THE SYNTHESIS, CHARACTERIZATION AND REACTIONS OF A BINUCLEAR TETRAMETHYLPLATINUM(IV) COMPLEX

MARYM LASHANIZADEHGAN, MEHDI RASHIDI*,

Department of Chemistry, College of Arts and Sciences, Shiraz University, Shiraz (Iran)

JANET E. HUX, RICHARD J. PUDDEPHATT* and SAMSON S.M. LING Department of Chemistry, University of Western Ontario, London N6A 5B7 (Canada) (Received January 18th, 1984)

Summary

Reaction of excess MeLi and MeI with $[PtCl_2(SMe_2)_2]$ gives the first binuclear tetramethylplatinum(IV) complex $[Pt_2Me_8(\mu\text{-SMe}_2)_2]$. The characterization of this complex, and its reactions with donor ligands to give cis- $[PtMe_4L_2]$ ($L_2 = Ph_2PCH_2PPh_2$, $Ph_2PCH_2CH_2PPh_2$, 2,2'-bipyridyl, 1,10-phenanthroline or $L = PMe_2Ph$, $PMePh_2$) are described.

Introduction

Although methylplatinum(IV) complexes were among the first alkyltransition metal complexes to be prepared and have played a central part in the development of the coordination chemistry of platinum(IV), very few tetramethylplatinum(IV) complexes have been isolated [1,2]. The only known derivatives are of the structure cis-[PtMe₄L₂], where L = PEt₃, PMePh₂, PMe₂Ph, AsMe₂Ph and L₂ = 2,2′-bipyridine [3–7]. The complexes have usually been prepared by metathesis using the powerful methylating agent methyllithium (eqs. 1,2) [3,5] but an oxidative addition route is also known (eq. 3) [7].

$$cis-[PtCl_4(PMe_2Ph)_2] + 4MeLi \rightarrow cis-[PtMe_4(PMe_2Ph)_2] + 4LiCl$$
 (1)

$$fac-[PtIMe_3(bipy)] + MeLi \rightarrow [PtMe_4(bipy)] + LiI$$
 (2)

$$2[PtMe2(bipy)] + PbMe4 \rightarrow 2[PtMe4(bipy)] + Pb$$
 (3)

The metathesis route (eqs. 1 and 2) is not always straightforward. For example, in the presence of iodide (either as a ligand in the platinum complex precursor or as an impurity in the methyllithium reagent), methylation followed by the usual work-up procedure may yield only the trimethylplatinum(IV) complexes fac-[PtIMe₃L₂], for example when L = PMe₂Ph but not when L₂ = 2,2'-bipyridine.

We have developed a simple route to the first binuclear tetramethylplatinum(IV) complex, $[Pt_2Me_8(\mu-SMe_2)_2]$, and have shown that displacement of the SMe_2 ligands by neutral ligands, L, gives a convenient synthesis of complexes $[PtMe_4L_2]$.

Results and discussion

Synthesis and characterization of $[Pt_2Me_8(\mu-SMe_2)_2]$

Reaction of $[PtCl_2(SMe_2)_2]$ with methyllithium is known to give $[Pt_2Me_4(\mu-SMe_2)_2]$ [8]. In an attempted synthesis of this complex using methyllithium prepared by reaction of lithium with methyl iodide, the complex $[Pt_2Me_8(\mu-SMe_2)_2]$ was formed. Subsequently it was shown that the binuclear tetramethylplatinum complex was formed in almost quantitative yield if methyl iodide was present during the reaction of $[PtCl_2(SMe_2)_2]$ with excess methyllithium. Methyl iodide clearly undergoes oxidative addition to a methylplatinum(II) intermediate to generate the platinum(IV) centers, and the stoichiometry is given by eq. 4.

$$2[PtCl_{2}(SMe_{2})_{2}] + 6MeLi + 2MeI \xrightarrow{-4LiCl, -2LiI} [Pt_{2}Me_{8}(\mu-SMe_{2})_{2}]$$
(4)

The structure of $[Pt_2Me_8(\mu-SMe_2)_2]$ is shown to be I by elemental analysis and by the ¹H NMR spectrum, which contains three resonances of equal intensity. The methylplatinum resonances were singlets with one quarter intensity satellites due to coupling with ¹⁹⁵Pt and occurred at δ 0.15 ppm, ²J(PtH) 44 Hz (Me^a trans to Me) and at δ 0.75 ppm, ²J(PtH) 72 Hz (Me^b trans to SMe₂), these parameters being typical of tetramethylplatinum(IV) derivatives [3–5]. The methylsulfur resonance occurs as a 1/8/18/8/1 quintet with a very low coupling constant to platinum, showing that the Me₂S ligands are bridging and trans to methyl (δ (Me^cS) 2.50 ppm, ³J(PtH) 10 Hz) [8].

