Biological Activity

The estrogenic and antiestrogenic activities of these compounds were assessed on the basis of stimulation of the growth of the uterus of immature female rats. The test compounds were given by gavage either alone or in combination with estradiol (0.002 mg/kg per day) administered subcutaneously. On the 4th day the uteri were excised, blotted dry, and weighed. The antifertility activity was determined by administering the compound by gayage to mature female rats for 6 days beginning the morning after a proven insemination. The rats were autopsied 9 days after the last medication and their uteri were removed and examined for implantation sites and gross abnormalities.

Synthesis and Antiarrhythmic Activity of Naphthylalkylamines

Gianfranco Pala, Arturo Donetti, Carla Turba, and Silvano Casadio

Research Laboratories of Istituto De Angeli, 20139 Milan, Italu

Received March 10, 1970

A further series of naphthylalkylamines was prepared and assayed for antiarrhythmic activity. Many of the compounds were found to be active in vitro, but only for five of them was activity confirmed in vivo. Comparative regression line analysis revealed that among the naphthylalkylamines so far investigated for antiarrhythmic activity, 1,5-dimorpholino-3-(\alpha-naphthyl)pentane is still the most interesting one.

Our finding that some α -naphthylalkylamines, 1.5-dimorpholino-3-(α -naphthyl) pentane, possess marked antiarrhythmic activity led us to extend this investigation to 83 chemically related compounds. The new naphthylalkylamines had the general structures I-IV, in which R was an alkyl or aminoalkyl group; R_1 was a primary amino or aminomethyl group; NAA was a tertiary amino group; n = 2-4.

Naphthylalkylamines with $R_1 = NH_2$ were prepared from the corresponding amides by the Hofmann reaction. Reduction of the related nitriles with excess LAH in Et₂O afforded naphthylalkylamines with $R_1 =$ CH₂NH₂, reaction time and excess LAH depending on the steric hindrance of the nitriles.

Pharmacology.—All of the substances listed in Table II were submitted to the *in vitro* antiarrhythmic test, using quinidine and 1,5-dimorpholino-3-(α -naphthyl)pentane as reference standards. Many of them considerably reduced the maximal rate of stimulation of electrically driven isolated guinea pig auricles but did not inhibit the amplitude of contractions. These results are included in Table II in terms of relative potency, which was calculated from ED₃₅ values as previously described² and expressed in relation to the antiarrhythmic activity of quinidine, which has been assigned the potency of 1.0.

Due to the promising results in vitro, all of the above compounds were tested subcutaneously in rats for the action on arrhythmias induced by CaCl₂. The procedure was essentially the same as previously described,² except that 120 mg/kg of CaCl₂ was infused. Reference standards and expression of results were as in vitro. Of all the tested substances, only 51, 64, 82,

Figure 1.--CaCl₂-induced arrhythmias in rats. lines of: 51 $(\triangle -\triangle)$; 64 $(\bigcirc ----\bigcirc)$; 82 $(\square ----\square)$; 84 $(\bigcirc ---\bigcirc)$; 120 $(\square ----\square)$; 1,5-dimorpholino-3- $(\alpha$ -naphthylpentane) (+-+); and quinidine $(\nabla--\nabla)$.

⁽¹⁾ S. Casadio, G. Pala, T. Bruzzese, C. Turba, and E. Marazzi-Uberti. J. Med. Chem., 13, 418 (1970).

⁽²⁾ C. Bianchi, G. P. Sanna, and C. Turba, Arzneim. Forsch., 18, 845 (1968).

