\text{C2}(1) \\ \text{C2}(1) -\text{P2}(1) -\text{C2}(1) \\ \text{C2}(1) -\text{P2}(1) -\text{C2}(1) \\ \text{C3}(1) -\text{C2}(2) -\text{C2}(1) \\ \text{C40} -\text{C2}(2) -\text{C2}(1) \\ \text{C40} -\text{C2}(2) -\text{C2}(2) \\ \text{O10} -\text{C10} -\text{C2}(2) \\ \text{O10} -\text{C10} -\text{C2}(2) \\ \text{O10} -\text{C10} -\text{C2}(2) \\ \text{O10} -\text{C10} -\text{C2}(2) \\ \text{Dioxan:} \\ \text{C92} -\text{O91} -\text{C91} -\text{C91} \\ \text{O92} -\text{C93} -\text{C94} \\ \text{H}^2 \\ n -\text{Pentan:} \\ \text{C103} -\text{C102} -\text{C101} \\ \text{C105} -\text{C104} -\text{C103} \\ \end{array}$	121.5(3) 95.1(2) 90.6(2) 123.9(2) 71.55(7) 105.1(3) 104.1(3) 122.9(2) 94.60(19) 115.6(2) 102.4(3) 126.9(3) 177.0(7) 110.7(7) 105.8(6) 109.8(7) 178.2(12) 178.7(12) 110.1(6) 109.9(7) 111.0(7) 94.3(19) 119(3)	C(2)-Co(1)-P(2) C(2)-Co(1)-P(3) P(2)-Co(1)-P(3) P(2)-Co(1)-P(3) P(3)-Co(1)-P(1) N(1)-P(1)-Co(1) N(1)-P(1)-Co(1) C(11)-P(1)-Co(1) N(2)-P(3)-Co(1) N(2)-P(3)-Co(1) N(2)-P(4)-C(71) P(2)-N(1)-P(1) O(1)-C(1)-Co(1) C(10)-Co(2)-C(20) C(30)-Co(2)-C(20) C(30)-Co(2)-C(20) O(20)-C(20)-Co(2) O(40)-C(40)-Co(2) O(91)-C(91)-C(92)#1 C(93)-O(92)-C(94) O(92)-C(94)-C(93)#2 C(104)-C(103)-C(102) C(108)-C(107)-C(106)	93.6(2) 87.3(2) 172.72(9) 113.7(3) 101.98(7) 104.8(3) 92.0(2) 123.7(2) 111.8(2) 104.6(3) 101.7(3) 177.1(7) 109.8(5) 108.9(6) 111.9(6) 178.7(12) 175.7(14) 109.6(8) 109.5(6) 109.9(7) 92(2) 96(2)

Symmetrietransformationen für die äquivalenten Atome: #1 -x + 1, -y + 1, -z #2 -x + 2, -y, -z + 1 (156 pm) [15]. Deutlich stärker unterscheiden sich dagegen die (PNP)-Winkel der koordinierten Liganden [am N(1): 101.7° und 126.9° am N(2)]. Das kationische [Co(1)P₃C₂]-Koordinationspolyeder besitzt eine leicht verzerrte trigonal-bipyramidale Struktur mit den Atomen P(2) und P(3) in apicalen Positionen. Der P(2)-Co(1)-P(3)-Winkel beträgt 172.7°. Gegenüber der P(2)-Co(1)-P(3)-Achse ist die äquatoriale C(1),P(1),C(2)-Ebene [Winkelsumme 359.1(3)°] leicht geneigt.

Für die im folgenden beschriebenen spektrometrischen Untersuchungen wird, von wenigen Ausnahmen abgesehen, vorwiegend $5 \cdot 0.75$ Dioxan verwendet, da es in größeren Mengen zugänglich ist und, wie Tests ergeben haben, keine unterschiedlichen Ergebnisse im Vergleich zum einkristallinen $5 \cdot \text{Dioxan} \cdot \text{n-Pentan}$ liefert. Als Lösungsmittel diente meist Aceton oder Aceton-D₆, da in ihm kaum eine Weiterreaktion von 5 zu 6a [Gl. (1b)] bei Raumtemperatur stattfindet. Leitfähigkeitsmessungen in diesem Lösungsmittel weisen $5 \cdot 0.75$ Dioxan als schwachen 1:1-Elektrolyten aus. Dies deutet auf die Bildung von Ionenpaaren hin. Dafür spricht auch das FD-Massenspektrum (s. Exp. Teil), das neben dem Peak des Kations von 5 das Fragmention des zweikernigen Cobaltkomplexes $[Co_2(Hdppa)_2(CO)_3(H)]^+$ zeigt. Das Vorliegen paramagnetischer Komplexkomponenten, wie sie für $[Co{Ph_2PN(^{i}Bu)PPh_2-P,P'}_2CO]^{\cdot}[Co(CO)_4]^{\cdot}$ beobachtet wurden [16], kann für $5 \cdot 0.75$ Dioxan sowohl für den gelösten, als auch für den Festzustand ausgeschlossen werden. Denn sowohl ESR-Spektrum (5 · 0.75 Dioxan gelöst in Aceton) als auch magnetische Messungen weisen $5 \cdot 0.75$ Dioxan erwartungsgemäß als diamagnetische Verbindung aus.

NMR-Untersuchungen an 5

Für das Festkörper-NMR-Spektrum von $5 \cdot \text{Dioxan} \cdot$ n-Pentan sind gemäß der Röntgenstrukturanalyse vier ³¹P-Signale zu erwarten. Abb. 2 a zeigt das ³¹P-CP/ MAS-Spektrum, Abb. 2 b das TOSS-Spektrum von pulverisierten Kristallen von 5. Zur Auflösungsverbesserung wurde das Spektrum von Abb. 2 b zusätzlich mit einer Gauß-Filterfunktion prozessiert (Abb. 2 c).

Die beiden äußeren intensiven Signale in Abb. 2 c sind, wie weiter unten beschrieben, den Phosphoratomen P(4) ($\delta = 37.6$) und P(3) ($\delta = 64.4$) zuzuordnen. Skalare ³¹P,³¹P-Kopplungen sind in den Festkörperspektren nicht mehr aufgelöst. Zwischen den intensiven äußeren Signalen finden sich aufgelöst drei kleinere Signale bei 60.9, 57.9 und 49.7 ppm sowie eine Schulter bei 52.5 ppm. Das Auftreten von vier statt der erwarteten zwei Signale für P(1) und P(2) ist entweder auf die Fehlordnung der n-Pentan-Moleküle im Kristall oder auf den Verlust von Solvens während des Zerreibens der Kristalle zurückzuführen.

Abb. 2 31 P-Festkörper-NMR-Spektren von 5 \cdot Dioxan \cdot n-Pentan bei + 24 °C

a) CP/MAS-Spektrum, 828 Scans, Rotorfrequenz 5690 Hz; die isotropen chemischen Verschiebungen sind mit * markiert, andere Signale sind Rotationsseitenbanden

b) TOSS-Spektrum, 34108 Scans, Rotorfrequenz 4770 Hz, Prozessierung mit exponentieller Filterfunkion

c) wie b), Prozessierung mit Gauß-Filterfunkion zur Auflösungsverbesserung

Das Lösungs-³¹P{¹H}-NMR-Spektrum von **5** unterscheidet sich deutlich vom Festkörperspektrum sowohl in den chemischen Verschiebungen, in der Zahl der vorhandenen Spezies als auch im dynamischen Verhalten. Abb. 3 zeigt das ³¹P-COSY-Spektrum von in Aceton-D₆ gelösten Kristallen von **5**.

Eine in geringerem Anteil vorliegende Spezies zeigt unter den Bedingungen der ¹H-Breitbandentkopplung ein Dublett bei $\delta = 2.4$ mit ²J (P,P) = 18.8 Hz. Diese Spezies kann als das PH-Tautomer $5'^+$ (Schema 1) identifiziert werden: Im ¹H-gekoppelten ³¹P-Spektrum erfolgt eine Aufspaltung in ein großes Dublett mit ¹J (PH) = 475 Hz. Dies deckt sich mit früheren Beobachtungen am Komplex [(OC)₅Re(Ph₂P–N=P(H)Ph₂)]⁺BF₄⁻, wo ${}^{1}J$ (PH) = 470 Hz gefunden wird [17]. Es handelt sich folglich um die Resonanz des endständigen, nicht an das Cobaltatom koordinierten Phosphoratoms. Das Signal bei 2.4 ppm zeigt ein Kreuzsignal zu einem verbreiterten Dublett bei 82.7 ppm, das demnach einem P-Atom zukommt, welches über zwei Bindungen mit dem endständigen Phosphoratom koppelt. Vom Dublett bei 82.7 ppm gehen keine weiteren Kopplungen aus bzw. diese sind zu klein, um im COSY-Spektrum detektierbar zu sein. Das Tieftem-

Abb. 3 31 P-COSY-Spektrum (¹H-breitbandentkoppelt) von 5 in Aceton-D₆ bei + 24 °C (202 MHz)

Schema 1

peraturspektrum (siehe unten und Abb. 4 und 5) zeigt jedoch eindeutig den weiteren Verknüpfungsweg.

Bei 34.8 ppm und 34.4 ppm sind im ³¹P-Spektrum zwei Dubletts im Integrationsverhältnis ca. 5:1 zu finden (J = 57.6 Hz und 59.5 Hz). Diese lassen sich den endständigen, freien P-Atomen von verschiedenen Isomeren von **5** zuordnen (siehe unten). Beide Dubletts koppeln über zwei Bindungen mit Signalen von an das Cobaltatom koordinierten P-Atomen, die ein Multiplett bei 98.4 ppm bilden (P(3)). Von dort aus zeigt sich ein schwaches Kreuzsignal zu einem breiten, unaufgelösten Signal bei 57.2 ppm, das den Phosphoratomen P(1) und P(2) zugeordnet werden muß. Das kleine Signal bei 62.2 ppm gehört, wie die temperaturabhängigen Spektren (s. unten) bestätigen, zum bereits unter Weiterreaktion gebildeten Kation **6**⁺.

