PRODUCTS FROM CONDENSATION OF 1-(3(4)-ACETYLPHENYL)-4-CARBOXY-2-PYRROLIDINONES WITH *o*-PHENYLENE-DIAMINE AND THEIR PROPERTIES

A. Voskiene and V. Mickevicius

2-Substituted benzimidazoles were synthesized by the reaction of 1-(3(4)-acetylphenyl)-4-carboxy-2-pyrrolidinones with o-phenylenediamine. Their reactions with sodium hydroxide and hydrazine and some of their chemical characteristics were investigated.

Keywords: 4-(arylamino)-3-(1H-benzimidazol-2-yl)butyric acids, 1-aryl-4-(1H-benzimidazol-2-yl)-2-pyrrolidinones, 1-aryl-4-carboxy-2-pyrrolidinones, hydrazones, o-phenylenediamine, condensation.

Derivatives of benzimidazole have a broad spectrum of biological activity [1-5]. The synthesis and investigation of compounds containing this fragment therefore represent a vital task. One of the most widely used methods for the synthesis of 2-substituted benzimidazoles is the Phillips method [6] – heating carboxylic acids or their derivatives with *o*-phenylenediamines in a 4 M solution of hydrochloric acid.

While continuing investigations into the reactivity of 1-aryl-substituted 4-carboxy-2-pyrrolidinones we realized the condensation of 1-(3(4)-acetylphenyl)-4-carboxy-2-pyrrolidinones 1a,b, synthesized by the method in [7], with *o*-phenylenediamine under the conditions of the Phillips method. The reaction mixture was boiled, and the products in the form of 2-substituted benzimidazoles 2a,b were isolated by making the reaction mixture alkaline to pH 10 with a concentrated solution of ammonia.

It is known that the 2-pyrrolidinone ring is stable to the action of acids but can undergo decyclization in an alkaline medium. We established that when compounds 2a,b were boiled in a 20% solution of sodium hydroxide the 2-pyrrolidinone ring broke down into the corresponding sodium salts of N-substituted γ -amino acids 3a,b). The free γ -amino acids 4a,b were isolated by acidifying the aqueous solutions of the sodium salts to pH 6 with acetic acid.

During comparison of the data from the ¹H NMR spectra of compounds 2a,b and 4a,b it is seen that the signals for the protons of the 2-pyrrolidinone ring and for the compounds with an open chain are similar and only differ in their shifts. In the compounds with an open chain 4a,b the signals of the substituted amino group are also observed at 6.14 and 6.82 respectively. In the ¹³C NMR spectra the line at 173 ppm indicates that compounds 4a,b contain noncyclic bonds, while the chemical shifts of the CH₂CHCH₂ and CH₂CO carbon atoms are fairly close – the difference is only ~0.4 ppm, while the difference in the cyclic compounds 2a,b amounts to ~7 ppm.

0009-3122/07/4311-1379©2007 Springer Science+Business Media, Inc.

Kaunas University of Technology, Kaunas LT-50254, Lithuania; e-mail: Vytautas.Mickevicius@ktu.lt. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp.1625-1630, November, 2007. Original article submitted July 4, 2007.

During study of the reaction of compound **2b** with hydrazine hydrate it was established that compound **5** is formed when the reaction is carried out in methanol at the boiling point of the mixture. Increase of the temperature and also increase of the reaction time lead to the formation of a dimeric structure. Thus, by conducting the reaction in boiling dioxane for 22 h, we synthesized a compound of the azine type **6**. In order to increase the solubility and to confirm the structure the compound was alkylated with iodoethane. In addition to the signals of protons characteristic of compound **6**, the ¹H NMR spectrum of the alkyl derivative **7** contains signals for the protons of the N–CH₂CH₃ groups at 1.37 and of the N–CH₂CH₃ groups in the range of 4.15-4.40 ppm, which overlap with the signals for the protons of the protons of

During the condensation of compound **5** with 9-ethyl-3-formyl-carbazole and *para*-diethyl-aminobenzaldehyde the corresponding hydrazones **8** and **9** were obtained. Their structure was confirmed by elemental analysis, ¹H and ¹³C NMR spectra, mass spectrometry, and IR spectra.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were obtained on a Varian Unity Inova spectrometer (300 and 75 MHz respectively) in DMSO-d₆ with TMS as internal standard. The IR spectra were recorded on a Perkin–Elmer Spectrum Bx FT IR instrument in tablets with potassium bromide. The mass spectra were obtained on a Waters

ZQ 2000 spectrometer with electrospray ionization (ESI, 20 V, compounds 2a,b and 4a,b) and chemical ionization at atmospheric pressure (APCI, compounds 5, 6, 8, and 9). The reaction and the purity of the products were monitored by TLC (on Alugram Sil G/UV-254 plates) with development in UV light ($\lambda = 254$ and 366 nm).