Table I INTERMEDIATE NITRILES

(N(CH ₂) _n Yield, Bp (mm)									
Compd	R	\mathbf{R}_1	$(A)^{N(CH_2)_n}$	Structure	Yield, %ª	Bp (mm) or mp, °C	Formula b		
1	n-C₃H ₇	CN	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_2$	II	53.9	145-150 (0.2)	$C_{19}H_{24}N_2$		
$\frac{1}{2}$	$n-C_3H_9$	CN	$(CH_3)_2N(CH_2)_2$ $(CH_3)_2N(CH_2)_2$	II	62.8	177-180 (0.2)	$C_{20}H_{26}N_2$		
3	<i>i</i> -C₄H ₉	CN	$(CH_3)_2N(CH_2)_2$ $(CH_3)_2N(CH_2)_2$	II	82.3	147-150 (0.4)	$C_{20}H_{26}N_2$		
4	sec-C ₄ H ₉	CN	$CH_3/2H_5)N(CH_2)_2$	II	78	167–169 (0.2)	$C_{21}H_{28}N_2$		
5	$CH_3(C_2H_5)N(CH_2)_2$	CN	$CH_3(C_2H_5)N(CH_2)_2$ $CH_3(C_2H_5)N(CH_2)_2$	II	77.6	190-195 (0.6)	$C_{22}H_{31}N_3$		
6	sec-C ₄ H ₉	CN	$(C_2H_5)_2N(CH_2)_2$	II	74	170-175 (0.5)	$C_{22}H_{30}N_{2}$		
7	$(C_2H_5)_2N(CH_2)_2$	CN	$(C_2H_5)_2N(CH_2)_2$	II	84.6	174–178 (0.1)	$C_{24}H_{25}N_{5}$		
8	i-C ₃ H ₇	CN	$(i-C_8H_7)_2N(CH_2)_2$	II	68.6	167-170 (0.3)	$C_{23}H_{22}N_2$		
9	sec-C ₄ H ₉	CN	$(i-C_3H_7)_2N(CH_2)_2$	II	51.6	168–170 (0.1)	$C_{24}H_{34}N_2$		
10	$(i-C_3H_7)_2N(CH_2)_2$	CN	$(i-C_5H_7)_2N(CH_2)_2$	II	70	200-205 (0.6)	$C_{28}H_{43}N_3$		
11	CH ₃	CN	c	1I	35.3	180-182 (0.5)	$C_{19}H_{22}N_2$		
12	C_2H_5	CN	c	II	77.5	185-188 (0.7)	$C_{20}H_{24}N_2$		
13	n - C_3 H_7	CN	c	II	74 8	190-191 (0.75)	$\mathrm{C}_{21}\mathrm{H}_{26}\mathrm{N}_2$		
14	i - C_3H_7	CN	c	II	77.1	85-87	$C_{21}H_{26}N_{2}$		
15	n - C_4H_9	$^{ m CN}$	c	II	69.5	195-200 (0.15)	${ m C_{22}H_{28}N_{2}}$		
16	<i>i</i> -C₄H ₉	$_{ m CN}$	c	II	69.3	180-183 (0.2)	$\mathrm{C}_{22}\mathrm{H}_{28}\mathrm{N}_2$		
17	sec-C ₄ H ₉	$_{ m CN}$	Ċ	II	89	187-190 (0.5)	$C_{22}H_{28}N_2$		
18	c	$^{\mathrm{CN}}$	c	II	78.8	215-220 (0.15)	$\mathrm{C}_{24}\mathrm{H}_{31}\mathrm{N}_{3}$		
19	n - $\mathrm{C}_3\mathrm{H}_7$	$_{ m CN}$	d	II	66.2	179-182 (0.05)	$C_{22}H_{28}N_2$		
20	n-C ₄ H ₉	$^{\mathrm{CN}}$	d	II	79.2	190-195 (0.2)	$C_{23}H_{30}N_2$		
21	i-C ₄ H ₉	$^{ m CN}$	d	II	63.5	205-209 (0.8)	$\mathrm{C}_{2\delta}\mathrm{H}_{30}\mathrm{N}_2$		
22	n - C_3H_7	$_{ m CN}$	e	II	43.7	109-111	$C_{21}H_{26}N_2O$		
23	n-C ₄ H ₉	$^{ m CN}$	e	\mathbf{II}	39	200-205(0.2)	$C_{22}H_{28}N_2O$		
24	i -C ₄ H $_9$	$\mathbf{C}\mathbf{N}$	e	II	52.4	190-195(0.2)	$\mathrm{C}_{22}\mathrm{H}_{28}\mathrm{N}_2\mathrm{O}$		
25	$\mathrm{CH}_{\mathfrak{s}}$	$^{\mathrm{CN}}$	$(CH_3)_2N(CH_2)_3$	II	48.7	155-157(0.2)	$\mathrm{C_{18}H_{22}N_{2}}$		
26	$sec ext{-}\mathrm{C}_4\mathrm{H}_9$	$_{ m CN}$	$({ m CH_3})_2{ m N}({ m CH_2})_3$	II	7 9	164-167 (0.4)	$\mathrm{C_{21}H_{28}N_{2}}$		
27	$sec ext{-}\mathrm{C}_4\mathrm{H}_9$	$^{\mathrm{CN}}$	f	II	54.3	96-99	${ m C_{23}H_{30}N_2}$		
28	$sec ext{-}\mathrm{C}_4\mathrm{H}_9$	$^{\mathrm{CN}}$	g	II	44.4	123-124	$\mathrm{C}_{24}\mathrm{H}_{12}\mathrm{N}_{2}$		
29	$sec ext{-}\mathrm{C_4H_9}$	$^{\mathrm{CN}}$	h	H	58	90-92	$\mathrm{C}_{28}\mathrm{H}_{30}\mathrm{N}_{2}\mathrm{O}$		
30	sec-C ₄ H ₉	$^{ m CN}$	$({ m CH_3})_2{ m N}({ m CH_2})_4$	II	29	$165 - 170 \ (0.25)$	$\mathrm{C}_{22}\mathrm{H}_{20}\mathrm{N}_2$		
31	i - $\mathrm{C_3H_7}$	$^{\mathrm{CN}}$	i	II	80	$182 - 185 \ (0.25)$	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{N}_3$		
32	$sec ext{-}\mathrm{C_4H_9}$	$^{ m CN}$	i	II	75.7	187-190 (0.1)	${ m C_{24}H_{32}N_2}$		
33	i - C_3H_7	$\mathbf{C}\mathbf{N}$	j	II	71.7	$207 - 210 \ (0.5)$	${ m C_{24}H_{32}N_{2}}$		
34	$sec ext{-}\mathrm{C_4H_9}$	$\mathbf{C}\mathbf{N}$	j	II	61.7	196-200 (0.2)	$\mathrm{C}_{25}\mathrm{H}_{4}\mathrm{N}_{2}$		
35	i - C_3H_7	$^{\mathrm{CN}}$	k	II	55	$200202\ (0.25)$	$C_{23}H_{30}N_2O$		
36	sec-C ₄ H ₉	$^{\mathrm{CN}}$	k	II	70	205–210 (0.1)	$C_{24}H_{32}N_2O$		
37	$sec ext{-}\mathrm{C_4H_0}$	CN	$({\rm CH_3})_2{\rm N}({\rm CH_2})_2$	III	75.3	$150-155 \ (0.09)$	${ m C}_{20}{ m H}_{26}{ m N}_2$		
38	i - C_3H_7	$^{\mathrm{CN}}$	e	III	66	$192 - 195 \ (0.15)$	$C_{21}H_{26}N_2O$		
39	$sec ext{-}\mathrm{C_4H_9}$	$^{\mathrm{CN}}$	e	III	74.5	193-196 (0.1)	$C_{22}H_{28}N_2O$		
40	$sec ext{-}\mathrm{C_4H_9}$	CN	$({ m CH_2})_2{ m N}({ m CH_2})_2$	IV	f 41.5	62–63	$\mathrm{C}_{:1}\mathrm{H}_{28}\mathrm{N}_{2}$		
41	<i>i</i> -C₃H ₇	CN	d	IV	41	96–98	$C_{23}H_{30}N_2$		
42	$sec ext{-}\mathrm{C_4H_9}$	CN	d	IV	66	102–103	$C_{24}H_{32}N_2$		

