

Effect of Al(OH)₃ Addition on β -LiAlO₂ Crystal Growth

Akira Watanabe,* Yoshimitsu Takeuchi, and Goji Saeki Kyushu Refractories Company, Ltd., 1175, Urainbe, Bizen, Okayama, Japan

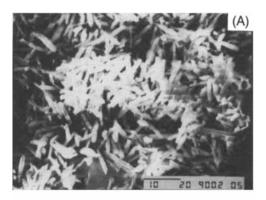
Crystal growth of rod-shaped β -LiAlO₂ was previously reported by us, and the rod-shaped β -LiAlO₂ crystals were 1.5 μ m in diameter and 10 to 15 μ m long. In the present study needle-shaped β -LiAlO₂ crystals which were thinner and had larger aspect ratios (length/diameter) than the rod-shaped β -LiAlO₂ crystals were grown by using LiOH-Al₂O₃-Al(OH)₃-NaOH as the raw material. These crystals were 0.7 to 1 μ m in diameter, 9 to 13 μ m long, and had aspect ratios of about 10 to 13. [Key words: lithium, aluminates, crystal growth, shaping, aspect ratio.]

I. Introduction

FUEL cells have attracted special interest recently as a fu-ture highly effective method of generating electric energy.¹⁻³ For this application, LiAlO₂ crystals which are inert against alkali carbonate are desirable as a reinforcement material for the prevention of cracks in the cooling process of alkali carbonate, which is the electrolyte of molten-carbonate fuel cells. Especially long rod-shaped, needle-shaped, or fibrous LiAlO₂ crystals forming a fine porous structure are desirable as a reinforcement for the electrolyte. We have already reported on long rod-shaped β -LiAlO₂ crystals which were 1.5 μ m in diameter and 10 to 15 μ m long in this journal;⁴ the aspect ratios of these crystals were above 6 to 10. In this paper we report on a synthesis method for thinner needle-shaped β -LiAlO₂ crystals having larger aspect ratios than the long rod-shaped β -LiAlO₂ crystals. The approximate sizes of the needle-shaped β -LiAlO₂ crystals reported in this paper were 0.7 to 1 μ m in diameter, 9 to 13 μ m long, with aspect ratios of 10 to 13 (the word "needle-shaped" was used only to distinguish β -LiAlO₂ crystals from the previous long rod-shaped crystals).

II. Synthesis of Needle-Shaped β-LiAlO₂ Crystals

The starting materials were reagent-grade LiOH \cdot H₂O, industrial-grade γ -Al₂O₃ (Al₂O₃ content >99.6 wt%), industrial-grade Al(OH)₃ (Al(OH)₃ content 99.5 wt%), and reagent-grade NaOH. They were weighed out in 15-g batches and mixed well (mole ratio LiOH \cdot H₂O: γ -Al₂O₃: Al(OH)₃: NaOH = 4:0.7:0.6:4.3) with 8 wt% water. The mixed hard paste was molded into test pieces (25 mm in diameter and 15 mm high). The test pieces were placed in a muffle furnace (65 wt% Al₂O₃, 31 wt% SiO₂, interior dimensions 180 mm × 80 mm × 80 mm), heated to 550°C at 5°C/min, and held for 3 h (in preliminary experiments these heating conditions were good for crystal growth). After the pieces were heated and cooled, they were dipped into water for 24 h and disentangled.


III. Experimental Results

The disentangled products were confirmed to be β -LiAlO₂ crystals by X-ray analysis. These needle-shaped β -LiAlO₂ crys-

tals are shown in Fig. 1(A). Most of these needle-shaped crystals were 0.7 to 1 μ m in diameter and 9 to 13 μ m long (aspect ratios were above 10 to 13). Heating conditions and combinations of raw materials were varied extensively. The foregoing long rod-shaped β -LiAlO₂ crystals using LiOH-Al₂O₃–NaOH as the raw material⁴ were 1.5 μ m in diameter, 10 to 15 μ m long, and had aspect ratios above 6 to 10. The long rod-shaped β -LiAlO₂ crystals are shown in Fig. 1(B). The new needle-shaped β -LiAlO₂ crystals were equivalent in length, thinner in diameter, and greater in aspect ratio than the long rod-shaped β -LiAlO₂ crystals. From these results it was determined that Al(OH)₃ was effective for thin crystal growth of β -LiAlO₂. A controlling factor for the growth of needle-shaped β -LiAlO₂ crystals is probably the effect of vaporization of the alkali compound liquid as was stated previously,⁴ but in this case it does not explain the effect of Al(OH)₃ addition on this crystal growth.

IV. Conclusion

Needle-shaped β -LiAlO₂ crystals thinner in diameter and greater in aspect ratio than the rod-shaped β -LiAlO₂ crys-

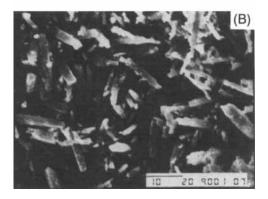


Fig. 1. Scanning electron micrograph of β -LiAlO₂ crystals: (A) LiOH \cdot H₂O: γ -Al₂O₃:Al(OH)₃:NaOH = 4:0.7:0.6:4.3 (mole ratio); (B) LiOH \cdot H₂O: γ -Al₂O₃:NaOH = 4:1:4 (mole ratio). Bar = 10 μ m.

G. Lewis-contributing editor

Manuscript No. 197525. Received June 4, 1990; approved August 1, 1990. *Member, American Ceramic Society.

tals using LiOH-Al₂O₃-NaOH as the raw materials were synthesized by using LiOH-Al₂O₃-Al(OH)₃-NaOH.

References

¹T. Shirogami, "Trends of Research and Development of Fuel Cells,"

- Kagaku Kogyo, **37** [10] 693-95 (1984). ²T. Ozawa, "New Electric Power Sources for the Future," Kagaku Kogyo, 37 [10] 679-83 (1984).
- ³K. Fueki, "Trends of Research and Development of Power Generation Technologies and Batteries," *Kagaku Kogyo*, **37** [10] 662–66 (1984). ⁴A. Watanabe, Y. Takeuchi, and G. Saeki, "Crystal Growth of Rod-Shaped β -LiAlO₂," *J. Am. Ceram. Soc.*, **70** [10] C-268–C-269 (1987).