A New Two-Step Preparation of Pyrroles from β -Amino Ketones Utilizing Trimethylsilyldiazomethane

Tsutomu Yagi, Toyohiko Aoyama,* and Takayuki Shioiri*

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, JAPAN

Fax: +81-52-834-4172; E-mail: shioiri@phar.nagoya-cu.ac.jp

Received 10 July 1997

Abstract: Lithium trimethylsilyldiazomethane smoothly reacted with N-substituted β -amino ketones to give 2-pyrrolines which were easily converted to the corresponding pyrroles by treatment with MnO_2 (CMD, chemical manganese dioxide). The reaction with N,N-disubstituted β -amino ketones followed by oxidation with CMD also afforded pyrroles.

We have already revealed that the reaction of lithium trimethylsilyldiazomethane (TMSC(Li)N₂) with carbonyl compounds smoothly proceeds to generate alkylidene carbenes l which undergo various types of reactions to give the homologous alkynes, la aldehydes, lb and heterocycles such as 1,2-dihydrofurans, lc cyclohepta[b]pyrrol-2-ones, ld and 3-pyrrolines le depending upon substrates used. Our continued interest in the use of TMSC(Li)N₂ as an alkylidene carbene generator in organic synthesis led us to investigate the reaction of TMSC(Li)N₂ with β -amino ketones.

First, we investigated the reaction of $TMSC(Li)N_2$ with N-substituted β -amino ketones 1 and found that $TMSC(Li)N_2$ smoothly reacted with 1 in tetrahydrofuran to give the 2-pyrrolines 3, the intramolecular N-H insertion product, 2 via the alkylidene carbene intermediates 2, as shown in Scheme 1.

Scheme 1

The results are summarized in Table 1. Various N-substituted β -amino ketones 1 including acyclic and cyclic ones were smoothly converted to the corresponding 2-pyrrolines 3 in high to moderate yields. The carbamate 1i also underwent the reaction to afford 3i. Tetrahydrofuran seems to be the solvent of choice. The use of diethyl ether showed a remarkable decrease in the yield. Both n-butyllithium and lithium diisopropylamide could be used as a base. The 2-pyrrolines 3 thus obtained were easily converted to the pyrroles 4 by treatment with MnO_2 (CMD, chemical manganese dioxide), 3 as shown in Scheme 1 and Table 1.

In a previous paper, we reported that TMSC(Li)N₂ smoothly reacted with β -trimethylsiloxyketones to give the 5-trimethylsilyl-2,3-dihydrofurans via the oxonium ylide intermediates. 1c This results suggested that 2-pyrrolines 7 would be formed via ammonium ylide intermediates 6 if N,N-disubstituted β -amino ketones 5 were used as substrates, as shown in Scheme 2.

In fact, the reaction of $TMSC(Li)N_2$ with 5a proceeded under similar reaction conditions as described for the preparation of 3, but the

Table 1.^a Preparation of 2-Pyrrolines 3 and Pyrroles 4

Compd.					Yield (%)	
No.	R^1	R^2	R^3	R^4	3	4
a	Me	Me	Н	PhCH ₂	81	59
b	Et	Me	Н	$PhCH_2$	83	68
c	n-Pr	Et	Н	$PhCH_2$	79	55
ď	t-Bu	H	Н	$PhCH_2$	66	42
e	- (CH ₂) ₄ -		H	$PhCH_2$	56	23
f	- (CH ₂) ₅ -		H	$PhCH_2$	54	40
g	Et	Н	Me	PhCH_2	66	71
h	Et	H	Me	Et	53	38
i	n-Pr	Et	Н	COOEt	36	60

 a) All products gave satisfactory spectral data and elemental analysis (or HR Mass spectra).

products were an inseparable mixture. However, a mixture of the pyrrole $\mathbf{8a}$ (9%) and its regioisomer $\mathbf{9a}$ (6%) resulting from $\mathbf{7a}$ could be obtained when the reaction products were directly treated with CMD. As shown in Table 2, other β -amino ketones $\mathbf{5b} \sim \mathbf{d}$ also afforded the corresponding pyrroles $\mathbf{8b} \sim \mathbf{d}$ though in low yields. Interestingly, in the cases of reaction with $\mathbf{5b}$ and $\mathbf{5c}$, the regioisomers ($\mathbf{9b}$ and $\mathbf{9c}$) of $\mathbf{8c}$ could not be detected.