^a Purified product. ^b All compounds were analyzed for C, H, N and the analytical results were within ± 0.4% of the theoretical values. ^e 2-(1-Pyrrolidinyl)ethyl. ^d 2-Piperidinoethyl. ^e 2-Morpholinoethyl. ^f 3-(1-Pyrrolidinyl)propyl. ^f 3-Piperidinopropyl. ^h 3-Morpholinopropyl. 4-(1-Pyrrolidinyl)butyl. 4-Piperidinobutyl. 4-Morpholinobutyl.

84, and 120 had confirmed activity in vivo; the relative potencies (quinidine = 1.0) were 1.6, 0.7, 1.5, 3.4, and 0.8, respectively; the potency of 1,5-dimorpholino-3- $(\alpha$ -naphthyl)pentane was 1.2. However, an examination of the regression lines (Figure 1) revealed that the new compounds had a range of active doses narrower than both the reference standards.

On the basis of previous and present results the conclusion may be drawn that, among the naphthylalkylamines so far investigated for antiarrhythmic activity, 1,5-dimorpholino-3-(α -naphthyl)pentane is still to be considered as the most interesting one.

Experimental Section³

Intermediates.—Many of the nitriles were prepared as pre-

viously described.4-8 The new nitriles (Table I) were obtained similarly. Except for the following compound, all the amides were prepared as previously reported.8-10

 α -(2-Dimethylaminoethyl)-1-naphthylacetamide.—A solution of α -(2-dimethylaminoethyl)-1-naphthylacetonitrile (10 g, 0.042 mol) and KOH (7 g, 0.125 mol) in 95% EtOH (40 ml) was refluxed for 3 hr with stirring, cooled, and poured into H₂O. The separated pasty product was extracted (Et₂O), washed (H₂O), and dried (Na₂SO₄). Evaporation of the solvent yielded a

⁽³⁾ Boiling points are uncorrected. Melting points are corrected and were taken on a Buchi capillary melting point apparatus.

⁽⁴⁾ S. Casadio, G. Pala, and T. Bruzzese, Farmaco Ed. Sci., 17, 871 (1962).

⁽⁵⁾ S. Casadio, G. Pala, E. Crescenzi, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, J. Med. Chem., 8, 589 (1965).

⁽⁶⁾ G. Pala, S. Casadio, T. Bruzzese, E. Crescenzi, and E. Marazzi-Uberti, ibid., 8, 698 (1965).

⁽⁷⁾ G. Pala, S. Casadio, T. Bruzzese, and G. Coppi, ibid., 9, 786 (1966).

