Hydroxylation of 4-Arylimino-5-hydroxy-1,4-dihydronaphthalen-1-ones

A. D. Bukhtoyarova and L. V. Ektova

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia

Received February 14, 2004

Abstract—Heating of 4-arylimino-5-hydroxy-1,4-dihydronaphthalen-1-ones with sodium hydroxide in the presence of $K_3Fe(CN)_6$ gives the corresponding 2,5-dihydroxy derivatives, while in the reaction with $FeCl_3 \cdot 6H_2O$ 4-arylimino-3,5-dihydroxy-1,4-dihydronaphthalen-1-ones are formed.

Extensive studies in the field of naphthoquinonimines originate from their high reactivity which makes them convenient starting compounds for the synthesis of various classes of organic compounds [1]. In addition, naphthoquinonimine derivatives are used as dyes for optical data storage systems [2] and color photography [3] and as anticarcinogenic agents [4]. Taking into account that some hydroxy-1,4-naphthoquinones are natural compounds possessing a high biological activity [5], we anticipated that combination of a hydroxynaphthoquinone and N-arylmonoquinonimine fragments in a single molecule will give rise to new useful properties. The main procedures for introduction of a hydroxy group into N-arylquinonimines are based on hydrolysis of the corresponding amino derivatives and oxidation of quinonimines in alkaline medium [1]. A number of 4-arylimino-2-hydroxy-1,4-dihydronaphthalen-1-ones exhibiting antituberculous activity were synthesized by reaction of 1,2-dioxo-1,2-dihydronaphthalene-4-sulfonic acid potassium salt with the corresponding arylamines [6].

In the present work we studied hydroxylation of 4-arylimino-5-hydroxy-1,4-dihydronaphthalen-1-ones **Ia–Ie** under different conditions. 5-Hydroxy-4-phenyl-

imino- and 5-hydroxy-4-(2,4,6-trimethylphenylimino)-1,4-dihydronaphthalen-1-ones **Ia** and **Ib** were oxidized with $K_3Fe(CN)_6$ only in aqueous alkali, and the products were the corresponding 2,5-dihydroxy derivatives **IIa** and **IIb** (Scheme 1). Compound **IIa** was also obtained by acid hydrolysis of 5-hydroxy-4-phenyl-2-phenylamino-1,4-dihydronaphthalen-1-one (**III**) in dilute sulfuric acid.

By oxidation of naphthoquinonimine **Ia** with $FeCl_3 \cdot 6H_2O$ in DMF we obtained 3,5-dihydroxy-4phenyl-1,4-dihydronaphthalen-1-one (**IVa**) which is isomeric to **IIa**. Compound **Ib** failed to react under analogous conditions, while *N*-(4-methylphenyl)-, *N*-(4-butoxycarbonylphenyl)-, and *N*-(4-methoxyphenyl)-4-imino-5-hydroxy-1,4-dihydronaphthalen-1ones **Ic–Ie** were converted into 3,5-dihydroxy derivatives **IVc–IVe** (Scheme 2). It should be noted that neither 2- nor 3-hydroxy derivatives were formed in reactions of naphthoquinonimines **Ia–Ie** with such oxidants as $K_2S_2O_8$, (NH₄)Ce(NO₃)₆, or NaIO₄ in neutral medium.

The position of the newly introduced hydroxy group in the naphthalene ring was confirmed by the

fact that the reaction of 2,5-dihydroxy derivative IIa with o-phenylenediamine afforded 5-phenylimino-5Hbenzo[a]phenazin-4-ol (V) (Scheme 3). 3,5-Dihydroxy isomers IVa and IVc-IVe failed to react with o-phenylenediamine. Isomeric 2,5- and 3,5-dihydroxysubstituted compounds IIa and IVa can also be distinguished by spectral data. In the ¹H NMR spectrum of 2,5-dihydroxy derivative IIa, the signal from the 5-OH proton is located in a weaker field ($\delta \Delta$ = 0.81 ppm) relative to the corresponding signal of initial compound Ia (δ 13.76 ppm [7]). By contrast, the 5-OH signal in the spectrum of 3,5-dihydroxy isomer IVa is displaced upfield ($\delta \Delta = 2.22$ ppm). Analogous effect of the introduced hydroxy group on the position of the downfield signal was observed for 2- and 3-hydroxyjuglones [8]: the corresponding $\delta\Delta$ values were +0.41 and -0.83 ppm, respectively.