Reactions of $[Pt_2Me_8(\mu-SMe_2)_2]$ (I)

Complex I decomposed only slowly when stored as a solid at room temperature. However, a solution in acetone decomposed over a period of 24 h to give [(Me₃PtOH)₄] and one methylplatinum group of I was rapidly cleaved by reaction with HCl to give [(Me₃PtCl)₄]. Both reactions occurred with displacement of dimethylsulfide (Scheme 1).

More useful reactions occurred on reaction of I with donor ligands. Thus reactions with chelate ligands \widehat{L} L gave rapid displacement of dimethylsulfide to give in high yield the mononuclear complexes [PtMe₄(\widehat{L} L)], where \widehat{L} L =

Ph₂PCH₂PPh₂, Ph₂PCH₂CH₂PPh₂, 2,2'-bipyridine or 1,10-phenanthroline. With monodentate ligands, useful reactions occurred with $L = PMe_2Ph$ or $PMePh_2$ to give the known complexes cis-[PtMe₄L₂], but in other attempted reactions the desired products cis-[PtMe₄L₂] were not obtained. The bulky ligand PPh₃ reacted with I to give cis-[PtMe₂(PPh₃)₂] and ethane, presumably involving reductive elimination from a transient intermediate [PtMe₄(PPh₃)₂]. Triphenylphosphine is known to promote reductive elimination from other organoplatinum(IV) complexes [9,10]. Excess dimethylsulfide reacted reversibly with I to give cis[PtMe₄(SMe₂)₂], identified in solution by the ¹H NMR spectrum. However, on evaporation of the solvent the complex lost dimethylsulfide to regenerate I. Similarly, attempts to isolate cis-[PtMe₄L₂] with $L = SEt_2$ or pyridine were unsuccessful. Attempted crystallization of products from reaction of I with these ligands gave only the decomposition product [(Me₃PtOH)₄]. Thus it seems that stable derivatives cis-[PtMe₄L₂] are formed only when the monodentate ligands, L, are reasonably compact and bind strongly to platinum (Scheme 1).

SCHEME 1. Synthesis and reactions of complex I. Reagents: (i) MeLi+MeI; (ii) Me₂S; (iii) L = PMe₂Ph or PMePh₂; (iv) L = PPh₃; (v) L $\stackrel{\frown}{}$ L = Ph₂PCH₂PPh₂, Ph₂PCH₂CH₂PPh₂, 2,2'-bipyridyl or 1,10-phenanthroline; (vi) HCl; (vii) H₂O.

Experimental

All the reactions involving MeLi, MeMgX, and Me₂Mg were carried out under a nitrogen atmosphere. A solution of MeMgI ($\sim 1~M$) was prepared according to the standard method. A solution of MeLi ($\sim 1~M$) was prepared by reacting MeI with Li in ether. Solutions of Me₂Mg ($\sim 1~M$) were prepared by the addition of dioxane to MeMgX. Commercial MeLi · LiBr in ether (1.2 M) was used in some experiments. [PtCl₂(SMe₂)₂], as a mixture of *cis* and *trans* isomers was prepared by the literature method [11]. ¹H NMR spectra were recorded on Varian T60 and XL-100 instruments and ³¹P NMR spectra on a Varian XL100, using TMS and trimethylphos-

phate references respectively. Elemental analyses were carried out by Alfred Bernhardt, Analytische Laboratorien, or by Guelph Chemical Laboratories.

Preparation of $[PtMe_2(SMe_2)]_2$

 Me_2Mg (15 ml of the solution in ether, prepared from MeMgBr) was added slowly to a suspension of cis-PtCl₂(SMe₂)₂ (2 g) in ether (25 ml) at 0°C. The reaction mixture was stirred for 1 h at 0°C and subsequently hydrolysed carefully with H₂O at 0°C. Separation of the organic layer, extraction with CH_2Cl_2 and evaporation over nitrogen gave white crystals of $[PtMe_2(SMe_2)]_2$ identified by the NMR spectrum [8].

A similar reaction used Me₂Mg, prepared from MeMgI, produced *trans*-[PtIMe(SMe₂)₂] as main product. NMR in CDCl₃: δ (MePt) 0.7 ppm, ²J(PtH) 76 Hz; δ (MeS) 2.63 ppm, ³J(PtH) 54 Hz.