⁽⁸⁾ S. Casadio, T. Bruzzese, G. Pala, G. Coppi, and C. Turba, ibid., 9, 707 (1966).

⁽⁹⁾ S. Casadio, G. Pala, T. Bruzzese, E. Crescenzi, E. Marazzi-Uberti, and G. Coppi, ibid., 8, 594 (1965).

⁽¹⁰⁾ M. Julia and M. Baillargé, Bull. Soc. Chim. Fr., 928 (1957).

 $\label{thm:table H} Table \ H$ Physical Properties and Antiarrilythmic Activity of Naphthylalkylamines

Reaction conditions LAH: ni-

			•				ni-				
			$\left(\begin{array}{c} A \\ X(CH_{2}), \end{array}\right)$	Struc-		Time.	trile.	Yield.	Bp (mm),		Rei po-
Compd	R	R_{\pm}	1.		Method			ried.	٥(,	Formula'	tency
43	CH_3	NH_5		I	Α			66	118-120 (0.1)	$C_{12}H_{13}N$	0.6
44	$(\mathrm{CH_3})_5\mathbf{N}(\mathrm{CH_2})_2$	NH_2		Ī	Ä			62	130~133 (0.2)	$C_{12}H_{20}N_{2}$	0.3
45	CH:	$\mathrm{CH_{2}NH_{2}}$		Ī	В	20	2	81	112-113 (0.1)	$C_{13}H_{15}N$	c
46	<i>i</i> -C₃H ₇	$\mathrm{CH_2NH_2}$		1	В	20	2	83	130-132 (0.2)	$C_{15}H_{19}N$	0.9
47	n-C ₄ H ₅	$\mathrm{CH_2NH_2}$		I	В	10	4	82	130~132 (0.2)	$C_{16}H_{21}N$	e.
48	$({ m CH_3})_2{ m N}({ m CH_2})_2$	$\mathrm{CH_2NH_2}$		I	В	10	2	66	147-150 (0.3)	$C_{16}H_{28}N_{2}$	0.1
49	$CH_{3}(C_{2}H_{5})N(CH_{2})_{2} \\$	$\mathrm{CH_2NH_2}$		I	В	10	2	67	$141 \cdot 142 \ (0.3)$	$C_{17}H_{24}N_{2}$	ϵ
50	$(C_2H_5)_2N(CH_2)_2$	$\mathrm{CH_{2}NH_{2}}$		I	В	1()	•)	60	$150 \cdot 153 \cdot (0.2)$	$\mathrm{C_{48}H_{26}N_2}$	c
51	d	$\mathrm{CH_2NH_2}$		I	13	20	.)	76	183/184/(0.2)	$\mathrm{C_{51}H_{26}N_{2}}$	1.2
52	ϵ	$\mathrm{CH_2NH_2}$		1	В	40	ŏ	53	180 (0.1)	$\mathrm{C}_{48}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}$	e
53	$({ m CH_{1}})_{2}{ m N}({ m CH_{2}})_{3}$	$\mathrm{CH_{1}NH_{2}}$		I	В	1()	:2	57	$170 - 172 \ (0.2)$	$\mathrm{C}_{17}\mathrm{H}_{24}\mathrm{N}$.	0.3
54	i - C_3H_7	NH_2	$(\mathrm{CH}_1)_2\mathbf{N}(\mathrm{CH}_2)_1$	H	Λ.			83	$137 - 139 \ (0.2)$	$C_{18}\Pi_{26}N_{1}$	C
55	i-C ₃ H ₇	NH_2	d	H	A			26	180-183 (0.5)	$C_{21}H_{30}N_2$	C
56 	<i>i</i> -C ₃ H ₇	NH_{z}	$(CH_1)_2N(CH_2)_5$	H	A			4.5	140 -141 (0.1)	$C_{10}H_{18}N_2$	1.
57	<i>i</i> -C₃H ₇	NH_2	J. C.	П	A			23	190-194 (0.4)	$C_{12}H_{32}N_2$	<i>c</i>
58 50	CH ₃	CH ₂ NH ₂	$(\mathrm{CH}_3)_2\mathrm{N}(\mathrm{CH}_2)_2$	11	В	15	4	78	145 (0,2)	$C_{17}H_{24}N_{2}$	0.4
59 co	C ₂ H ₅	CH ₂ NH ₂	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_2$	11	В	15	2	62	152-155 (0.2)	$C_{18}\Pi_{26}N_2$	0.5
60	<i>n</i> -C ₂ H ₇	CH ₂ NH ₂	$(\mathrm{CH}_3)_2\mathbf{N}(\mathrm{CH}_2)_2$	11 11	13 13	10	2	67 77	157 - 158 (0.1)	$C_{11}H_{28}N_2$	0.7