Ein interessantes Verhalten zeigt sich beim Abkühlen der Lösung: Die ³¹P-Spektren (Abb. 4) weisen charakteristische dynamische Phänomene auf. Das bereits verbreiterte Signal bei 57.2 ppm spaltet ab -15 °C in zwei breite, sehr flache Signale bei etwa 52 und 62 ppm auf, wobei das Hochfeldsignal dieser beiden bei -65 °C nochmals aufspaltet. Bei -90 °C erhält man scharfe Multipletts. Das scharfe kleine Signal bei etwa 57.5 ppm gehört vermutlich zu dem Cobalt(I)-Komplex Co₂(μ -CO)(CO)₄(μ -dppa)₂, der häufig bei Wasserstoffwanderungen aus der NH-Gruppe des Hdppa gebildet wird [6].

Das Multiplett bei 98.4 ppm verbreitert sich ab -15 °C. Bei -65 °C finden sich zwei Signalgruppen im Verhältnis ca. 2:1, die bei -90 °C schließlich scharf aufgespalten sind. Daneben findet man bei allen Temperaturen die abgesetzten Signale des Tautomeren $5'^+$, die sich am dynamischen Prozeß nicht beteiligen.

Das ³¹P-COSY-Spektrum bei –90 °C (Abb. 5) zeigt, daß alle Multipletts, die am dynamischen Prozeß beteiligt sind, konform gehen mit einem Verknüpfungsschema der Phosphoratome wie in **5**, d. h. ein freies, endständiges Phosphoratom (ca. 32 ppm) koppelt mit einem an das Cobaltatom gebundenen Phosphoratom, dieses koppelt (schwache Kreuzsignale) mit zwei jeweils an das Cobaltatom gebundenen P-Atomen, welche untereinander (intensive Kreuzsignale) ebenfalls koppeln.

Wir folgern aus diesen Beobachtungen:

- 1. Die Struktur der Spezies in Lösung unterscheidet sich von derjenigen im Kristall. Dies ergibt sich zwingend aus den völlig unterschiedlichen chemischen Verschiebungen im Festkörper- und im Lösungs-NMR-Spektrum.
- 2. Das Tautomerengleichgewicht, das zu 5^{'+} führt, ist langsam in der NMR-Zeitskala, auch bei Raumtemperatur.
- Es liegen, abgeleitet vom "Haupttautomer" von 5⁺ (Schema 1), in Lösung drei beobachtete Spezies im Gleichgewicht vor. Das Kopplungsmuster im

Abb. 4 Temperaturabhängige 31 P-NMR-Spektren von 5 in Aceton-D₆

Abb. 5 ³¹P-Doppelquantenfilter-COSY-Spektrum von **5** in Aceton-D₆, -90 °C (Ausschnitt; das Signal bei 2.4 ppm zeigt unter diesen Bedingungen kein Kreuzsignal und ist nicht abgebildet)

³¹P-COSY-Spektrum bei –90 °C läßt darauf schließen, daß bei keiner der drei Formen die Phosphoratome P(1) und P(2) in Lösung äquivalent sind, eine trigonal-bipyramidale Form mit P(1) und P(2) in äquatorialer Stellung (C_s-Symmetrie) ist somit auszuschließen.

4. Für das "Haupttautomer" von **5**⁺ kommen unter Berücksichtigung dieser Ergebnisse die quadratisch-pyramidalen Formen $5a^+$, $5b^+$ und $5c^+$ in Betracht. Die Formen $5a^+$ und $5b^+$ sind chiral, $5c^+$ hat C_s-Symmetrie, jedoch sind in allen drei Spezies alle Phosphoratome chemisch nicht äquivalent. Das Vorliegen einer Spezies $5d^+$, bei der die in der Pyramidengrundfläche liegenden P-Atome aufgrund der Symmetrie identisch wären, ist mit den Spektren nicht zu vereinbaren.

- 5. Gleichartige Überlegungen gelten auch für die Struktur des Valenztautomeren $5'^+$, wobei für diese Spezies zusätzlich das Vorliegen einer trigonal-bipyramidalen Form analog der Röntgenstrukturanalyse von $5 \cdot$ Dioxan \cdot n-Pentan nicht ausgeschlossen werden kann (vier ³¹P-chemische Verschiebungen bei -90 °C).
- 6. Ein zweidimensionales ³¹P-Austauschspektrum (EXSY) bei Raumtemperatur (nicht abgebildet) zeigt ein intensives Kreuzsignal zwischen dem 98 ppm-Multiplett und dem 57 ppm-Signal, nicht jedoch zwischen dem 57 ppm-Signal und dem 35 ppm-Signal. Daraus läßt sich folgern, daß das endständige, "freie" Phosphoratom zu keinem Zeitpunkt an das Cobaltatom gebunden ist, wohl eine Folge der Tatsache, daß dieses P-Atom in das Tautomerengleichgewicht involviert ist.

Metathese des in der Reaktion (1 b) gebildeten $\mathbf{6a} \cdot 2$ THF mit Natriumtetraphenyloborat führt zu [Co(CO)(Hdppa- $\kappa^2 P$)₂]BPh₄ · THF ($\mathbf{6b} \cdot$ THF) [5]. Einfacher und in röntgenfähigen Rhomben ist $\mathbf{6b} \cdot$ THF gemäß Gl. (2) beim Erhitzen von $\mathbf{5} \cdot 0.75$ Dioxan mit NaBPh₄ in THF zugänglich.

$$[Co(CO)_2(Hdppa-\kappa^2 P)(Hdppa-\kappa^1 P)][Co(CO)_4] \cdot 0.75 Dioxan$$

5 · 0.75 Dioxan

+ NaBPh₄

$$\frac{\text{THF}}{-0.75 \text{ Dioxan}} \text{ CO} + \text{Na}[\text{Co}(\text{CO})_4] + [\text{Co}(\text{CO})(\text{Hdppa-}\kappa^2 P)_2]\text{BPh}_4 \cdot \text{THF}$$

$$6\mathbf{b} \cdot \text{THF}$$
(2)

Die Molekülstruktur des Kations von $6b \cdot$ THF findet sich in Abb. 6. Tabelle 1 enthält die kristallographischen Daten und Angaben zur Strukturlösung von $6b \cdot$ THF. Ausgewählte Bindungslängen und Winkel sind in Tabelle 3 wiedergegeben.

Die PN-Bindungen weisen mit einer mittleren Länge von 169.5 pm nur einen geringen Doppelbindungsanteil auf. Die (PNP)-Winkel in den Vierringchelaten sind erwartungsgemäß klein und betragen etwa 99°. Bemerkenswert erscheint, daß nur die N(2)-H(2)-Gruppe mit THF eine Wasserstoff-Brükkenbindung eingeht, während die N(1)-H(1)-Gruppe frei bleibt. Dieses Ergebnis spiegelt sich auch im Festkörper-IR-Spektrum wider. Die Verbindung wurde außerdem noch mit weiteren Methoden der in-

Abb. 6 ORTEP-Darstellung der Molekülstruktur von 6b · THF (ohne H-Atome)

Tabelle 3Ausgewählte Bindungslängen/pm und -winkel/°von 6b · THF; Standardabweichungen in Klammern

Co(1)-C(1) Co(1)-P(4) Co(1)-P(3) P(1)-C(21) P(2)-N(1) P(4) N(2)	176.1(4) 219.37(12) 222.6(2) 181.1(4) 171.6(4) 168.1(4)	Co(1)-P(1) Co(1)-P(2) P(1)-N(1) P(1)-C(11) P(3)-N(2) C(1) O(1)	217.42(12) 220.10(12) 168.3(4) 182.1(4) 169.8(4) 114.7(5)		
1(4) = 1(2)	100.1(4)	C(1)=O(1)	114.7(5)		
$\begin{array}{l} C(1)-Co(1)-P(1)\\ P(1)-Co(1)-P(4)\\ P(1)-Co(1)-P(2)\\ C(1)-Co(1)-P(3)\\ P(4)-Co(1)-P(3)\\ N(1)-P(1)-C(21)\\ N(1)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ C(11)-P(1)-Co(1)\\ N(2)-P(3)-Co(1)\\ P(4)-N(2)-P(3) \end{array}$	$\begin{array}{c} 92.72(14)\\ 173.67(5)\\ 71.90(4)\\ 110.1(2)\\ 72.05(4)\\ 108.5(2)\\ 95.50(13)\\ 118.69(13)\\ 92.87(14)\\ 100.6(2) \end{array}$	$\begin{array}{c} C(1)-Co(1)-P(4)\\ C(1)-Co(1)-P(2)\\ P(4)-Co(1)-P(2)\\ P(1)-Co(1)-P(3)\\ P(2)-Co(1)-P(3)\\ N(1)-P(1)-C(11)\\ C(21)-P(1)-Co(1)\\ N(1)-P(2)-Co(1)\\ P(1)-N(1)-P(2)\\ O(1)-C(1)-Co(1)\\ \end{array}$	93.27(14) 129.27(14) 102.64(5) 107.69(5) 120.65(5) 107.0(2) 121.56(14) 93.60(13) 98.2(2) 176.0(4)		
Wasserstoffbrücken [pm und °]:					
$\begin{array}{c} D-H\cdots A\\ N(2)-H(2)\cdots O(130)\end{array}$	d(D····A THF 291.2(6)	A) <(DHA) 171.78(5.85)			

strumentellen Analytik eindeutig charakterisiert (s. Exp. Teil).