The reasons for the different directions of oxidative hydroxylation of 4-arylimino-5-hydroxy-1,4-dihydronaphthalen-1-ones are not clear so far. Presumably, 2,5-dihydroxy derivatives **IIa** and **IIb** are formed via 1,4-addition of NaOH, followed by oxidation of the adduct with $K_3Fe(CN)_6$ in a way similar to reactions of 4-imino-1,4-dihydronaphthalen-1-ones with other nucleophiles (which usually lead to 2-substituted derivatives [1]). The only example of formation of 3-*tert*-butoxy-4-phenylimino-1,4-dihydronaphthalen-1-one in the oxidation of *N*-phenyl-1-naphthylamine with *tert*-butyl hydroperoxide was reported in [9].

EXPERIMENTAL

The IR spectra were recorded in KBr on UR-20 and Vector-22 instruments. The electron absorption spectra were measured on Specord UV-Vis, Hewlett–Packard 4853, and Beckmann DU-8 spectrophotometers from solutions in EtOH. The ¹H NMR spectra were obtained on a Bruker WP-200SY spectrometer using CDCl₃ or DMSO- d_6 as solvent. The molecular weights and elemental compositions were determined from the precise m/z values of the molecular ions in the mass spectra which were run on Finnigan MAT-8200 and Finnigan AEI MS-900 mass spectrometers. The progress of reactions and the purity of products were monitored by thin-layer chromatography on Silufol plates using chloroform as eluent.

2,5-Dihydroxy-4-phenylimino-1,4-dihydronaphthalen-1-one (IIa) and 2,5-dihydroxy-4-(2,4,6-trimethylphenylimino)-1,4-dihydronaphthalen-1-one (IIb). A mixture of 0.5 mmol of compound Ia or Ib in 10 ml of ethanol and 6 mmol of NaOH and 1 mmol of K₃Fe(CN)₆ in 5 ml of H₂O was heated for 30 min at 70-75°C. The mixture was poured into water and neutralized with 5% hydrochloric acid, the precipitate was filtered off, the filtrate was extracted with CHCl₃ $(3 \times 20 \text{ ml})$, and the extract was dried over CaCl₂ and evaporated to dryness. The residue was combined with the precipitate and dissolved in CHCl₃, and the solution was applied to a column charged with silica gel. Traces of the initial compound were washed off with chloroform, and the subsequent elution with acetone afforded compound IIa or IIb. Yield of IIa 76%, mp 221-222°C (from benzene-hexane, 1:5). IR spectrum, v, cm⁻¹: 1620 (C=N), 1645 (C=O), 3292 (OH). ¹H NMR spectrum (CDCl₃), δ , ppm: 6.61 s (1H, 3-H), 7.03 d (2H, 2'-H, 6'-H, J = 10 Hz), 7.27–7.57 m (6H, 3'-H, 4'-H, 5'-H, 6-H, 7-H, OH), 7.78 d.d (1H, 8-H, $J_{ortho} = 9.0, J_{meta} = 1.5$ Hz), 14.57 s (1H, OH). UV spectrum, λ_{max} , nm ($\epsilon \times 10^{-4}$ l mol⁻¹ cm⁻¹): 423 (0.75). Found: $[M]^+$ 265.07360. C₁₆H₁₁NO₃. Calculated: M 265.07389.

Yield of **IIb** 62%, mp 297–299°C (from hexane). IR spectrum, v, cm⁻¹: 1647 (C=N), 1664 (C=O), 3333 (OH). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.03 s (6H, 2CH₃), 2.30 s (3H, CH₃), 6.16 s (1H, 3-H), 6.92 s (2H, 3'-H, 5'-H), 7.34 d (1H, 6-H, *J* = 8.0 Hz), 7.51 t (1H, 7-H, *J* = 8.0 Hz), 7.74 d (1H, 8-H, *J* = 8.0 Hz), 14.70 s (1H, OH). UV spectrum, λ_{max} , nm ($\varepsilon \times 10^{-4}$ 1 mol⁻¹ cm⁻¹): 392 (0.47). Found: [*M*]⁺ 307.12035. C₁₉H₁₇NO₃. Calculated: *M* 307.12083.

Hydrolysis of 5-hydroxy-2-phenylamino-4phenylimino-1,4-dihydronaphthalen-1-one (III). A solution of 0.3 mmol of compound III in 5 ml of 50% sulfuric acid was heated for 15 min at 125°C. The mixture was cooled and poured into water, and the precipitate was filtered off and dried. Yield of **Ha** 51%.