$\frac{61}{62}$	<i>i</i> -C ₃ H ₇ <i>n</i> -C ₄ H ₉	CH_2NH_2 CH_2NH_2	$(\mathrm{CH}_2)_2\mathbf{N}(\mathrm{CH}_2)_2$	11	В	20 4	4 2	73	148-149 (0.1) 167-169 (0.1)	$rac{ ext{C}_{18} ext{H}_{28} ext{N}_{2}}{ ext{C}_{23} ext{H}_{10} ext{N}_{2}}$	
63	i-C ₄ H ₉	CH ₂ NH ₂	$\frac{(\text{CH}_3)_2 \text{N} (\text{CH}_2)_2}{(\text{CH}_5)_2 \text{N} (\text{CH}_4)_2}$	1 1 I 1	В	20	$\frac{2}{2}$	60 85	157-158 (0.5)	$C_{20}H_{30}N_{1}$	t.
64	sec-C ₄ H ₂	CH_1NH_2	$(CH_8)_2N(CH_2)_2$ $(CH_8)_2N(CH_2)_2$	II	В	15	- 5	50	168-170 (0.4)	$C_{20}\Gamma_{30}N_{2}$	0.4
65	$(CH_3)_2N(CH_2)_2$	CH_2NH_2	$(CH_1)_2N(CH_2)_2$ $(CH_1)_2N(CH_2)_2$	11	В	60	4	68	160-162 (0.1)	$C_{26}H_{34}N_3$	e e
66	i-C ₃ H ₇	CH_2NH_2 CH_2NH_2	$CH_3(C_2H_5)N(CH_2)_2$	11	В	20	4	82	174-176 (0.8)	$C_{26}H_{50}N_{1}$	è
67	sec-C ₄ H ₉	CH_2NH_2	$\mathrm{CH}_{s}(\mathrm{C}_{2}\mathrm{H}_{5})\mathbf{N}(\mathrm{CH}_{2})_{2}$	11	В	20	4	81	176-178 (0.7)	$C_{21}H_{32}N_{4}$	c.
68	${ m CH_3(C_2H_5)N(CH_2)_2}$		$\mathrm{CH_3}(\mathrm{C_1H_3})\mathrm{N}(\mathrm{CH_2})_{\mathbb{S}}$	Н	B	10	-1	58	163-164 (0.1)	$C_{22}H_{35}N_3$	c
69	i - C_aH_7	CH_1NH_2	$(C_2H_5)_2N(CH_2)_2$	11	В	10	-4	67	163-165 (0.5)	$C_{21}H_{32}N_2$	c
70	sec-C ₄ H ₉	CH_2NH_2	$(C_2H_5)_2N(CH_4)_2$	IJ	В	15	б	82	168-170 (0.2)	$C_{22}H_{54}N_{2}$	c
71	$(C_7H_5)_2N(CH_2)_2$	$\mathrm{CH_2NH_2}$	$(C_2H_5)_2N(CH_2)_2$	11	В	10	3	82	180-182 (0.2)	$C_{24}H_{29}N_{2}$	r.
72	i-C ₃ H ₇	$\mathrm{CH_2NH_2}$	$CH_{3}(C_{6}H_{5}CH_{2})N(CH_{2})_{2} \\$	11	В	15	6	72	184-185 (0.1)	$\mathrm{C}_{15}\mathrm{H}_{32}\mathrm{N}_{2}$	r·
73	<i>i</i> -C₃H ₇	$\mathrm{CH_2NH_2}$	$(i-C_3H_7)_2N(CH_2)_2$	ΙI	В	4()	6	68	$180182\ (0.1)$	$C_{2^2}H_{76}N_2$	r
74	$sec ext{-}C_4\Pi_0$	$\mathrm{CH_2NH_2}$	$(i-C_4H_7)_2N(CH_2)_2$	11	В	30	i)	60	176-178 (0.4)	$C_{24}H_{18}N_{2}$	ζ.
7.5	$(i-C_3H_7)_2N(C\Pi_2)_2$	$\mathrm{CH}_{2}\mathbf{NH}_{1}$	$(i\text{-}\mathrm{C}_3\mathrm{H}_7)_2\mathbf{N}(\mathrm{CH}_2)_2$	11	В	10	3	80	$184 - 186 \ (0.5)$	$\mathrm{C}_{28}\mathrm{H}_{47}\mathrm{N}_3$	c
76	$ m CH_3$	$\mathrm{CH_2NH_2}$	y	11	В	10	2	76	168-171 (0.1)	$C_{19}H_{56}N_2$	r'
77	C_2H_5	CH_2NH_2	y ,	11	В	10	2	67	179-181 (0.2)	$C_{20}H_{2}N_{2}$	0.7
78	n-C ₃ H ₇	CH_2NH_2	g	H	В	4	2	71	190-192 (0.2)	$C_{21}H_{10}N_{4}$	f' (1)
79	i-C ₃ H ₇	CH ₂ NH ₂	g	П	В	20	5	SI	188-190 (0.3)	$C_{21}H_{39}N_{2}$	0.3
80	n-C ₄ H ₉	CH ₂ NH ₂	g	1 I 1 I	В	4	3	S5	188-190 (0.4)	$C_{22}\Pi_{12}N_{22}$ $C_{-}\Pi_{-}N_{-}$	1 5
81 82	i-C ₄ H ₉ sec-C ₄ H ₉	$\begin{array}{c} \mathrm{CH_2NH_2} \\ \mathrm{CH_2NH_2} \end{array}$	g g	H	В В	10 40	:3 -4	78 75	182-184 (0.4) 194-196 (0.3)	$rac{ ext{C}_{22} ext{H}_{32} ext{N}_2}{ ext{C}_{02} ext{H}_{30} ext{N}_2}$	$\frac{1.5}{0.7}$