Schließlich sei noch festgestellt, daß das Kation von $6b \cdot THF$ eine trigonal-bipyramidale Struktur aufweist. Dies beweist der Winkel der Längsachse P(1)–Co(1)–P(4), der 173.67° beträgt und die Winkelsumme in der äquatorialen Ebene P(2),P(3),C(1) mit Co(1), die einen Wert von 360.0° ergibt. Es ist anzunehmen, daß dieses trigonal-bipyramidale Koordinationspolyeder auch im Kation von $6a \cdot 2$ THF, dem früheren Ausgangsmaterial [5] für $6b \cdot$ THF, vorliegt. Diese trigonal-bipyramidale Struktur scheint nämlich für einen CO- und Organophosphan-Liganden-Austausch-Mechanismus bei $6a \cdot 2$ THF und dem noch zu besprechenden analogen Komplex $[Co(CO)(dppm)_2] \cdot [Co(CO)_4]$ (7) [8] bzw. $7 \cdot 2$ THF von Bedeutung zu sein.

Der salzartige Komplex 6 a · 2 THF, der bereits früher weitgehend [5] instrumentell-analytisch charakterisiert wurde, zeigt im jetzt ergänzten, temperaturabhängigen ¹³C{¹H}-NMR-Spektrum (CD₂Cl₂) sowohl für das CO-haltige Kation $[Co(CO)(Hdppa-\kappa^2 P)_2]^+$ als auch für das Anion $[Co(CO)_4]^-$ nur eine einzige breite CO-Resonanz bei δ = 205.5, die bei -50 °C um etwa 1 ppm tieffeldverschoben auftritt. Messungen bei noch tieferen Temperaturen sind nicht möglich, da dann der Komplex ausfällt. Auch im ³¹P{¹H}-NMR-Spektrum wird nur ein einziges Signal bei etwa $\delta = 61.5$ beobachtet. In Zusammenhang mit der geringen Leitfähigkeit ($\Lambda_0 = 11 \text{ cm}^2/\Omega \cdot \text{mol}$) [5] kann gefolgert werden, daß Kation und Anion von 6a · 2 THF ein Ionenpaar bilden. In diesem Ionenpaar fluktuieren sowohl die P-Donatoren des Hdppa (bzw. dppm), als

Schema 2 CO- und Organophosphan-Austausch-Mechanismus zwischen kationisch-trigonal-bipyramidalen und anionisch-tetraedrischen Cobaltcarbonyl-Komplexen (E = NH, CH_2)

auch alle CO-Gruppen. Dieser Fluktuationsmechanismus (Schema 2) stellt einen Vorschlag für das experimentell nachgewiesene Verhalten dar.

Er geht von der bekannten Tatsache aus, daß Hdppa und dppm bevorzugt metall-verbrückende Liganden sind, und kommt außerdem, sieht man von einer lockeren Assoziation im Ionenpaar ab, ohne Überschreitung der Edelgaskonfigurationen an den Cobaltatomen aus. Auch sind in diesem Vorschlag keine stabilen CO-Brücken enthalten, wie diese schon für verschiedene gelöste Cobaltcarbonyl-Komplexe vom Typ $Co_2(CO)_4(\mu$ -L–L)₂ (L–L: Hdppa [6], dppm [10]) festgestellt wurden. Die Ausbildung von paramagnetischen Komplex-Partikeln, wie sie für den ähnlichen, röntgenograhisch abgesicherten Komplex $[Co{Ph_2PN(^{1}Bu)PPh_2-P,P'}_2CO]$ $[Co(CO)_4]$ (s. vorher) angenommen werden [16], können aufgrund des diamagnetischen Verhaltens von $6a \cdot 2 \text{ THF}$ [5] ausgeschlossen werden. Weiterhin konnten keine v(CO)-Banden bei 2051 w, 1931 vs und 1895 vs festgestellt werden, wie sie für die Spezies $[Co(CO)_4]$ postuliert werden [16]. Zusammenfassend zeigt der vorgeschlagene Mechanismus, daß beide Cobaltatome sowohl fünffache als vierfach-tetraedrische Strukturen und damit kationische und anionische Funktionen übernehmen können und, daß nach neun Zwischenschritten wieder der Ausgangszustand erreicht wird. Zur Überprüfung dieses Austauschmechanismus an 7 interessierte uns dessen ${}^{13}C{}^{1}H$ -NMR- und ${}^{31}P{}^{1}H$ -NMR-Spektrum. Dabei fanden wir, daß zwar die Kristallstruktur von 7 mit einem trigonal-bipyramidalen Kation, $[Co(CO)(dppm)_2]^+$, bekannt ist [8], jedoch ein ¹³C{¹H}-NMR-Spektrum bisher nicht publiziert wurde, und das ³¹P{¹H}-NMR-Spektrum ein Singulett $(\delta = -6.78)$ zeigt, wie es ähnlich $(\delta = -6.1)$ auch für (dppm)(CO)₂Co-Co(CO)₂(dppm) [10] gefunden wurde. Mit der Struktur vom salzartigen 7 kaum in Einklang zu bringen ist auch das publizierte IR-Spektrum [8] mit fünf v(CO)-Banden bei 2010, 1998, 1950, 1855 und 1835 cm⁻¹. Tatsächlich sollte man für das Kation von 7 nur eine v(CO)-Absorption bei etwa 1940 cm⁻¹ [5] und für das tetraedrische $[Co(CO)_4]^-$ -Anion eine solche der Rasse F₂ bei etwa 1885 cm⁻¹ [18] beobachten. Wegen dieser Unklarheiten synthetisierten wir die Verbindung 7 erneut. Allerdings gingen wir nicht wie Hughes et al. von $CoBr_2 \cdot x H_2O$, dppm, CO und NaBH₄ aus, sondern setzten direkt $Co_2(CO)_8$ mit überschüssigem dppm in THF, entsprechend Gl. (3), um.

Co₂(CO)₈ + 2 dppm

$$\xrightarrow{\text{THF}}$$
 3 CO + [Co(CO)(dppm)₂](Co(CO)₄] · 2 THF (3)
7 · 2 THF

Dabei erhält man 7 als THF-Solvat in roten, röntgenfähigen Quadern. Überraschenderweise weist das Kation von $7 \cdot 2$ THF keine trigonal-bipyramidale, sondern eine eher tetragonal-pyramidale Struktur auf (Abb. 7). Tabelle 1 enthält die kristallographischen Daten und Angaben zur Strukturlösung von $7 \cdot 2$ THF. Ausgewählte Bindungslängen und Winkel des tetragonal-pyramidalen (CoP₄C)-Koordinationspolyeders aus $7 \cdot 2$ THF sind den entsprechenden Strukturelementen des trigonal-bipyramidalen Kations aus dem solvat-freien 7 (Abb. 8, [8]) in Tabelle 4 gegenübergestellt.

Man erkennt, daß bei den Bindungslängen nur minimale Abweichungen auftreten. Jedoch ergeben sich für die beiden Strukturisomere gravierende Unterschiede bei den (P-Co-P)-Winkeln gegenüber liegender P-Atome [z. B.: P(4)-Co(1)-P(1): 164.23° (7 · 2 THF) und P(2)-Co(1)-P(3): 172.05° (7), P(2)-Co(1)-P(3): 147.26° $(7 \cdot 2 \text{ THF})$ und P(1)–Co(1)–P(4): 133.73° (7)]. Auch die Winkel von diesen P-Atomen zum Carbonyl-Kohlenstoff zeigen bei beiden Isomeren zwangsläufig beachtliche Differenzen [C(1)–Co(1)–P(3): 104.9 ($7 \cdot 2$ THF) und P(4)-Co(1)-C(5): 112.5 (7), C(1)-Co(1)-P(2): 107.8 $(7 \cdot 2 \text{ THF})$ und P(1)–Co(1)–C(5): 113.8° (7)]. Der Einbau der beiden THF-Moleküle in das Kristallgitter von 7 ist offensichtlich dafür verantwortlich, daß das Kation an Stelle von einer trigonal-bipyramidalen Koordination die seltenere tetragonal-pyramidale Struktur annimmt.

Die Verbindung $7 \cdot 2$ THF, die beim Trocknen im Vakuum das Kristall-THF bis auf einen geringen Gehalt von *etwa* 0.5 Mol/Formeleinheit abgibt, wurde vollständig NMR- und IR-spektrometrisch charakterisiert (s. Exp. Teil). Das ¹³C[¹H]-NMR-Spektrum

Abb.7 ORTEP-Darstellung der Molekülstrukturen von $[CoCO(dppm)_2]^+$ und $[Co(CO)_4]^-$ aus $7 \cdot 2 \text{ THF}$ (ohne H-Atome)

Abb. 8 Atomnummerierung und schematische Skizze des verzerrt-trigonal-bipyramidalen Kations von 7 (nach [8]).

(CD₂Cl₂) zeigt für das kationische und anionische CO nur ein breites Singulett bei $\delta = 222.0$, das bei $-50 \,^{\circ}\text{C}$ zu hohem Feld (δ = 202.8) verschoben wird, aber seinen Singulettcharakter behält. Auch das ³¹P{¹H}-NMR-Spektrum zeigt nur ein Singulett, allerdings bei $\delta = 38.0$ [Freies dppm $\delta = -24.2$ (s, CD₂Cl₂)]. Diese Ergebnisse beweisen, daß auch 7 dem in Schema 2 dargelegten Austausch-Mechanismus in Lösung unterliegt. Ob dabei das fünffach koordinierte Cobaltatom aus einer trigonal-bipyramidalen oder tetragonal-pyramidalen Konfiguration heraus reagiert, bleibt offen. Innerhalb von 14 Tagen erfolgt in größerem Umfang ein Abbruch des Mechanismus unter CO-Eliminierung. Es bildet sich, als weitere Bestätigung für den Mechanismus, das in orange-roten röntgenfähigen Nadeln anfallende Substitutionsprodukt $Co_2(CO)_2$.