Preparation of $[Pt, Me_{\aleph}(\mu-SMe_{\gamma}),]$

- (i) A solution of MeLi (20 ml, prepared from MeI and Li) in ether was added at 0° C to a stirred solution of cis-PtCl₂(SMe₂)₂ (0.5 g) in dry ether (20 ml). A yellow solution was obtained which turned colourless after about 5 min. After 45 min, the solution was carefully hydrolysed at 0° C with H₂O (~4 ml). The layers were separated and the aqueous layer was twice extracted with CH₂Cl₂ (20 ml). The combined organic layers were dried over anhydrous sodium sulphate, filtered and reduced to a small volume by slow evaporation in air. The deposited white crystals were filtered, washed with ether (4 ml) and air-dried. Yield 0.2 g. The complex decomposed without melting at 105° C (Anal. Found: C, 22.58; H, 5.53; S, 9.94. C₁₂H₃₆S₂Pt₂ calcd.: C, 22.6; H, 5.6; S, 10.1%).
- (ii) [PtCl₂(SMe₂)₂] (1.0 g) was suspended in dry ether (25 ml) with MeI (1 ml). The mixture was cooled to 0 °C and a solution of MeLi · LiBr in ether (6 ml, 1.2 M) was added dropwise with stirring. After 30 min, excess MeLi was hydrolysed by the cautious addition of saturated aqueous NH₄Cl. The desired product was recovered from the organic phase as a creamy white powder (0.78 g, 96%), and was identified by its NMR spectrum.

Reactions of $[Pt_2Me_8(\mu-SMe_2)_2]$ with donor ligands

Reaction of saturated solutions of $Ph_2PCH_2PPh_2$ (2.0 mmol) and $[Pt_2Me_8(\mu-SMe_2)_2]$ (1.0 mmol) in ether led to precipitation of large colourless crystals over a period of 6 h. The crystals were isolated by filtration, then washed with ether and air dried. Yield of $[PtMe_4(Ph_2PCH_2PPh_2)]$ was 75%. M.p. 179°C (decomp). Anal. Found: C, 54.6; H, 5.2; P, 9.6. $C_{29}H_{34}P_2Pt$ calcd.: C, 54.7; H, 5.3; P, 9.6%. NMR in $CDCl_3$: -0.04 (t, $^2J(PtH)$ 46, $^3J(PH)$ 7 Hz, MePt trans to Me); 0.87 (m, $^2J(PtH)$ 64 Hz, MePt trans to P); 4.73 (t, $^3J(PtH)$ 8.4, $^2J(PH)$ 9.4 Hz); -65.9 ppm (s, $^1J(PtP)$ 936 Hz, ^{31}P).

The following complexes were prepared in a similar way and were isolated in yields of 60–94%. [PtMe₄(Ph₂PCH₂CH₂PPh₂)], Anal. Found: C, 55.1; H, 5.2; P, 9.3. $C_{30}H_{36}P_2$ Pt calcd.: C, 55.1; H, 5.5; P, 9.5%. NMR in CDCl₃: -0.56 (t, 2J (PtH) 44, 3J (PH) 6 Hz); 0.80 (m, 2J (PtH) 60, 3J (PH) + 3J (P'H) 13.7 Hz); 2.61 ppm (t, 3J (PtH) 8, 2J (PH) + 4J (P'H) 15 Hz, CH_2 P). [PtMe₄(bipy)], m.p. 119–122 °C, Anal. Found: C, 40.1; H, 4.75, N, 7.1. $C_{14}H_{20}N_2$ Pt calcd.: C, 40.9; H, 4.9; N, 6.8%. NMR in CDCl₃: -0.68 (s, 2J (PtH) 44 Hz, MePt trans to Me); 0.90 ppm (s, 2J (PtH) 73 Hz,

MePt trans to N). [PtMe₄(1,10-phenanthroline)], m.p. 180 °C (decomp). NMR in C_6D_6 : 0.22 (s, ${}^2J(PtH)$ 44 Hz, MePt trans to Me); 1.86 ppm (s, ${}^2J(PtH)$ 72.5 Hz, MePt trans to N]. [PtMe₄(PMePh₂)₂], NMR in CDCl₃; -0.11 (t, ${}^2J(PtH)$ 44, ${}^3J(PH)$ 6 Hz, MePt trans to Me); 0.38 (m, ${}^2J(PtH)$ 61, ${}^3J(PH) + {}^3J(P'H)$ 2 Hz, MePt trans to P); 1.67 (d, ${}^3J(PtH)$ 10, ${}^2J(PtH) + {}^4J(P'H)$ 8 Hz, MeP) [6]. [PtMe₄(PMe₂Ph)₂], NMR in CDCl₃: -0.23 (t, ${}^2J(PtH)$ 44, ${}^3J(PH)$ 7 Hz, MePt trans to Me); 0.39 (m, ${}^2J(PtH)$ 57, ${}^2J(PH) + {}^4J(P'H)$ 2 Hz, MePt trans to P); 1.39 ppm (d, ${}^3J(PtH)$ 12, ${}^2J(PH) + {}^4J(P'H)$ 8 Hz, MeP) [3].