83 83		CH_2NH_2 CH_2NH_2	$\frac{g}{g}$	11	В	10	3	77	216-218 (0.3)	$C_{24}H_{35}N_3$	C C
84	$rac{g}{ ext{CH}_8}$	CH_1NH_2	$\frac{g}{d}$	II	В	15	3	75	170-173 (0.1)	$C_{20}H_{28}N_2$	(),4
85	C_2H_5	CH_2NH_2	 d	H	В	10	2	81	172-174 (0.2)	$C_{21}H_{30}N_2$	1.8
86	n-C ₂ H ₇	CH_2NH_2	d	II	В	20	2	59	170~173 (0.1)	$C_{22}H_{32}N_{z}$	0.6
87	i-C ₃ H ₇	$\mathrm{CH_2NH_2}$	d	П	В	-1()	;;	79	172~175 (0.1)	$C_{22}H_{32}N_{2}$	1.3
88	n - C_4H_9	$\mathrm{CH_2NH_2}$	d	ΙI	В	-1	2	89	192~194 (0.5)	$C_{2i}H_{14}N_2$	<i>(</i> *
89	<i>i</i> -C ₄ H ₉	$\mathrm{CH_{2}NH_{2}}$	d	11	В	10	-4	86	190~192 (0.4)	$C_{23}H_{24}N_2$	1.3
90	$sec ext{-}\mathrm{C}_4\mathrm{H}_9$	$\mathrm{CH_2NH_2}$	d	H	В	30	2	68	196-199 (0.3)	$C_{25}H_{a4}N_2$	1.3
91	d	$\mathrm{CH_2NH_2}$	d	ΙI	В	1.5	2	79	$220223\ (0.1)$	$C_{26}H_{19}N_{1}$	t'
92	$ m CH_3$	$\mathrm{CH_{2}NH_{2}}$	(11	В	15		76	$175 - 176 \ (0.1)$	$\mathrm{C}_{19}\mathrm{H}_{23}\mathrm{N}_2\mathrm{O}$	C
93	C_2H_5	$\mathrm{CH_2NH_2}$	C ³	ΙI	В	15	3	74	195-196 (0.2)	$C_{20}\Pi_{28}N_{2}()$	0.3
94	n - C_3H_7	$\mathrm{CH_2NH_2}$	(11	В	20	2	58	190-191 (0,2)	$C_{21}H_{39}N_2O$	e e
95	<i>i</i> -C ₃ H ₇	$\mathrm{CH_2NH_2}$	C	H	В	105	4	71	193-195 (0.2)	$C_{21}H_{30}N_2O$	0.6
96	n-C ₄ H ₉	CH ₂ NH ₂	e	II	В	10	4	68	200-201 (0.4)	$C_{22}H_{32}N_2()$	· · · · · · · · · · · · · · · · · · ·
97 00	i-C ₄ H ₉	CH_2NH_2	C.	11	В	15 20	3	$\frac{72}{77}$	198-200 (0.5)	$C_{22}H_{32}N_2O$ $C_{-}H_{-}N_{-}O$	$\frac{2.0}{0.0}$
98 99	sec-C ₄ H ₉	$\frac{\mathrm{CH_{2}NH_{2}}}{\mathrm{CH_{2}NH_{2}}}$	ę.	I I J I	В В	$\frac{20}{180}$	- 6 1	77 43	203-204 (0.3) 230-233 (0.1)	${ m C_{22}H_{12}N_{1}O} \ { m C_{24}H_{35}N_{3}O_{2}}$	$\frac{0.9}{c}$
100	CH ₃	CH_2NH_2 CH_4NH_2	$^{c}_{(\mathrm{CH_{3}})_{2}\mathrm{N}(\mathrm{CH_{2}})_{3}}$	H	В	180	-1 -1	45 81	250-255 (0.1) 150-151 (0.1)	$C_{18}H_{26}N_2$	c c
100	i-C ₃ H ₇	CH_2NH_2 CH_2NH_2	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_3$ $(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_1})_3$	H	В	$\frac{10}{20}$	2	66	166-168 (0,2)	$C_{20}H_{30}N_2$	0.4
102	sec-C ₄ H ₉	CH_2NH_2	$(CH_3)_2N(CH_2)_3$ $(CH_3)_2N(CH_2)_3$	II	В	15	4	78	167-169 (0.2)	$C_{21}H_{31}N_{2}$	0.4
103	$(CH_7)_2N(CH_1)_3$	$\mathrm{CH}_2\mathrm{NH}_2$	$(CH_3)_2N(CH_2)_3$	II	В	10	4	60	186-188 (0.3)	$C_{22}\Pi_{35}N_1$	c
104	i-C: H ₇	$\mathrm{CH_2NH_2}$	h	H	В	30	Š	83	180-182 (0.2)	$C_{42}H_{32}N_{2}$	e.
105	800-C4H0	$\mathrm{CH_2NH_2}$	h	П	В	60	4	84	195-196 (0.4)	$C_{25}H_{34}N_{2}$	ℓ'