Tabelle 4 Ausgewählte Bindungslängen/pm und -winkel/° von 7 · 2 THF (tetragonal-pyramidales Kation) im teilweisen Vergleich mit 7 (trigonal-bipyramidales Kation aus [8]); Standardabweichungen in Klammern

$\frac{[Co(CO)(dppm)_2][Co(CO)_4] \cdot 2 \text{ THF}}{7 \cdot 2 \text{ THF, diese Arbeit}}$		[Co(CO)(dppm) ₂][Co(CO) ₄] 7 , A. N. Hughes et al. [8]		
Kation:		Kation:		
$\begin{array}{c} Co(1)-P(2)\\ Co(1)-P(4)\\ Co(1)-P(1)\\ Co(1)-P(3)\\ Co(1)-C(1)\\ C(1)-O(1)\\ P(2)-C(2)\\ P(1)-C(2)\\ P(4)-C(3)\\ P(3)-C(3)\\ P(1)-C(11) \end{array}$	219.5(2) 220.4(2) 221.0(2) 220.3(2) 178.6(7) 112.9(6) 182.0(6) 182.9(6) 180.6(5) 184.8(5) 182.7(7)	$\begin{array}{c} Co(1)-P(1)\\ Co(1)-P(2)\\ Co(1)-P(3)\\ Co(1)-P(4)\\ Co(1)-C(5)\\ C(5)-O(5)\\ P(1)-C(8)\\ P(3)-C(8)\\ P(2)-C(9)\\ P(4)-C(9) \end{array}$	221.7(3) 220.8(3) 220.7(3) 222.7(3) 173.5(12) 114.5(14) 184.9(10) 182.9(10) 182.6(10) 186.2(10)	
Anion:				
Co(2)-C(92) Co(2)-C(94) O(92)-C(92) O(94)-C(94)	172.4(9) 176.4(8) 115.5(8) 114.2(7)			
Kation:		Kation:		
$\begin{array}{l} C(1)-Co(1)-P(4)\\ P(2)-Co(1)-P(4)\\ P(3)-Co(1)-P(4)\\ C(1)-Co(1)-P(1)\\ P(1)-Co(1)-P(2)\\ P(1)-Co(1)-P(3)\\ C(1)-Co(1)-P(2)\\ C(1)-Co(1)-P(3)\\ P(4)-Co(1)-P(1)\\ P(2)-Co(1)-P(3)\\ C(11)-P(1)-C(2)\\ C(21)-P(1)-C(2)\\ C(21)-P(1)-C(2)\\ C(21)-P(1)-Co(1)\\ C(2)-P(1)-Co(1)\\ C(2)-P(1)-Co(1)\\ P(2)-Co(1)-P(3)\\ P(4)-C(3)-P(3)\\ \end{array}$	97.7(2) 99.84(8) 73.84(7) 98.0(2) 73.83(8) 103.43(8) 107.8(2) 104.9(2) 164.23(8) 147.26(8) 107.7(3) 121.9(3) 93.7(2) 177.0(7) 93.0(3) 92.9(3)	$\begin{array}{l} P(2)-Co(1)-C(5)\\ P(2)-Co(1)-P(1)\\ P(2)-Co(1)-P(4)\\ P(3)-Co(1)-C(5)\\ P(3)-Co(1)-P(1)\\ P(3)-Co(1)-P(4)\\ P(1)-Co(1)-C(5)\\ P(4)-Co(1)-C(5)\\ P(2)-Co(1)-P(3)\\ P(1)-Co(1)-P(4)\\ \end{array}$	93.1(3) 102.53(3) 73.93(11) 94.9(3) 73.73(11) 103.37(11) 113.8(4) 112.5(4) 172.05(11) 133.73(12)	
Anion:				
C(92)-Co(2)-C(94) C(93)-Co(2)-C(94)	111.9(4) 108.0(4)			

 $(\mu$ -CO)₂ $(\mu$ -dppm)₂ · 0.83 THF (**8** · 0.83 THF). Die Verbindung wurde analytisch und spektrometrisch vollständig charakterisiert (s. Exp. Teil). Der Gehalt von 0.83 Mol THF/Formeleinheit (bzw. 5 Mol THF/6 Formeleinheiten) folgt aus der Kristallstrukturanalyse [19]. Sie wird hier nicht mitgeteilt, da sie bereits für $Co_2(CO)_2(\mu$ -CO)_2(μ -dppm)_2 [9] publiziert wurde und die Abweichungen minimal sind. Auch von dem CObrückenfreien Isomeren $Co_2(CO)_4(\mu$ -dppm)₂ (8a) kennt man die Kristallstruktur [9]. Diese Ergebnisse sind insgesamt für den Abbruch des in Schema 2 dargelegten Mechanismus von Interesse, denn wie verschiedentlich schon IR-spektrometrisch belegt, erfolgt die Ausbildung von CO-Brücken vielfach erst beim Übergang von dem gelösten in den festen Zustand [6, 10].

Um zu erfahren, ob Valenzdisproportionierungskomplexe des Co₂(CO)₈ mit dreizähnigen P-Liganden wie z. B. $[Co(CO)_2CH_3C(CH_2PPh_2)_3][Co(CO)_4]$ (9a) [12-14] auch den zuvor erwähnten CO- und Organophosphan-Austauschmechanismus eingehen, wurde 9a in einer etwas modifizierten Synthese (triphos-Überschuß zur Ausbeutensteigerung) als $9a \cdot 0.83$ n-Pentan erneut dargestellt. Damals [12] war es nämlich nicht möglich, von $9a^{31}P{^{1}H}$ - und $^{13}C{^{1}H}$ -NMR-Spektren zu erhalten. Auch galt es die zu jener Zeit auf Grund von einer Raman-Polarisationsmessung für das Kation von 9a wahrscheinlich gemachte tetragonal-pyramidale Struktur durch eine Kristallstrukturanalyse abzuklären. Zu diesem Zwecke wurde $9a \cdot 0.8\overline{3}$ n-Pentan durch Metathese mit NaBPh4 in das orange-rote, röntgenfähige $[Co(CO)_2CH_3C(CH_2PPh_2)_3]BPh_4$ (9b) übergeführt [12].

Die Molekülstruktur des Kations von **9b**, das auch in **9a** enthalten ist und für die Besprechung von dessen ${}^{31}P{}^{1}H{}$ - und ${}^{13}C{}^{1}H{}$ -NMR-Spektren bedeutsam sein kann, findet sich in Abb. 9 und sei daher zuerst behandelt. Tabelle 1 enthält die kristallographischen Daten und Angaben zur Strukturlösung von **9b**. Ausgewählte Bindungslängen und -winkel finden sich in Tabelle 5.

Auffallend am Kation von 9b ist, daß die Atome P(1), P(3), C(6) und C(7) die Basis einer nahezu quadratischen Pyramide mit Cobalt(1) als Zentrum und P(2) als apicales Atom einnehmen. Dementsprechend bildet Co(1) mit den Basisatomen auch Winkel zwischen 86.6° und 90.1° aus, die dem Idealwert von 90° sehr nahe kommen. Auch der gegenüber den Co(1)-P(1)- und Co(1)-P(3)-Bindungslängen größere Co(1)-P(2)-Abstand kann als Charakteristikum für eine quadratisch-pyramidale Struktur angesehen werden [20]. Weiterhin entsprechen die nahezu 90°-Winkel P(3)-Co(1)-P(2) und P(1)-Co(1)-P(2) den Anforderungen an eine quadratische Pyramide. Doch sollten die C(7)-Co(1)-P(3)- und C(6)-Co(1)-P(1)-Winkel 180° betragen. Mit 169.1° und 142.5° weichen sie vom Idealwert deutlich ab und man kann daher bestenfalls

Abb. 9 ORTEP-Darstellung der Molekülstruktur des Kations von 9b (ohne H-Atome)

Tabelle 5Ausgewählte Bindungslängen/pm und -winkel/°von 9 b; Standardabweichungen in Klammern

Co(1)-C(6)	175.0(4)	Co(1)-C(7)	177.0(4)
Co(1) - P(3)	222.80(10)	Co(1) - P(1)	223.82(10)
Co(1) - P(2)	226.36(10)	P(1) - C(1)	184.5(3)
P(2) - C(2)	185.2(4)	P(3) - C(3)	184.4(3)
C(1) - C(4)	154.5(5)	C(1) - H(1 A)	96(5)
C(1)-H(1 B)	99(5)	C(2) - C(4)	155.6(5)
C(2) - H(2A)	98(5)	C(2) - H(2B)	99(5)
C(3) - C(4)	153.2(5)	C(3) - H(3A)	100(5)
C(3) - H(3B)	95(5)	C(6)–O(6)	114.6(4)
C(7) - O(7)	113.7(4)	B(1)-C(101)	164.1(5)
B(1)-C(91)	164.1(6)	B(1)-C(71)	165.2(5)
B(1)-C(81)	165.6(6)		
C(6)-Co(1)-C(7)	86.6(2)	C(6)-Co(1)-P(3)	88.12(12)
C(7)-Co(1)-P(3)	169.09(13)	C(6)-Co(1)-P(1)	142.5(2)
C(7)-Co(1)-P(1)	90.09(12)	P(3)-Co(1)-P(1)	88.34(3)
C(6)-Co(1)-P(2)	121.3(2)	C(7)-Co(1)-P(2)	100.79(12)
P(3)-Co(1)-P(2)	90.12(3)	P(1)-Co(1)-P(2)	95.98(4)
O(6)-C(6)-Co(1)	177.0(4)	O(7)-C(7)-Co(1)	176.6(3)

von einer tetragonal-pyramidalen Struktur sprechen. Schließlich könnte man die Struktur mit einer verzerrten trigonalen Bipyramide in Bezug bringen, wenn man die Atome P(3)–Co(1)–C(7)–O(7) als Pyramidenlängsachse ansehen würde. Allerdings wären dann die Abweichungen vom idealen 120° -Winkel in der äquatorialen Ebene P(1), P(2), C(6) mit 95.98° [P(1)–Co(1)–P(2)] und 142.5° [C(6)–Co(1)–P(1)] extrem.

