OXIDATION OF cis-DIALKYLCOBALT(III) COMPLEXES BY OXYGEN. ACTIVATION OF OXYGEN BY PERCHLORIC ACID

Shunichi FUKUZUMI, Kunio ISHIKAWA, and Toshio TANAKA^{*} Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565

The effects of protons on the reactions of cis-dialkylcobalt(III) complexes, cis- $[R_2Co(bpy)_2]ClO_4$ (R = Me, Et, PhCH₂; bpy = 2,2'-bi-pyridine), with oxygen are reported. Oxygen is shown to be activated in the presence of perchloric acid by forming hydroperoxonium ion which has a much stronger oxidizing ability than oxygen.

Oxidation of transition-metal alkyls by oxygen has usually been avoided carefully in their handling and thus, little is known about the oxidation processes.¹⁾ However, the reactions of oxygen with organometallic compounds have recently attracted growing attention,²⁾ although some transition-metal alkyls are stable towards oxygen. Generally, oxygen is an unreactive molecule towards singlet organic compounds because of the triplet ground state and the low one-

electron reduction potential.³⁾ The twoelectron reduction of oxygen in the presence of acids, however, is energetically much more favorable than the one-electron reduction in the absence of protons.⁴⁾ Therefore, the presence of acid is expected to enhance the oxidizing ability of oxygen significantly. In this study, we report the first example of acid promoted reactions of oxygen with transition-metal alkyls which are stable towards oxygen in the absence of acids.

The *cis*-dialkylcobalt(III) complexes, *cis*- $[R_2Co(bpy)_2]Clo_4$ (R = Me, Et, PhCH₂; bpy = 2,2'-bipyridine), are stable towards oxygen in acetonitrile (MeCN) at 298 K. However, *cis*- $[(PhCH_2)_2Co(bpy)_2]^+$ reacts readily with oxygen in the presence of perchloric acid (HClo₄) in CD₃CN even at 273 K to yield benzyl hydroperoxide which decomposes to produce benzaldehyde as a final oxidation product (Fig. 1).⁵) The rate of the decay of

Fig. 1. Oxidation of cis-[(PhCH₂)₂Co(bpy)₂]⁺ by oxygen in the presence of HClO₄ (0.12 M; 1 M = 1 mol dm⁻³) in CD₃CN at 273 K, monitored by ¹H nmr; cis-[(PhCH₂)₂Co(bpy)₂]⁺ (**o**), PhCH₂-OOH (**•**), PhCHO (**△**), [PhCH₂Co-(bpy)₂]²⁺(**▲**), [Co(bpy)₃]²⁺(**□**).

Chemistry Letters, 1986

Fig. 2. (a) Dependence of the observed pseudo-first-order rate constant k_{obs} on the HClO₄ concentration for the oxidation of cis-[(PhCH₂)₂Co(bpy)₂]⁺ by oxygen in the presence of HClO₄ (\circ) and for the reaction of cis-[(PhCH₂)₂Co(bpy)₂]⁺ with HClO₄ in the absence of oxygen (•) in MeCN at 298 K. (b) Dependence of k_{obs} on [HClO₄] for the one-electron oxidation of 1,1'-dimethylferrocene (Me₂Fc) by oxygen in the presence of HClO₄ in MeCN at 298 K.

 $cis-[(PhCH_2)_2Co(bpy)_2]^+$ in an oxygen saturated MeCN solution in the presence of HClO₄ was first order with respect to $cis-[(PhCH_2)_2Co(bpy)_2]^+$ and the pseudo-first-order rate constant k_{obs} increases with increasing the HClO₄ concentration as shown by the open circles in Fig. 2a. In the absence of oxygen, the cobalt-benzyl bond of $cis-[(PhCH_2)_2Co(bpy)_2]^+$ was cleaved by the electrophilic attack of proton to yield $[PhCH_2Co(bpy)_2]^{2+}$ and toluene (Eq. 1),⁶ although the rate of the

$$cis-[(PhCH_2)_2Co(bpy)_2]^+ + H^+ \longrightarrow [PhCH_2Co(bpy)_2]^{2+} + PhCH_3$$
 (1)

electrophilic cleavage reaction is much slower than the rate of oxidation of cis- $[(PhCH_2)_2CO(bpy)_2]^+$ by oxygen at the same concentration of HClO₄ (Fig. 2a).