Reaction of $[Pt, Me_8(\mu-SMe_3),]$ with SMe_3

SMe₂ (3.4 μ l) was added to a solution of [Pt₂Me₈(μ -SMe₂)₂] (0.010 g) in (CD₃)₂CO (0.7 ml) in an NMR tube. The product was *cis*-[PtMe₄(SMe₂)₂], as determined by the ¹H NMR spectrum: -0.30 (s, ²J(PtH) 43, MePt trans Me), 0.70 (s, ²J(PtH) 73, MePt trans S), 2.20 (s, ³J(PtH) 12, SMe₂); integration 1/1/2. After evaporation of the solvent and redissolving, the NMR spectrum showed that reversion to [Pt₂Me₈(μ -SMe₂)₂] had occurred.

Decomposition of $[Pt_2Me_8(\mu-SMe_2)_2]$ in solution

[Pt₂Me₈(μ -SMe₂)₂] decomposed (room temperature, 24 h) to give (PtMe₃OH)₄ in both acetone and methylene chloride solutions. The product was identified by mass spectrometry and by the characteristic ¹H NMR spectrum [12,14]. NMR in C₆D₆: δ 0.81 (s, ²J(PtH) 79 Hz, MePt); -1.50 (septet, ²J(PtH) 11 Hz, HOPt). MS: Parent ion, m/e 1028 (calcd. for (Me₃¹⁹⁵PtOH)₄ 1028), with the expected isotope pattern. The same product was formed in attempted reactions with Et₂S and with pyridine.

Reaction of $[Pt_2Me_8(\mu-SMe_2)_2]$ with HCl

To a stirred solution of $[Pt_2Me_8(\mu-SMe_2)_2]$ (0.35 g) in ether (70 ml) was added concentrated HCl solution (2 ml). Evaporation of the ether layer gave $[(Me_3PtCl)_4]$, identified by its 1H NMR spectrum [12].

Reaction of $[PtIMe_3(dppm)]$, [13], $dppm = Ph_3PCH_3PPh_3$, with MeLi

[PtMe₃I(dppm)] (0.5 g) was suspended in ether 40 ml). MeLi (25 ml, prepared from MeI and Li) was added to the suspension at -4° C. The reaction mixture was stirred for 10 min and was then hydrolysed carefully with H₂O at -4° C. The clear organic layer was decanted and the aqueous layer was twice extracted with CH₂Cl₂ (10 ml). The combined organic layers were dried over anhydrous sodium sulphate, filtered and reduced to about 10 ml. This solution was then left overnight. The colourless crystals which formed were filtered, washed with ether (4 ml) and air-dried. Yield, 0.14 g. The product was identified as [PtMe₄(dppm)] by its ¹H NMR spectrum.

Acknowledgments

We thank the Shiraz University Research Council (Iran) and NSERC (Canada) for financial support, and Mr. Maleky for recording some of the 60 MHz NMR spectra.

References

- 1 J.S. Thayer, Organomet. Chem. Rev., A, 5 (1970) 53.
- 2 F.R. Hartley, in E.W. Abel, F.G.A. Stone and G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, Ch. 39.
- 3 J.D. Ruddick and B.L. Shaw, J. Chem. Soc. A, (1969) 2801.
- 4 J.D. Ruddick and B.L. Shaw, J. Chem. Soc. A, (1969) 2964.
- 5 D.E. Clegg, J.R. Hall and G.A. Swile, J. Organomet. Chem., 38 (1972) 403.
- 6 G.W. Rice and R.S. Tobias, J. Chem. Soc., Chem. Commun., (1975) 994.
- 7 J.K. Jawad and R.J. Puddephatt, Inorg. Chim. Acta, 31 (1978) L391.
- 8 J.D. Scott and R.J. Puddephatt, Organometallics, 2 (1983) 1643.
- 9 M.P. Brown, R.J. Puddephatt and C.E.E. Upton, J. Chem. Soc., Dalton Trans., (1974) 2457.
- 10 M.P. Brown, A. Hollings, K.J. Houston, R.J. Puddephatt and M. Rashidi, J. Chem. Soc., Dalton Trans., (1976) 786.
- 11 L.A. Tschugaev and W. Subbotin, Chem. Ber., 43 (1910) 1200; R. Roulet and C. Barbey, Helv. Chim. Acta, 56 (1973) 2179.
- 12 K. Kite, J.A.S. Smith and E.J. Wilkins, J. Chem. Soc. A, (1966) 1744.
- 13 T.G. Appleton, M.A. Bennett and I.B. Tomkins, J. Chem. Soc., Dalton Trans., (1976) 439.
- 14 G.L. Morgan, R.D. Rennick and C.C. Soong, Inorg. Chem., 5 (1966) 372.