Zusammenfassend läßt sich somit feststellen, daß das CoP_3C_2 -Koordinationspolyeder im Kation von **9b** eine tetragonal-pyramidale Struktur hat, die in Richtung einer trigonal-bipyramidalen Konfiguration verzerrt ist [20]. Offensichtlich existiert diese Struktur auch beim Kation von **9a** und bleibt, wie frühere Raman-Polarisationsmessungen gezeigt haben, auch in Lösung erhalten [12].

Das ${}^{13}C{}^{1}H$ -NMR-Spektrum (CD₂Cl₂) von **9a** zeigt für die beiden CO-Gruppen des Kations nur ein

breites Singulett bei $\delta = 206.0$ und für die CO-Gruppen des $[Co(CO)_4]^-$ -Anions ein *Oktett gleich hoher* Linien [wegen ⁵⁹Cobalt (100%): I = 7/2] bei $\delta = 214.9$ mit ¹J(⁵⁹Co¹³C) = 285.9 Hz. Signallage und Kopplungskonstante entsprechen den Erwartungen [21, 22]. Aus dem Auftreten getrennter CO–¹³C{¹H}-Signale für Kation und Anion von **9a** kann gefolgert werden, daß für diese Verbindung in Lösung kein CO- und Organophosphan-Austauschmechanismus existiert, wenn auch für die Kationen von **9a**, **b** wegen des Singulettcharakters ihrer CO–¹³C{¹H}-NMR- und ³¹P{¹H}-NMR-Resonanzen (s. Exp. Teil) Fluktuationsmechanismen im Rahmen der NMR-Zeitskala möglich erscheinen.

3 Experimenteller Teil

Alle Umsetzungen wurden unter Ausschluß von Luftsauerstoff und Feuchtigkeit in einer Stickstoffatmosphäre durchgeführt. Die Lösungsmittel waren entwässert und N2-gesättigt. Co₂(CO)₈ wurde von der Hoechst AG, Frankfurt/Main gespendet, $HN[P(C_6H_5)_2]_2$ wurde nach der Methode von Nöth und Meinel dargestellt [2], $(C_6H_5)_2PCH_2P(C_6H_5)_2$ und CH₃C[CH₂P(C₆H₅)₂]₃ von der Fa. Aldrich, D-89555 Steinheim, bezogen. C-, H- und N-Analysen: Elementaranalysatoren Modell 1106 und 1108 der Fa. Erba Science. - Lösungs-Kernspinresonanzspektren: JEOL EX-270-NMR-Spektrometer; Meßfrequenzen: 269.72 MHz (¹H), 109.40 MHz $({}^{31}P{}^{1}H{}), 67.83 \text{ MHz} ({}^{13}C{}^{1}H{}); JEOL JNM-LA-400-$ NMR-Spektrometer; Meßfrequenzen: 399.65 MHz (¹H), 161.70 MHz (³¹P{¹H}), 100.40 MHz (¹³C{¹H}); JEOL AL-PHA 500-NMR-Spektrometer; Meßfrequenzen: 202.35 MHz $({}^{31}P{}^{1}H{})$, 125.65 MHz $({}^{13}C{}^{1}H{})$. Die ${}^{1}H{}$ - und ${}^{13}C{}-\delta{}$ -Werte (ppm) sind auf TMS bezogen und wurden ausgehend von den Solvenssignalen umgerechnet. Die ³¹P{¹H}-Lösungs-NMR-Spektren sind auf 85 proz. Phosphorsäure als externem Standard referenziert. - Die Referenzierung der ³¹P-Festkörper-NMR-Spektren erfolgte mit (NH₄)₂ HPO₄ als sekundärer externer Referenz ($\delta = +1.6$). Die Aufnahme der Festkörperspektren erfolgte nach dem CP/MAS-Verfahren (cross polarization/magic angle spinning) bzw. nach dem TOSS-Verfahren (total suppression of spinning sidebands). Kontaktzeit 1 ms, Repetitionszeit 8-10 sec. Aufnahmedaten der zweidimensionalen Spektren: Abb. 3: 1024 komplexe Punkte in f₂, spektrale Breite 27000 Hz, 64 Scans pro t₁-Inkrement, Relaxationsdelay 2.3 sec., 256 t₁-Inkremente, 31 P-90°-Puls 15 µs, exponentielles window für t₂, squared sine bell window für t₁.; Abb. 5: 2048 komplexe Punkte in f₂, spektrale Breite 24000 Hz, 16 Scans pro t₁-Inkrement, Relaxationsdelay 2.0 sec., 460 t₁-Inkremente mit zero filling auf 1024, 31 P-90°-Puls 12.5 µs, exponentielles window in t₂, Gauß window in t₁. - IR-Spektren: Perkin Elmer 16 PC FT-IR-Spektrometer und Perkin-Elmer 983-Spektrometer. Die Bezeichnung der Phenylbanden erfolgt nach der Nomenklatur von D. H. Whiffen [23] in der heute üblichen Schreibweise von Maslowsky [24]. Abkürzungen: vs = sehr stark, s = stark, m = mittel, w = schwach, vw = sehr schwach, br = breit,sh = Schulter, srp = scharf. - Massenspektren: JEOL JMS-700-Spektrometer, Ionisation durch Felddesorption, Faden-Heizung bis 50 mA. - Schmelzpunkte (unkorrigiert): Elektrothermal IA 6304. - Leitfähigkeitsmessungen: Meßgerät

WTW LF 90 mit Meßsonde WTW KLE 1. – Magnetische Messungen: Johnson Mathey Magnetic Susceptibility Balance. – Elektronenspinresonanzmessungen: Bruker ESP 300 E. –

Kristallstrukturanalysen: Die Strukturlösungen erfolgten nach den Angaben in Tabelle 1. Kristallographische Daten der Strukturen wurden beim Cambridge Crystallographic Data Centre unter den Nummern CCDC 133220 ($5 \cdot$ Dioxan · n-Pentan), CCDC 133221 ($6b \cdot$ THF), CCDC 133222 ($7 \cdot 2$ THF), CCDC 133223 (9b) hinterlegt. Eine Kopie der Daten kann kostenfrei bei The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: int. code + 44(1223)336-033,

e-mail: deposit@chemcrys.cam.ac.uk) angefordert werden.

{Dicarbonyl[bis(diphenylphosphanyl)amin- $\kappa^2 P$] · [bis(diphenylphosphanyl)amin- κP] cobalt(I)-tetracarbonylcobaltat(-I)}-Dioxan(4/3) (5 · 0.75 Dioxan)

und

 $\{ Dicarbonyl[bis(diphenylphosphanyl)amin-\kappa^2 P] \cdot \\ [bis(diphenylphosphanyl)amin-\kappa P] cobalt(I)-tetracarbonyl$ $cobaltat(-I)]-Dioxan-n-Pentan(1/1/1) (5 \cdot Dioxan \cdot n-Pentan)$

und

{Carbonylbis[bis(diphenylphosphanyl)amin- $\kappa^2 P$] · cobalt(I)-tetracarbonylcobaltat(-I)} –Tetrahydrofuran (1/2) (6 a · 2 THF)

Zu einer filtrierten Lösung von 0.315 g (0.921 mmol) Co₂(CO)₈ in 40 ml Dioxan gibt man 1.065 g (2.763 mmol) HN[P(C₆H₅)₂]₂ (**1**). Unter Eliminierung von CO fällt aus der Lösung gelbes **5** · 0.75 Dioxan aus. Nach 4 h wird abfiltriert, der Niederschlag dreimal mit je 15 ml n-Pentan gewaschen und im Vakuum getrocknet.

Aus der mit n-Pentan verdünnten "Mutterlauge" kristallisieren nach 3 d röntgenfähige gelb-orange Nadeln von $5 \cdot \text{Di-}$ oxan \cdot n-Pentan aus.

Löst man $5 \cdot 0.75$ Dioxan in 30 ml THF und überschichtet man diese Lösung mit 30 ml n-Pentan, so färbt sich die Lösung alsbald rot und nach 5 d kristallisiert $6a \cdot 2$ THF in rotorangen Nadeln aus.

Verbindung **5** · 0.75 Dioxan: Ausbeute: 0.867 g (0.772 mmol, 83.82%). – Schmelzbereich (Zers.): 90–95 °C. – Elementaranalyse: $C_{57}H_{48}Co_2N_2O_{7.5}P_4$ (1122.81; der Gehalt von etwa 0.75 Dioxan folgt aus dem ¹H-NMR-Spektrum) C 60.38 (ber. 60.97); H 4.85 (4.31); Co (Titriplex III, Murexid) [25] 10.96 (10.50); N 2.16 (2.50); P (als $Co_2P_2O_7$) [26] 11.54 (11.03)%.