In the presence of acids, the reduction potential of oxygen is given by Eq. 2,

$$E(O_2/HO_2^{\bullet}) = E^0(HO_2^{+}/HO_2^{\bullet}) + \frac{2.3RT}{F} \log(\frac{K_{red} + [H^+]}{K_{ox} + [H^+]})$$
(2)

where K_{ox} and K_{red} are the acid dissociation constants of hydroperoxonium ion (HO_2^{+}) and hydroperoxyl radical (HO_2^{+}) , respectively, and $E^0(HO_2^{+}/HO_2^{+})$ is equal to $E^0(O_2/O_2^{-}) + (2.3RT/F)(pK_{red} - pK_{ox})$.⁷⁾ According to Eq. 2, the reduction potential of oxygen in the presence of acids, $E(O_2/HO_2^{-})$, may be shifted to the positive direction with increasing the acid concentration compared with that in the absence of acid $E^0(O_2/O_2^{-})$ owing to the formation of the protonated oxygen, i.e., HO_2^{+} when pH < pK_{red} (= 4.69), and the one-electron reduction process gives way to an apparent irreversible two-electron reduction process.⁴⁾ Thus, in the reaction of *cis*-[(PhCH₂)₂Co(bpy)₂]⁺ with oxygen in the presence of HClO₄, the cobalt-benzyl bond may be cleaved by the electrophilic attack of hydroperoxonium ion to yield benzyl hydroperoxide and [PhCH₂Co(bpy)₂]²⁺ (Eq. 3). However, the amount of

$$cis-[(PhCH_2)_2Co(bpy)_2]^+ + HO_2^+ \longrightarrow [PhCH_2Co(bpy)_2]^{2+} + PhCH_2OOH$$
 (3)

 $[PhCH_2Co(bpy)_2]^{2+}$ formed is less than the initial amount of $cis-[(PhCH_2)_2Co(bpy)_2]^+$ which is less than the total amount of oxidation products (PhCH_2OOH and PhCHO) as shown in Fig. 1. Then, there may be a different pathway to cleave both the cobaltbenzyl bonds by HO₂⁺, which accounts for the stoichiometry observed in Fig. 1. The most plausible reaction pathway is shown in Scheme 1, where electron transfer

$$cis - [(PhCH_{2})_{2}Co(bpy)_{2}]^{+} + (cis - [(PhCH_{2})_{2}Co(bpy)_{2}]^{2+} HO_{2}^{\bullet}) + HO_{2}^{\bullet} +$$

from $eis - [(PhCH_2)_2 Co(bpy)_2]^+$ to HO₂⁺ may occur to produce $eis - [(PhCH_2)_2 Co(bpy)_2]^{2+}$ which may readily dissociate to give PhCH₂• and $[PhCH_2 Co(bpy)_2]^{2+}$, followed by either (a) the recombination of radicals between PhCH₂• and HO₂• to yield PhCH₂OOH or (b) the attack of HO₂• on $[PhCH_2 Co(bpy)_2]^{2+}$ resulting in the formation of PhCH₂OOH and $[Co(bpy)_2]^{2+}$ as well as PhCH₂• which may be trapped by oxygen immediately to give benzylperoxyl radical, yielding additional benzyl hydroperoxide by the abstraction of hydrogen from a solvent. At present, the former process (a) is indistinguishable from the electrophilic pathway (Eq. 3). The formation of Co^{II} species was confirmed by the ¹H nmr spectrum where about one-third of the 2,2'bipyridine ligand of the reactant was detected as the form $[Co(bpy)_3]^{2+}$ which may be produced from $[Co(bpy)_2]^{2+}$, 8) and the rest as $[PhCH_2Co(bpy)_2]^{2+}$, which agrees with the stoichiometry observed in Fig. 1. The electron transfer process from $eis-[(PhCH_2)_2Co(bpy)_2]^+$ to HO₂⁺ may be energetically possible since electron transfer from $eis-[R_2Co(bpy)_2]^+$ to p-benzoquinone derivatives (Q), whose reduction potentials are similar to that of oxygen (E⁰(O₂/O₂⁻) = -0.8 V vs. SCE), ⁴⁾ is known to occur in the presence of HClO₄ when Q is partially protonated to form QH⁺ which has a much stronger oxidizing ability than Q.⁹

The enhancement of the one-electron oxidation process by oxygen in the presence of $HClO_4$ is well demonstrated in the electron transfer reaction from 1,1'-dimethylferrocene (Me₂Fc) to oxygen in the presence of $HClO_4$ (Eq. 4) as shown

$$Me_2Fc + O_2 + H^+ \longrightarrow Me_2Fc^+ + HO_2^{\bullet}$$
(4)

in Fig. 2b, where the dependence of k_{obs} on the HClO₄ concentration is similar to that observed in the oxidation of $cis-[(PhCH_2)_2Co(bpy)_2]^+$ by oxygen in the presence of HClO₄ in MeCN (the open circles in Fig. 2a).