Table II (Continued)

			Reaction —conditions— LAH: ni- trile. Rel										
			$\binom{n}{n}$ N(CH ₂) _n	Strue-		Time,	mol	Yield,	Bp (mm),		po-		
Compd	R	R_1	'-A'	ture	Method		ratio		$^{\circ}\mathrm{C}$	Formula ^b	tency		
106	i - C_3H_7	$\mathrm{CH_2NH_2}$	f	II	В	40	3	77	$186 - 188 \ (0.2)$	$\mathrm{C}_{23}\mathrm{H}_{34}\mathrm{N}_2$	c		
107	$sec ext{-}\mathrm{C_4H_9}$	$\mathrm{CH_2NH_2}$	f	II	В	40	9	73	193-195 (0.2)	$\mathrm{C}_{24}\mathrm{H}_{36}\mathrm{N}_{2}$	c		
108	i - C_3H_7	$\mathrm{CH_{2}NH_{2}}$	i	II	В	20	4	71	198-200 (0.1)	${ m C_{22}H_{32}N_{2}O}$	c		
109	$sec ext{-}\mathrm{C_4H_9}$	$\mathrm{CH_{2}NH_{2}}$	i	II	$^{\mathrm{B}}$	30	5	87	190-192 (0.2)	${ m C}_{25}{ m H}_{34}{ m N}_2{ m O}$	c		
110	i - C_3H_7	$\mathrm{CH_2NH_2}$	$({ m CH_3})_2{ m N}({ m CH_2})_4$	II	В	10	2	71	$156-158 \ (0.1)$	$C_{21}H_{32}N_2$	1.0		
111	$sec ext{-}\mathrm{C_4H_F}$	$\mathrm{CH_{2}NH_{2}}$	$(CH_3)_2N(CH_2)_4$	II	В	15	4	86	170-172(0.1)	$\mathrm{C}_{22}\mathrm{H}_{34}\mathrm{N}_{2}$	0.7		
112	i - C_3H_7	$\mathrm{CH_2NH_2}$	j	II	В	40	3	71	195-196 (0.1)	$\mathrm{C}_{23}\mathrm{H}_{34}\mathrm{N}_{2}$	c		
113	$sec ext{-}\mathrm{C_4H_9}$	$\mathrm{CH_{2}NH_{2}}$	j	II	В	40	3	7 5	184-186 (0.1)	$\mathrm{C}_{24}\mathrm{H}_{56}\mathrm{N}_2$	c		
114	<i>i</i> -C₅H ₇	$\mathrm{CH_2NH_2}$	k	II	В	40	3	80	189-191 (0.2)	$\mathrm{C}_{24}\mathrm{H}_{36}\mathrm{N}_2$	c		
115	$sec ext{-}\mathrm{C_4H_9}$	$\mathrm{CH_2NH_2}$	k	II	\mathbf{B}	40	3	7 5	195 - 197(0.2)	$\mathrm{C}_{25}\mathrm{H}_{38}\mathrm{N}_2$	c		
116	i-C ₃ H ₇	CH_2NH_2	l	II	В	40	5	78	$220 - 223 \ (0.4)$	$C_{23}H_{34}N_2O$	c		
117	$sec ext{-}\mathrm{C_4H_9}$	$\mathrm{CH_{2}NH_{2}}$	1	II	В	15	3	92	210-212 (0.3)	$C_{24}H_{36}N_2O$	c		
118	i - C_3H_7	CH_2NH_2	$(CH_3)_2N(CH_2)_2$	III	В	15	4	56	154-156 (0.1)	$C_{10}H_{28}N_2$	1.8		
119	8ec-C ₄ H ₉	$\mathrm{CH_2NH_2}$	$(CH_3)_2N(CH_2)_2$	III	В	4	5	70	$162 - 164 \ (0.2)$	${ m C}_{20}{ m H}_{20}{ m N}_2$	2.3		
120	<i>i</i> -C₃H₁	CH_2NH_2	e	III	В	4	5	64	205-206 (0.2)	$C_{21}H_{30}N_{2}O$	1.6		
121	$sec ext{-}\mathrm{C_4H_9}$	$\mathrm{CH_2NH_2}$	e	III	В	4	5	77	207-208 (0.1)	$C_{22}H_{32}N_2O$	2.0		
122	<i>i</i> -C ₃ H ₇	$\mathrm{CH_2NH_2}$	$({ m CH_3})_2{ m N}({ m CH_2})_2$	IV	В	3	2	69	154-156 (0.1)	$\mathrm{C}_{20}\mathrm{H}_{30}\mathrm{N}_{2}$	0.7		
123	$sec ext{-}\mathrm{C_4H_0}$	CH_2NH_2	$(CH_3)_2N(CH_2)_2$	IV	В	15	2	83	162-164 (0.1)	$C_{21}H_{32}N_2$	c		
124	i - C_8H_7	$\mathrm{CH_2NH_2}$	d	IV	В	15	2	87	184-183 (0.1)	$\mathrm{C}_{23}\mathrm{H}_{\mathfrak{s}1}\mathrm{N}_{2}$	0.9		
125	sec -C ₄ H $_9$	CH_2NH_2	d	IV	В	15	4	76	202-204 (0.5)	$\mathrm{C}_{54}\mathrm{H}_{36}\mathrm{N}_{5}$	c		
1.5 -Dimorpholino- 3 - $(\alpha$ -naphthyl)pentane 1.8										1.8			
Quini	Quinidine 1.0												