Reaction of 5-hydroxy-4-arylimino-1,4-dihydronaphthalen-1-ones Ia and Ic–Ie with iron(III) chloride. A mixture of 1 mmol of 5-hydroxy-4-arylimino-1,4-dihydronaphthalen-1-one Ia or Ic–Ie in 15 ml of DMF and 10 mmol of $FeCl_3 \cdot 6H_2O$ was stirred for 3 h at 80–90°C. The mixture was poured into water, 5 ml of 5% hydrochloric acid was added, and the precipitate of compound IVa or IVc–IVe was filtered off, dried in air, and purified by column chromatography on silica gel using chloroform as eluent.

3,5-Dihydroxy-4-phenylimino-1,4-dihydronaphthalen-1-one (IVa). Yield 74%, mp 229–230°C (from benzene). IR spectrum, v, cm⁻¹: 1627 (C=N), 1645 (C=O), 3280 (OH). ¹H NMR spectrum (CDCl₃), δ , ppm: 6.35 s (1H, 2-H), 7.10–7.70 m (9H, 2'-H, 3'-H, 4'-H, 5'-H, 6-H, 6-H, 7-H, 8-H, OH), 11.54 s (1H, OH). UV spectrum, λ_{max} , nm ($\epsilon \times 10^{-4}1$ mol⁻¹ cm⁻¹): 415 (0.65), 486 (0.44). Found: [M]⁺ 265.07360. C₁₆H₁₁NO₃. Calculated: M 265.073889.

3,5-Dihydroxy-4-(4-methylphenylimino)-1,4-dihydronaphthalen-1-one (IVc). Yield 78%, mp 203– 205°C (from benzene–hexane, 1:5). IR spectrum, v, cm⁻¹: 1627 (C=N), 1635 (C=O), 3289 (OH). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.33 s (3H, CH₃), 6.27 s (1H, 2-H), 7.09–7.21 m (4H, 2'-H, 3'-H, 5'-H, 6'-H), 7.47 br.s (1H, OH), 7.57–7.61 m (3H, 6-H, 7-H, 8-H), 11.53 s (1H, OH). UV spectrum, λ_{max} , nm ($\epsilon \times$ 10⁻⁴ 1 mol⁻¹ cm⁻¹): 414 (0.75), 500 (0.53). Found: [*M*]⁺ 279.09020. C₁₇H₁₃NO₃. Calculated: *M* 279.08954.

Butyl 4-[2,8-dihydroxy-4-oxonaphthalen-1(4*H***)ylideneamino]benzoate (IVd). Yield 84%, mp 159– 160°C (from benzene–hexane, 1:5). IR spectrum, v, cm⁻¹: 1613 (C=N), 1634 (C=O), 1699 (COO⁻), 3317 (OH). ¹H NMR spectrum (CDCl₃), δ, ppm: 0.96 t (3H, CH₃, J = 7.0 Hz), 1.48 m (2H, CH₂), 1.75 m (2H, CH₂), 4.31 t (2H, CH₂, J = 7.0 Hz), 6.50 s (1H, 2-H), 7.18 d.d (1H, 6-H, J_{ortho} = 8.0, J_{meta} = 2.0 Hz), 7.28 d (2H, 2'-H, 6'-H, J = 8.0 Hz), 7.60–7.65 m (2H, 7-H, 8-H), 7.67 br.s (1H, OH), 8.07 d (2H, 3'-H, 5'-H, J = 8.0 Hz), 11.48 s (1H, OH). UV spectrum, \lambda_{max}, nm (ε×10⁻⁴ 1 mol⁻¹ cm⁻¹): 423 (0.76), 500 (0.46). Found: [***M***]⁺ 365.12585. C₂₁H₁₉NO₅. Calculated:** *M* **365.12631.**

3,5-Dihydroxy-4-(4-methoxyphenylimino)-1,4-dihydronaphthalen-1-one (IVe). Yield 61%, mp 215– 217°C (from CHCl₃–hexane, 1:10). IR spectrum, v, cm^{-1} : 1626 (C=N), 1641 (C=O), 3274 (OH). ¹H NMR spectrum (CDCl₃), δ , ppm: 3.81 s (3H, OCH₃), 6.15 s (1H, 2-H), 6.92 d.d (2H, 2'-H, 6'-H, $J_{ortho} = 8.0$, $J_{meta} = 2.0$ Hz), 7.13–7.19 m (3H, 3'-H, 5'-H, 6-H), 7.39 br.s (1H, OH), 7.59–7.62 m (2H, 7-H, 8-H), 11.55 s (1H, OH). UV spectrum, λ_{max} , nm ($\epsilon \times 10^{-4}$ 1 mol⁻¹ cm⁻¹): 414 (0.66), 503 (0.46). Found: $[M]^+$ 295.08486. C₁₇H₁₃NO₄. Calculated: *M* 295.08443.