The reaction of $cis-[Et_2Co(bpy)_2]^+$ with oxygen in the presence of HClO₄ gave significant amount of the coupling product butane, as observed in the acid cata-lysed electron transfer reactions from $cis-[Et_2Co(bpy)_2]^+$ to Q,⁹) as well as ethane

and ethylene which may be produced by the electrophilic cleavage reaction by H^+ (Eq. 5). In this case, the reductive elimination from cis-[Et₂Co(bpy)₂]²⁺ to

$$cis-[Et_2^{Co(bpy)}_2]^+ \longrightarrow C_4^{H_{10}(74\%)}, C_2^{H_6(24\%)}, C_2^{H_4(12\%)}$$
 (5)

yield butane upon the one-electron oxidation by oxygen in the presence of $HClo_4$ may be much faster than the reaction with HO_2 • in contrast to the case of *cis*- $[(PhCH_2)_2Co(bpy)_2]^+$ (Scheme 1). Such a difference may be ascribed to a much longer lifetime of *cis*- $[(PhCH_2)_2Co(bpy)_2]^{2+}$ than *cis*- $[Et_2Co(bpy)_2]^{2+}$. A similar reductive coupling of the alkyl ligands of transition-metal alkyls is known to be induced by electron transfer reactions from transition-metal alkyls to oxygen.¹¹

In the case of $cis-[Me_2Co(bpy)_2]^+$, the rate of the electrophilic cleavage reaction by H⁺ is the fastest among $cis-[R_2Co(bpy)_2]^+$ and no change in the products (methane and MeCo(bpy)_2]²⁺)⁶) or the rate has been observed between the reactions in the presence and absence of oxygen.

References

- J. K. Kochi, "Organometallic Mechanisms and Catalysis," Academic Press, New York (1978), pp. 517-522.
- 2) D. Astruc, J.-R. Hamon, E. Román, and P. Michaud, J. Am. Chem. Soc., <u>103</u>, 7502 (1981); A. M. Madonik and D. Astruc, *ibid.*, <u>106</u>, 2437 (1984); N. A. Vol'kenau and V. A. Petrakova, J. Organomet. Chem., <u>233</u>, C7 (1982); C. Bied-Charreton and A. Gaudemer, *ibid.*, <u>124</u>, 299 (1977); K. Jacob, K.-H. Thiele and B. Mohai, Z. Anorg. Allg. Chem., <u>511</u>, 89 (1984); A. Nishinaga, K. Nishizawa, Y. Nakayama, and T. Matsuura, *Tetrahedron Lett.*, 1977, 85.
- 3) R. Bonnett, Essays in Biochemistry, <u>17</u>, 1 (1981).
- 4) D. T. Sawyer and J. S. Valentine, Acc. Chem. Res., <u>14</u>, 393 (1981); D.-H.
 Chin, G. Chiericato, Jr., E. J. Nanni, Jr., and D. T. Sawyer, J. Am. Chem.
 Soc., <u>104</u>, 1296 (1982); E. Ruff, Chem. Soc. Rev., <u>6</u>, 195 (1977).
- 5) In order to confirm the formation of benzyl hydroperoxide, the authentic sample was prepared by the addition of benzylmagnesium chloride to oxygen saturated ether at -70 °C; C. Walling and S. A. Bucker, J. Am. Chem. Soc., 77, 6032 (1955).
- 6) Formation of equal amounts of $[RCo(bpy)_2]^{2+}$ and RH (R = PhCH₂ and Me) was confirmed by ¹H nmr and glc, respectively. ¹H nmr (CD₃CN) δ (ppm): CH₂, 2.90 (2H,s) for [PhCH₂Co(bpy)₂]²⁺; CH₃, 3.37 (3H,s) for [MeCo(bpy)₂]²⁺.
- 7) D. Meisel and G. Czapski, J. Phys. Chem., 79, 1503 (1975).
- 8) S. Fukuzumi, K. Ishikawa, and T. Tanaka, Chem. Lett., 1985, 1355.
- 9) S. Fukuzumi, K. Ishikawa, and T. Tanaka, Nippon Kagaku Kaishi, 1985, 62.
- S. Fukuzumi, K. Ishikawa, and T. Tanaka, J. Chem. Soc., Dalton Trans., 1985, 899.
- 11) D. G. Morrell and J. K. Kochi, J. Am. Chem. Soc., <u>97</u>, 7262 (1975); S. Komiya, T. A. Albright, R. Hoffman, and J. K. Kochi, *Ibid.*, <u>99</u>, 8440 (1977);
 W. Wada, K. Kusabe, and K. Oguro, *Inorg. Chem.*, <u>16</u>, 446 (1977).

(Received September 11, 1985)

4