^a Distilled product. ^b All compounds were analyzed for C, H, N and the analytical results were within ±0.4% of the theoretical values. * Inactive or cardiotoxic compound. * 2-Piperidinoethyl. * 2-Morpholinoethyl. * 3-Piperidinopropyl. * 2-(1-Pyrrolidinyl)ethyl. *3-(1-Pyrrolidinyl)propyl. *3-Morpholinopropyl. *4-(1-Pyrrolidinyl) butyl. *4-Piperidinobutyl. *4-Morpholinobutyl.

residue which, on trituration with 1:1 Et₂O-petroleum ether (bp $40-70^{\circ}$) gave a colorless solid (6.9 g, 64° %), mp $79-81^{\circ}$. Anal. (C₁₆H₂₀N₂O) C, H, N.

Naphthylalkylamines with $R_1 = NH_2$ or CH_2NH_2 are listed in Table II, and their preparation is illustrated by the following methods.

Method A. 1-Dimethylamino-3-amino-3- $(\alpha$ -naphthyl)-4methylpentane (54).— α -Isopropyl- α -(2-dimethylaminoethyl)-1-naphthylacetamide (17.5 g, 0.059 mol) was added with stirring to a solution of Na (2.7 g, 1.17 g-atom) in anhydrous MeOH (100 ml), and then Br₂ (9.38 g, 0.059 mol) was rapidly dropped into the solution. After 6 hr stirring at room temperature, the mixture was allowed to stand overnight, and the solvent was removed under reduced pressure. The residue was dissolved in Et_2O , washed (H_2O) , and dried (Na_2SO_4) and the solution was evaporated to dryness. The new residue was dissolved in 95%EtOH (130 ml), 50% KOH (130 ml) was added to it, and the mixture was refluxed for 6 hr, poured into cold H₂O, and extracted (Et₂O). The extract was washed (H₂O) and dried (Na₂SO₄), the solvent was evaporated, and the residue was distilled to give a viscous and colorless oil, bp 137-139° (0.2 mm).

Method B. N-[3-Aminomethyl-3-(α -naphthyl)heptyl]piperidine (88).—A solution of α -n-butyl- α -(2-piperidinoethyl)-1-naphthylacetonitrile (50 g, 0.15 mol) in dry Et₂O (100 ml) was dropped at room temperature for 2 hr into a stirred suspension of LAH (11.35 g, 0.3 mol) in dry Et₂O (900 ml). The mixture was refluxed for 4 hr with stirring, cooled, and cautiously decomposed with H₂O (100 ml). The organic layer was separated, washed (H₂O), and dried (Na₂SO₄). The solvent was evaporated and the residue was distilled to give a viscous and colorless oil, bp $192-194^{\circ}$ (0.5 mm).

Acknowledgments.—The authors wish to thank Dr. R. Perego for performing the microanalyses, Mr. G. Bietti and Mr. E. Bellora for assistance in preparing the compounds, and Mr. G. Bertuzzi and Mr. P. Duranti for carrying out the antiarrhythmic tests.