Scheme 2

In conclusion, the present method using commercially available $TMSCHN_2$ will provide a new and convenient two-step preparation of pyrroles from *N*-substituted β -amino ketones.

General procedure for the preparation of 3: n-Butyllithium (1.69 M in hexane, 0.71 ml, 1.2 mmol) was added dropwise to a solution of TMSCHN $_2^4$ (1.65 M in hexane, 0.73 ml, 1.2 mmol) in THF (8 ml) at -78 °C under argon and the mixture was stirred for 30 min. A solution of 1 (1 mmol) in THF (2 ml) was then added dropwise. The mixture was stirred at -78 °C for 3 h, then heated under reflux for 3 h. After being quenched with water, the mixture was extracted with AcOEt. The

1064 LETTERS SYNLETT

Table 2. Formation of Pyrroles **8** and **9** from *N,N*-Disubstituted β-Amino Ketones **5**.

Compd.					Yield (%)	
No.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R^4	8	9
a	Me	Н	Me	PhCH ₂	9 ^b	6 ^b
b	Et	Me	Me	PhCH_2	7	c
c	- (CH ₂) ₄ -		Me	$PhCH_2$	8	c
đ	Me	Н	$PhCH_2$	$PhCH_2$	8	

 a) All products gave satisfactory spectral data and elemental analysis (or HR Mass spectra).
 b) Determined by ¹H NMR.
 c) Not detected.

extracts were washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Fuji Davison BW-820 MH, hexane: AcOEt=10:1) to give 3.

Oxidation of 3 with CMD: A mixture of 3 (1 mmol) and CMD (10 mmol) in dichloromethane (10 ml) was heated under reflux for 12 h. The mixture was filtered through a pad of celite and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (Fuji Davison BW-820 MH, hexane: $AcOEt = 40\sim100:1$) to give 4.

Reaction of TMSC(Li)N₂ with **5**: The reaction of TMSC(Li)N₂ (1.2 mmol) with **5** (1 mmol) was carried out under similar reaction conditions (at -78 °C for 2 h, then under reflux for 2 h) as described for the preparation of **3**. After the reaction, the solvent was evaporated and the residue was treated with CMD (10 mmol) in dichloromethane (10 ml), as described above, to give a mixture of **8** and **9**.

Acknowledgment : This work was supported in part by a Grant-in-Aid for Scientific Research (No. 07672281) from the Ministry of Education, Science, Sports and Culture, Japan, to which our thanks are due.

References and Notes

- a) Miwa, K.; Aoyama, T.; Shioiri, T. Synlett, 1994, 107. b) Idem, ibid., 1994, 109. c) Idem, ibid., 1994, 461. d) Ogawa, H.; Aoyama, T.; Shioiri, T. ibid., 1994, 757. e) Ogawa, H.; Aoyama, T.; Shioiri, T. Heterocycles, 1996, 42, 75. f) For a review, see Shioiri, T.; Aoyama, T. J. Synth. Org. Chem. Japan, 1996, 54, 918
- 2. We have already reported that the alkylidene carbenes generated from TMSC(Li)N₂ and aliphatic ketones inserted intermolecularly to the N-H bond of a secondary amine to give enamines, see ref. 1b.
- a) Ref. 1e and references cited therein.
 b) For a review, see Shioiri, T.; Aoyama, T.; Hamada, Y. Wakojunyakujiho, 1997, 56, 12
- Shioiri, T.; Aoyama, T.; Mori, S. Org. Synth., Coll. Vol. 8, 1993, 612.