Leitfähigkeit (Aceton, 23 °C): C = 6.6 · 10⁻³ mol · 1⁻¹, A_0 = 27.7 cm² · $\Omega^{-1} \cdot \text{mol}^{-1}$. – MS (FD, THF, 70 eV): m/z = 973 ([Co₂(Ph₂P–NH–PPh₂)₂ · (CO)₃H]⁺, 30%), 885 ([Co(CO)₂(Ph₂P–NH–PPh₂)₂]⁺, M⁺, 100%), 857 (M⁺-CO, 40%), 829 (M⁺-2 CO, 10%). – ¹H-NMR ((CD₃)₂CO, 23.7 °C): δ = 8.0–7.0 (m, 40 H, C₆H₅ und x H des PH-Tautomeren (x < 2) bei 7.72, d, ¹J(³¹P¹H) ≈ 475 Hz), 5.15 (t, ²J(³¹P¹H) = 6.4 Hz, 2-x H, NH), 3.71 (s, 6 H, Dioxan) ppm. – ¹³C[¹H]-NMR ((CD₃)₂CO, +24.1 °C): δ = 217 (okt., sehr schwach, 4 C, CO, ⁻J(⁵⁹Co¹³C) ≈ 290 Hz, ⁵⁹Co (100%, I = 7/2), [Co(CO)₄]⁻), 200.72, 200.50 (2 × s, 2 C, CO), 140.58 – 128.86 (m, 40 C, PPh₂), 67.68 (s, Dioxan) ppm. – ³¹P-[¹H]-NMR ((CD₃)₂CO, +24 °C): δ = 98.4 (m, P(3) in Abb. 1), 82.7 (dd, ²J(³¹P³¹P) = 18.8 Hz, 76.5 Hz, PH-Tautomere), 62.2 (s, 6⁺), 57.2 (s, br, P(1) und P(2) in Abb. 1), 34.5 (d, ¹J(³¹P¹H) = 475 Hz, ²J(³¹P³¹P) = 18.8 Hz, PH-Tautomere) ppm. – IR(KBr): ν = 3156 w-m, br [ν (NH···OC₄H₈O)], 3055 w, br [ν (CO), PM Kation]; 1884 vs, br [ν (CO), Anion]; 1456 m [δ (CH₂), Dioxan]; 1254 m-s [γ (CH₂), Dioxan]; 1227 m, br [δ (NH)]; 1124 m-s, 1112 s [ν (CC), ν (C–O–C), Dioxan]; 1099 s [P–Ph sens. q]; 1079 m, 1045 w-m [ν (C–O–C), Dioxan]; 914 s, 892 s, 875 s, 865 s, 825 m-s [ν (PN)/ γ (NH)]; 612 m-s [δ (CoCO), Anion]; 552 s [δ (CoCO), Kation]; 533 s [ν (CoC), Anion und γ (HNP₂)] cm⁻¹; IR (THF): 2016 m-s, 1969 s [ν (CO), Kation]; 1888 vs, br [ν (CO), Anion]; 1289 w-m [γ (CH₂), Dioxan]; 1255 m [δ (NH)]; 1124 s [ν (CC)/ ν (COC), Dioxan] cm⁻¹.

Kristallstrukturanalyse von 5 · Dioxan · n-Pentan: Die Elementarzelle wurde mit 44 Reflexen bestimmt [Winkelbereich (°): $5.1 \le 2\theta \le 23.0$]. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. In der Elementarzelle sind insgesamt zwei Dioxanmoleküle enthalten, die jeweils auf kristallographischen Inversionszentren liegen. Das n-Pentan-Molekül ist fehlgeordnet. Es konnten zwei Vorzugslagen verfeinert werden, die zu 0.54 (3) [C(101)–C(105)] und 0.46(3) [C(106)–C(110)] besetzt sind. Alle H-Atome befinden sich in nach geometrischen Gesichtspunkten berechneten Lagen und wurden mit einem isotropen Auslenkungsparameter versehen, der dem 1.5-fachen des äquivalenten isotropen Auslenkungsparameters des sie tragenden C-Atomes entspricht.

Verbindung **6a** · 2 THF [5]: Ausbeute: 0.819 g (0.698 mmol, 75.78%). – Schmp. (Zers.): 98 °C.

¹³C[¹H]-NMR (CD₂Cl₂), -50 °C): δ = 206.79 (s, br, 5 C, CO), 136.32 (Pseudo-quint., 4 C, C-i, C₆H₅), 133.95 (Pseudo-quint., 4 C, C-i, C₆H₅), 133.00–127.60 (m, 40 C, C-m, C-o, C-p, C₆H₅), 67.57–67.48 (m, CH₂–O, THF), 25.31 – 25.15 (m, CH₂–C, THF) ppm. – ³¹P[¹H]-NMR (CD₂Cl₂, 22.1 °C): δ = 61.52 (s) ppm. – ¹H-NMR (CD₂Cl₂, 20 °C): δ = 8.1 – 6.9 (m, 40 H, C₆H₅), 5.18 (s, 2 H, NH), 3.62 (m, 8 H, CH₂–O, THF), 1.78 (m, 8 H, CH₂–C, THF) ppm. – IR(KBr): ν = 3313 w [ν (NH) frei]; 3100w, br [ν (CH₂), THF]; 1945 s [ν (CO), Kation]; 1884 vs [ν (CO), Anion], 1274 w, 1260 w, 1217 m, br [δ (NH···OC₄H₈]; 882 m, br, 821 m, br [ν (PN)/ ν (NH)]; 553 s [δ (CoCO), Kation]; 535 s [ν (COC), Anion und γ (HNP₂)] cm⁻¹.

{Carbonylbis[bis(diphenylphosphanyl)amin- $\kappa^2 P$]cobalt(I)tetraphenyloborat(III)}-Tetrahydrofuran (1/1) (6 b · THF)

Zu einer Lösung von 0.833 g (0.714 mmol) **5** · 0.75 Dioxan in 30 ml THF gibt man 0.243 g (0.710 mmol) NaBPh₄ und erwärmt auf 50 °C. Nach 7 h wird die Lösung auf Raumtemperatur abgekühlt, filtriert und mit 30 ml n-Pentan überschichtet. Innerhalb von 5 d bilden sich orangefarbene Rhomben, die für eine Kristallstrukturanalyse geeignet sind. Ausbeute: 0.741 g (0.593 mmol, 83.05%). – Schmp.: 105 °C. – Elementaranalyse: $C_{77}H_{70}BCoN_2O_2P_4$ (1249.08) C 73.17 (ber. 74.04); H 5.91 (5.65); N 2.23 (2.24)%.

MS (FD, THF, 70 eV): m/z = 858 ([Co(CO)(Hdppa)₂(H)]⁺, 13%), 857 ([Co(CO)(Hdppa)₂]⁺, 7%, M⁺), 738 (M⁺-PhNCO, 16%), 539 ([Co(PPh₂)₂(H₂PPh]), 100%). - ¹H-NMR (CD₂Cl₂, 20 °C): δ = 8.03 - 6.47 (m, br, 60 H, C₆H₅), 4.34 (s, 2 H, NH), 3.63 (s, br, 4 H, CH₂-O, THF), 1.79 (s, br, 4 H, CH₂-C, THF) ppm. - ¹³Cl¹H]-NMR (CD₂Cl₂, 23.4 °C) δ = 205.44 (s, 1 C, CO), 164.43 (quart., ¹J(¹³C¹⁰B) = 49.6 Hz, 4 C, C-i, ¹¹BPh₄⁻, ¹¹B: I = 3/2), 164.43 (sept., ¹J(¹³C¹⁰B) = 16.5 Hz, C-i, ¹⁰BPh₄⁻, ¹⁰B: I = 3), 136.8 (s, br, 2 C, C-i, PPh₂), 136.6 (s, br, 2 C, C-i, PPh₂), 136.29 (s, 8 C, C-o, ¹¹BPh₄⁻), 136.0 (s, br, 2 C, C-i, PPh₂), 134.8 (s, br, 2 C, C-i, PPh₂), 131.52 u. 130.48 (m, br, 24 C, C-o u. C-p, PPh₂), 129.21 (d, J(³¹P¹³C) ≈ 1 Hz, 16 C, C-m, PPh₂), 125.94 (quart., ³J(¹³C¹¹B) = 2.5 Hz, 8 C, C-m, ¹¹BPh₄⁻), 122.03 (s, 4 C, C-p, ¹¹BPh₄⁻), 68.07 (s, 2 C, CH₂-O, THF), 25.92 (s, 2 C, CH₂-C, THF) ppm. - ³¹P(¹H)-NMR (CD₂Cl₂, 22.2 °C): δ = 64.77 (s) ppm. - IR(KBr, vgl. auch [5]): v = 3269 w-m, srp [v(NH) frei]; 3149 w, br [v(NH ···OC₄H₈)]; 3069 sh + 3049 w-m [v(CH), Ph]; 2982 w, 2878 w [v(CH₂), THF]; 1952 vs [v(CO)]; 1458 w-m, 1420 m [δ (CH₂), THF]; 1260 m, br [δ (NH ····OC₄H₈)]; 1196 m, srp [δ (NH), frei]; 1097 m-s [P-Ph sens.q]; 1047 m [v(C-O-C), THF]; 880 sh + 872 m, 824 m, 791 m [v(PN)/₂(NH)] cm⁻¹.

Kristallstrukturanalyse von 6b · THF: Die Elementarzelle wurde mit 43 Reflexen ermittelt [Winkelbereich (°): $3.6 \le 2\theta \le 23.9$]. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. Die Verbindung kristallisiert mit einem Molekül THF je Formeleinheit aus. Die Lagen der H-Atome (mit Ausnahme des Solvatmoleküls, dessen H-Atome sich in geometrieoptimierten Positionen befinden und nach dem Reitermodell verfeinert wurden) konnten einer Differenzfouriersynthese entnommen werden. Die Lageparameter wurden verfeinert, während ein gemeinsamer isotroper Auslenkungsparameter für sämtliche H-Atome während der Verfeinerung festgehalten wurde.

{Carbonylbis[bis(diphenylphosphanyl)methan- $\kappa^2 P$]cobalt(I)-tetracarbonylcobaltat(-I)}-Tetrahydrofuran (1/2) (7 · 2 THF)

und

{Dicarbonylbis(μ -carbonyl)bis[μ -bis(diphenylphosphanyl)methan- $\kappa^2 P$]-dicobalt(0) (Co-Co)}-Tetrahydrofuran (6/5) (8 \cdot 0.83 THF)

Zu einer filtrierten Lösung von 0.367 g (1.073 mmol)Co₂(CO)₈ in 40 ml THF gibt man bei 0 °C unter Rühren portionsweise 1.238 g (3.219 mmol) (C₆H₅)₂PCH₂P(C₆H₅)₂. Unter Schaumbildung entweicht CO. Man steigert die Temperatur innerhalb von 2 h auf 20 °C. Nach 24 h wird das Lösungsmittel unter vermindertem Druck abdestilliert, der Rückstand erneut in 30 ml THF gelöst und mit 30 ml n-Pentan überschichtet. Innerhalb von 5 d entstehen rote röntgenfähige Quader des Salzes $7 \cdot 2$ THF die, falls sie nicht abfiltriert werden, sich innerhalb von 14 d wieder lösen und unter Abspaltung von CO in orange-rote Nadeln des Substitutionsproduktes $8 \cdot 0.83$ THF übergehen. Sie sind ebenfalls für eine Kristallstrukturanalyse geeignet. Der THF-Gehalt folgt aus der Kristallstrukturanalyse [19].