Reaction of 5-hydroxy-4-(2,4,6-trimethylphenylimino)-1,4-dihydronaphthalen-1-one (Ib) with FeCl₃·6H₂O. A mixture of 1 mmol of compound **Ib**, 10 mmol of FeCl₃·6H₂O, and 15 ml of DMF was heated for 5 h at 85–90°C. The mixture was treated as described above to isolate 69% of initial compound **Ib**. A zone containing tarry products remained in the chromatographic column.

Reaction of 2,5-dihydroxy-4-phenylimino-1,4dihydronaphthalen-1-one (IIa) with o-phenylenediamine. A mixture of 1.3 mmol of 2,5-dihydroxy-4-phenylimino-1,4-dihydronaphthalen-1-one (IIa), 2.8 mmol of o-phenylenediamine, and 30 ml of acetic acid was stirred for 30 min at 80°C. The mixture was cooled, poured into water, and neutralized with aqueous potassium hydroxide, and the precipitate was filtered off, washed with water, and dried. The product was 5-phenylimino-5*H*-benzo[a]phenazin-4-ol (**V**). Yield quantitative. The product was purified by reprecipitation with benzene from acetone, mp 260°C (decomp.). IR spectrum, v, cm⁻¹: 1624 (C=N), 3334 (NH). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 6.97 s (1H, 6-H), 7.10-7.82 m (9H, 2-H, 3-H, 9-H, 10-H, C_6H_5), 7.90 d (1H, 8-H, J = 8.0 Hz), 8.12 d (1H, 11-H, J = 8.0 Hz), 8.76 d (1H, 1-H, 8.0 Hz) (signals from the NH and OH protons were not observed due to exchange with water present in the solvent). UV spectrum, λ_{max} , nm ($\epsilon \times 10^{-4} \text{ l mol}^{-1} \text{ cm}^{-1}$): 507 (1.07). Found: $[M]^+$ 337.12140. C₂₂H₁₅N₃O. Calculated: M 337.12150.

Reaction of 3,5-dihydroxy-4-arylimino-1,4-dihydronaphthalen-1-ones IVa and IVc–IVe with *o*-phenylenediamine. A mixture of 1.3 mmol of compound IVa or IVc–IVe, 2.8 mmol of *o*-phenylenediamine, and 30 ml of acetic acid was stirred for 30 min at 80°C. The mixture was treated as described above to isolate ~90% of the initial compound.

REFERENCES

1. *Methoden der organischen Chemie (Houben–Weyl)*, Stuttgart: Georg Thieme, 1979, vol. 7/3b, p. 235.

- Ono, Sh., Adachi, R., Ukai, T., and Mihara, Y., JPN Patent appl. no. 62-181381, 1986; *Chem. Abstr.*, 1988, vol. 108, no. 122066v.
- Baley D. and Williams, L.A. *The Chemistry of Synthetic Dyes*, Venkataraman, K., Ed., New York: Wiley, 1972, vol. 6. Translated under the title *Khimiya sinteticheskikh krasitelei*, Leningrad: Khimiya, 1975, vol. 4, p. 320.
- Benedetti-Doctorovich, V., Burges, E.M., Lambropoulous, J., Lednicer, D., van Deveer, D., and Zalkow, L., *J. Med. Chem.*, 1994, vol. 37, p. 710.
- 5. Zhungietu, G.I. and Vlad, L.A., *Yuglon i rodstvennye* 1,4-naftokhinony (Juglone and Related 1,4-Naphthoquinones), Kishinev: Shtiintsa, 1978.
- 6. Oeriu, I. and Krecha, M., Zh. Obshch. Khim., 1963, vol. 33, p. 1127.
- 7. Ektova, L.V. and Fokin, E.P., Zh. Org. Khim., 1984, vol. 20, p. 805.
- 8. Lillie, T.J. and Musgrave, O.C., J. Chem. Soc., Perkin Trans. 1, 1977, p. 355.
- 9. Forrester, A.R., Fullerton, J.D., and McConnachie, G., J. Chem. Soc., Perkin Trans. 1, 1983, p. 2711.