Beim Trocknen im Vakuum gibt $7 \cdot 2$ THF das Kristall-THF größtenteils ab. Dementsprechend bezieht sich die *Elementaranalyse nur* auf das mit etwa 0.5 Mol THF erhältliche 7. Verbindung $7 \cdot 2$ THF: Ausbeute ($7 \cdot 0.5$ THF): 0.751 g (0.707 mmol; 65.89%). – Schmp. (Zers.): 105 °C. – Elementaranalyse: C₅₇H₄₈Co₂O_{5.5}P₄ (1062.79, $7 \cdot 0.5$ THF) C 64.09 (ber. 64.42); H 4.25 (4.55)%.

MS (FD, THF, 70 EV): m/z = 883 ([Co(CO)₂(dppm- $\kappa^2 P$)(dppm- κP)]⁺, 40%), 855 ([Co(CO)(dppm- $\kappa^2 P$)₂]⁺, 60%). - ¹H-NMR (CD₂Cl₂, 22.2 °C): δ = 7.34 (s, br, 16 H, H-o, C₆H₃), 7.29 - 7.02 (m, 24 H, H-p + H-m, C₆H₃), 3.73 (d, ²J(³¹P¹H) = 9.4 Hz, 4H, P-CH₂-P), 3.69 (s, br, 2 H, CH₂-O, 0.5 THF), 1.82 (s, br, 2 H, CH₂-C, 0.5 THF) ppm. - ¹³C(¹H)-NMR (CD₂Cl₂, 22.7 °C): δ = 222.0 (s, br, 5 C, CO), 138.35 (quint, 8 C, C-i, J(³¹P¹³C) = 10.87 Hz, C₆H₃), 132.24 (s, br, 16 C, C-o, C₆H₃), 129.20 (s, 8 C, C-p, C₆H₅), 128.22 (s, br, 16 C, C-m, C₆H₅), 67.67 (s, CH₂-O, 0.5 THF), 42.06 (Pseudo-quint, 2 C, P-CH₂-P, J(³¹P¹³C) = 11.60 Hz), 25.94 (s, CH₂-C, 0.5 THF) ppm. - ¹³C(¹H)-NMR (CD₂Cl₂, -50 °C): δ = 202.82 (s, br, 5 C, CO), 135.44 (Pseudo-quint, 4 C, C-i, C₆H₅), 133.18 (Pseudoquint, 4 C, C-i, C₆H₅), 131.86 (s, 8 C, C-p, C₆H₅), 130.89 (s, br, 16 C, C-o, C₆H₅), 128.83 (s, br, 16 C, C-m, C₆H₅), 67.67 (s, C, CH₂-O, 0.5 THF), 44.67 (m, 2 C, P-CH₂-P), 25.43 (s, C, CH₂-C, 0.5 THF) ppm. - ³¹P(¹H]-NMR (CD₂Cl₂, 22.0 °C): δ = 38.0 (s) ppm. - IR (KBr): ν = 3075 sh + 3057 w, [ν(CH), Ph]; 2971 w [ν(CH₂), dppm]; 2930 w, 2866 w [ν(CH₂), THF]; 1950m-s [ν(CO), Kation]; 1878 vs [ν(CO) Anion]; 573 w [δ(CoCO), Kation] cm⁻¹.

Kristallstrukturanalyse von 7 · 2 THF: Die Elementarzelle wurde mit 54 Reflexen [Winkelbereich (°): $4.3 \le 2\theta \le 23.8$] bestimmt. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. Die Verbindung kristallisiert mit zwei Molekülen THF je Formeleinheit aus. Eines der THF-Moleküle ist fehlgeordnet. Es konnten zwei Vorzugslagen lokalisiert werden, deren Platzbesetzung zu 0.512 (8) [C(202), C(203)] und 0.488 (8) [C(205, C(206)] verfeinert wurde. Die Lageparameter der Atome der THF-Moleküle wurden während der Verfeinerung festgehalten, während anisotrope Auslenkungsparameter mit Einschränkungen (DELU und SIMU restraints) verfeinert wurden. Sämtliche H-Atome befinden sich in nach geometrischen Gesichtspunkten berechneten Lagen, wobei die H-Atome mit einem isotropen Auslenkungsparameter versehen wurden, der dem 1.5-fachen des äquivalenten isotropen Auslenkungsparameter des sie tragenden C-Atoms entspricht. Für die THF-Moleküle wurden keine H-Atome berücksichtigt.

Verbindung $8 \cdot 0.83$ THF: Ausbeute: 0.587 g (0.555 mmol; 51.7%). – Schmp. (Zers.): 193 °C. – Elementaranalyse: C_{57.25}H_{50.5}Co₂O_{4.83}P₄ (1057.22; $8 \cdot 0.83$ THF, der Gehalt an THF wurde kristallographisch ermittelt [19]) C 65.02 (ber. 65.04); H 5.05 (4.81)%.

MS (FD, THF, 70 eV): m/z = 1064 (M⁺ · H₂C=C=C=C=O, Sekundärprodukt aus THF und **8** entstanden, 12%), 970 (M⁺-CO, 60%), 942 (M⁺-2 CO, 100%). – ¹H-NMR (CD₂Cl₂, 22.6 °C): δ = 7.33 (s, br, 16 H, H-o, C₆H₅), 7.17 (s, sh, 8 H, H-p, C₆H₅), 7.12 (s, 16 H, H-m, C₆H₅), 3.73 (s, 4 H, P–CH₂–P), 3.67 (s, ≈ 2 H, CH₂–O, THF), 1.79 (s, ≈ 2 H, CH₂–C, THF) ppm. – ¹³C[¹H]-NMR (CD₂Cl₂, 23.2 °C): δ = 221.77 (s, br, 4 C, CO), 138.05 (Pseudo-quint., 8 C, C-i, J(³¹P¹³C) = 11.23 Hz, C₆H₅), 131.92 (s, 16 C, C-o, C₆H₅), 128.89 (s, 8 C, C-p, C₆H₅), 127.92 (s, 16 C, C-m, C₆H₅), 67.78 (s, CH₂–O, THF), 41.81 (Pseudo-quint., 2 C, P–CH₂–P, J(³¹P¹³C) = 11.60 Hz), 25.62 (s, CH₂–C, THF) ppm. – ³¹P[¹H]-NMR (CD₂Cl₂, 30.0 °C): δ = 31.5 (s) ppm. – IR (KBr): ν = 3070 w, 3050 m, 3020 vw, 3005 vw [ν (CH), Ph]; 2970 vw [ν (CH₂), dppm]; 2940 m, 2855 w [ν (CH₂), THF]; 1941 s, 1900 vs [ν (CO)]; 1165 m-s, 1752 s [ν (>C=O)]; 1375 w-m + 1361 w, sh [δ (CH₂)]; 1121 w-m [ν (CH₂), dppm]; 1091 m [P–Ph sens. q]; 769 m-s + 755 w, sh [ν (P–CH₂)]; 716 m [ν (P–CH₂)]; 692 s [P–Ph sens. r + δ (CC) v, Ph]; 635 m, br, 615 m, 607 m [δ (COC) + δ (CCC)s, Ph] cm⁻¹.

{Dicarbonyl[1,1,1-tris(diphenylphosphanyl)ethan- $\kappa^3 P$]-cobalt(I)-tetracarbonylcobaltat(-I)}-n-Pentan(6/5) (9 a $\cdot 0.83$ n-Pentan)

und

Dicarbonyl[1,1,1-tris(diphenylphosphanyl)ethan- κ^{3} P]cobalt(I)-tetraphenyloborat(III) (9b)

Zu einer filtrierten Lösung von 0.200 g (0.585 mmol) Co₂(CO)₈ in 30 ml THF gibt man portionsweise 0.548 g (0.878 mmol) CH₃C[CH₂P(C₆H₅)₂]₃. Unter Aufschäumen entweicht CO aus der Lösung, die sich dabei innerhalb von 10 min kirschrot färbt. Nach 24 h wird von winzigsten Schwebeteilchen abfiltriert. Überschichtet man die Lösung mit 30 ml n-Pentan, so kristallisiert **9a** \cdot 0.83 n-Pentan innerhalb von 2 d in orange-rot glänzenden Blättchen aus. Versetzt man hingegen die abfiltrierte Reaktionslösung unter Rühren mit 0.200 g (0.585 mmol) NaBPh₄, so ändert sich die Farbe der Lösung kaum. Man filtriert nach 2 h von ungelöstem NaBPh₄ ab und überschichtet die Lösung mit 30 ml n-Pentan. Innerhalb von 2 d bilden sich orange, trapezoide Kristalle **9b**, die für eine Kristallstrukturanalyse geeignet sind.

Verbindung $9a \cdot 0.8\overline{3}$ n-Pentan: Ausbeute: 0.458 g (0.473 mmol, 80.85%). – Schmp. (Zers.): 90 °C. – Elementaranalyse: C₅₁H₄₉Co₂O₆P₃ (968.76) C 63.40 (ber. 63.23); H 4.65 (5.10); Co (Titriplex III, Murexid) [25] 12.08 (11.99); P (als Co₂P₂O₇) [26] 9.40 (9.46)%.

 (M⁺-2 CO, 5%). – ¹H-NMR (CD₂Cl₂, 21.4 °C): δ = 7.16 (s, br, 30 H, C₆H₅), 2.66 (s, br, 6H, CH₂), 1.89 (s, br, 3 H, CH₃), aus dem ¹H-NMR-Spektrum folgt ein Pentangehalt von 5/6 Mol (= 0.83 mol): 1.28 (m, br, 5 H, CH₂, Pentan), 0.89 (m, br, 5 H, CH₃, Pentan) ppm. – ¹³Cl¹H]-NMR (CD₂Cl₂, 24.8 °C): δ = 214.9 (okt., 4 C, CO, ¹J(⁵Co¹³C) = 285.9 Hz, [Co(CO)₄]⁻), 206.03 (s, 2 C, CO, Kation), 133.04 (m, 6 C, C-i, C₆H₅), 131.60 (s, br, 12 C, C-o, C₆H₅), 131.15 (s, 6 C, C-p, C₆H₅), 129.39 (s, br, 12 C, C-m, C₆H₅), 131.51 (s, 6 C, C-p, C₆H₅), 129.39 (s, br, 12 C, C-m, C₆H₅), 37.32 (s, br, 2 C, CH₃ + C_{quart}, triphos) 34.48 (s, CH₂-*CH*₂-*CH*₂, Pentan), 33.49 (s, br, 3 C, CH₂-P), 22.69 (s, *CH*₂-*CH*₂, Pentan), 14.18 (s, CH₃, Pentan) ppm. – ³¹P[¹H]-NMR (CD₂Cl₂, 24 °C): *v* = 24.65 (s) ppm. – IR (KBr, vgl. auch [12]): *v* = 3080 w, sh + 3055 w-m, 3025 w, 3002 vw [*v*(CH), Ph]; 2960 w-m, 2930 w-m, 2870 w-m [*v*(CH₂) u. *v*(CH₃)]; 2025 s, 1958 s [*v*(CO), Kation]; 1880 vs [*v*(CO), F₂, Anion]; 1453 m [δ (CH₂), Pentan]; 1418 m, 1401 w-m [δ (CH₂)/ δ (CH₃), triphos]; 1380 w-m [δ (CH₃), Pentan]; [δ (CoCO)] cm⁻¹.

Verbindung **9b**: Ausbeute: 0.489 g (0.462 mmol, 78.97%). – Schmp. (Zers.): $170 \,^{\circ}$ C. – Elementaranlyse: $C_{67}H_{59}BCoO_2P_3$ (1058.88) C 75.80 (ber. 76.00); H 5.73 (5.62)%.

MS (FD, THF, 70 eV): m/z = 761 ([HC(CH₂PPh₂)₃Co(CO)=C=C=C=O], derartige Cummulen-Derivate entstehen sekundär durch Dehydrierung von THF (LM), 100%), 740 ([Co(H)(CO)₂CH₃C(CH₂PPh₂)₃]⁺, 60%), 711 ([Co(CO)CH₃C(CH₂PPh₂)₃]⁺, 2%), 684 ([Co(H)CH₃C(CH₂PPh₂)₃]⁺, 4%). - ¹H-NMR (CD₂Cl₂, 18.4 °C): δ = 7.40 - 6.70 (m, br, 50 H, C6₄), 2.45 (s, br, 6H, CH₂), 1.60 (s, br, 3H, CH₃) ppm. - ¹³C[¹H]-NMR (CD₂Cl₂, 20.1 °C): δ = 205.83 ppm (s, 2 C, CO), 164.42 (quart., ¹J(¹³C¹⁰B) = 49.6 Hz, ¹¹B: I = 3/2, 4 C, C-i, ¹¹BPh₄⁻), 136.30 (s, 8 C, C-o, ¹¹BPh₄⁻), 133.45 - 132.45 (m, 6 C, C-i, PPh₂), 131.54 (Pseudo-quart., $3(^{31}P^{13}C) = 3.3$ Hz, 12 C, C-o, PPh₂), 131.23 (s, 6 C, C-p, PPh₂), 129.39 (Pseudo-quart., $3(^{31}P^{13}C) \approx 1$ Hz, 12 C, C -m, PPh₂), 125.96 (quart., $^{3}J(^{13}C^{11}B) \le 1$, 8 C, C-m, ¹¹BPh₄⁻), 68.12 (s, CH₂-O, Spur THF), 37.41 (quart., br, ²J(³¹P^{13}C) = 7.4 Hz, C-quarternär), 37.20 (quart., $^{3}J(^{31}P^{13}C) = 3.3$ Hz, C-quarternär), 37.20 (quart., $^{3}J(^{31}P^{13}C) = 3.3$ Hz, C-quarternär), 37.20 (quart., $^{3}J(^{31}P^{13}C) = 3.3$ Hz, C-quarternär), 37.00 (quart., $^{3}J(^{31}P^{13}C) = 3.3$ Hz, CH₃), 33.58 (md, $J_d(^{31}P^{13}C) = 7.0$ Hz), 25.95 (s, CH₂-CH₂, Spur THF) ppm. - $^{31}P[^{1}H]$ -NMR (CD₂Cl₂, 19.5 °C): δ = 23.79 (s) ppm. - IR (KBr, vgl. auch [12]): ν = 2016 s, 1963 vs [ν (CO)] cm⁻¹.

Kristallstrukturanalyse von 9b: Die Elementarzelle wurde mit 72 Reflexen [Winkelbereich (°): $3.8 \le 2\theta \le 33.5$] bestimmt. Alle Nichtwasserstoffatome wurden anisotrop verfeinert. Die Lagen aller H-Atome konnten einer Differenzfouriersynthese entnommen werden. Die Lageparameter wurden verfeinert, während ein isotroper Auslenkungsparameter während der Verfeinerung festgehalten wurde.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung der vorliegenden Untersuchungen. Herrn *Prof. Dr. D. Sellmann* gilt unser Dank für die großzügige Unterstützung bei der Durchführung der Kristallstrukturanalysen. Den Herren *Matthias Zeller* und *Dr. Andreas Grohmann* sei für die Aufnahme von ESR- bzw. Tieftemperatur ¹³C{¹H}-NMR-Spektren gedankt. Der Hoechst AG, Frankfurt/Main danken wir für Chemikalienspenden.

Literatur

- 132. Mitteilung: J. Ellermann, W. Bauer, M. Dotzler, F. W. Heinemann, M. Moll, *Monatsh. Chem.* 1999, 130, 1419.
- [2] H. Nöth, L. Meinel, Z. Anorg. Allg. Chem. 1967, 349, 225.
- [3] O. Schmitz Du Mont, B. Ross, H. Klieber, Angew. Chem. 1967, 79, 869; Angew. Chem. Int. Ed. Engl. 1967, 6, 875.
- [4] J. Ellermann, W. H. Gruber, Z. Naturforsch. 1973, 28b, 310.

- [5] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, W. Bauer, J. Organomet. Chem. 1994, 481, 259 und die dort zit. Lit.
- [6] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, W. Bauer, *Chem. Ber.* 1994, 127, 2167.
- [7] D. Pohl, J. Ellermann, F. A. Knoch, M. Moll, J. Organomet. Chem. 1995, 495, C6.
- [8] D. J. Elliot, D. G. Holah, A. N. Hughes, V. R. Magnuson, I. M. Moser, R. J. Puddephatt, W. Xu, Organometallics 1991, 10, 3933.
- [9] D. J. Elliot, D. G. Holah, A. N. Hughes, V. R. Magnuson, I. M. Moser, R. J. Puddephatt, *Bull. Soc. Chim. Fr.* **1992**, *129*, 676.
- [10] D. J. Elliot, D. G. Holah, A. N. Hughes, *Inorg. Chim. Acta* 1988, 142, 195.
- [11] E. C. Lisic, B. E. Hanson, Inorg. Chem. 1986, 25, 812.
- [12] J. Ellermann, J. F. Schindler, Z. Naturforsch. 1975, 30b, 914; Chem. Ber. 1976, 109, 1095.
- [13] J. Ellermann, J. Organometal. Chem. 1975, 94, 201.
- [14] J. Ellermann, J. F. Schindler, H. Behrens, H. Schlenker, J. Organometal. Chem. 1976, 108, 239.
- [15] N. N. Greenwood, A. Earnshaw, *Chemie der Elemente*, 1. Auflage **1984**, VCH Weinheim, S. 627.
- [16] Z. Z. Zhang, A. Yu, H.-P. Xi, R.-J. Wang, G. G. Wang, J. Organomet. Chem. 1994, 470, 223.

- [17] P. Steil, U. Nagel, W. Beck, J. Organomet. Chem. 1989, 366, 312.
- [18] H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie (Anorganische und Allgemeine Chemie in Einzeldarstellungen, Band VII), Springer Verlag, Berlin, Heidelberg, New York 1966, S. 158.
- [19] M. Dotzler, Dissertation, Univ. Erlangen-Nürnberg 2000.
- [20] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, Walter de Gruyter, Berlin, New York, 1995, S. 1230.
- [21] L. J. Todd, J. R. Wilkinson, J. Organometal. Chem. 1974, 77, 1.
- [22] R. K. Harris, B. E. Mann, NMR and Periodic Table, Academic Press, 1978, London, New York, San Francisco, S. 244.
- [23] D. H. Whiffen, J. Chem. Soc. 1956, 1350.
- [24] E. Maslowsky Jr., Vibrational Spectra of Organometallic Compounds, Verlag John Wiley and Sons, New York, London, Sydney, Toronto 1977, S. 399 und 402.
- [25] Reagenzien Merck: Komplexometrische Bestimmungsmethoden mit Titriplex[®], E. Merck, Darmstadt, S. 39 f.
- [26] H. Lux, Praktikum der quantitativen anorganischen Analyse, 4. Aufl., J. F. Bergmann, München, 1963, S. 63 ff.