1-(3(4)-Acetylphenyl)-4-(1H-benzimidazol-2-yl)-2-pyrrolidinones 2a,b (General Method). A mixture of the respective 2-pyrrolidinone 1a, b (2.47 g, 10 mmol) and *o*-phenylenediamine (2.16 g, 20 mmol) was boiled for 5-6 h in a 4 M solution of hydrochloric acid (20 ml), cooled, and diluted to pH ca 10 with a 24-26% aqueous solution of ammonia. The aqueous layer was decanted, and the obtained resinous mass was inundated with 5% sodium hydroxide solution (20 ml) and heated to boiling. The crystals that separated after the mixture had cooled were filtered off, washed with water, and dried.

1-(3-Acetylphenyl)-4-(1H-benzimidazol-2-yl)-2-pyrrolidinone (2a). Yield 38%; mp 103-104°C (1,4-dioxane). IR spectrum, v, cm⁻¹: 1707, 1678 (CO); 3089, 3051 (NH). ¹H NMR spectrum, δ , ppm: 2.59 (3H, s, CH₃CO); 2.98-3.13 (2H, m, CH₂CO); 3.98-4.08 (1H, m, CH₂CHCH₂); 4.26-4.39 (2H, m, CH₂N); 7.15-8.22 (8H, m, H arom.); 12.52 (1H, s, NH). ¹³C NMR spectrum, δ , ppm: 26.79 (CH₃); 30.61 (CH₂CHCH₂); 37.44 (<u>C</u>H₂CO); 52.04 (CH₂N); 111.06, 118.47, 123.87, 123.94, 129.14, 134.46, 137.18, 139.51 (C₆H₅); 154.84 [C(N)NH]; 172.34 (NCO); 197.65 (CO). Mass spectrum, *m/z* (*I*, %): 320 [M + H]⁺ (100). Found, %: C 71.62; H 5.72; N 12.95. C₁₉H₁₇N₃O₂. Calculated, %: C 71.46; H 5.37; N 13.16.

1-(Acetylphenyl)-4-(1H-benzimidazol-2-yl)-2-pyrrolidinone (2b). Yield 40%; mp 222-223°C (1,4-dioxane). IR spectrum, v, cm⁻¹: 1699, 1682 (CO); 3053, 3007 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.55 (3H, s, CH₃CO); 2.98-3.15 (2H, m, CH₂CO); 3.98-4.09 (1H, m, CH₂C<u>H</u>CH₂); 4.25-4.38 (2H, m, CH₂N); 7.13-8.01 (8H, m, H arom.); 12.51 (1H, s, NH). ¹³C NMR spectrum, δ , ppm: 26.49 (CH₃); 30.48 (CH₂<u>H</u>CH₂); 37.65 (<u>C</u>H₂CO); 51.95 (CH₂N); 111.05, 118.39, 121.16, 121.99, 129.18, 132.01, 134.45, 142.73, 143.19 (C₆H₅); 154.77 [C(N)NH]; 172.77 (NCO); 196.63 (CO). Mass spectrum, *m/z* (*I*, %): 320 [M + H]⁺ (100). Found, %: C 71.37; H 5.30; N 13.02. C₁₉H₁₇N₃O₂. Calculated, %: C 71.46; H 5.37; N 13.16.

4-[3(4)-Acetylphenylamino]-3-(1H-benzimidazol-2-yl)butyric Acids 4a,b (General Method). A mixture of the respective compound **2a,b** (0.32 g, 1 mmol) and 20% sodium hydroxide solution (8 ml) was boiled for 3 h, diluted with water (15 ml), cooled, and filtered. The filtrate was acidified to pH 6 with acetic acid. The crystals of compounds **4a,b** that formed were purified by dissolving them in a 5% solution of sodium hydroxide, filtration, and acidification to pH 6 with acetic acid. The crystals that separated were filtered off, washed with water, and dried.

4-(3-Acetylphenylamino)-3-(1H-benzimidazol-2-yl)butyric Acid (4a). Yield 81%; mp 172-173°C. IR spectrum, v, cm⁻¹: 1681, 1603 (CO); 3372, 3262, 3057 (OH + NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.40 (3H, s, CH₃CO); 2.79-2.96 (2H, m, CH₂CO); 3.34-3.68 (3H, m, CH₂CHCH₂ + CH₂N); 6.14 (1H, t, *J* = 5.5, NH); 6.78-7.60 (8H, m, H arom.); 12.28 (1H, bs, COOH). ¹³C NMR spectrum, δ , ppm: 26.73 (CH₃); 35.43 (CH₂<u>C</u>HCH₂); 35.80 (<u>C</u>H₂CO); 46.53 (<u>C</u>H₂NH); 111.13, 115.86, 116.48, 121.18, 129.17, 137.67, 148.56 (C₆H₅); 155.81 (C=N); 173.10 (COOH); 198.29 (CO). Mass spectrum, *m/z* (*I*, %): 338 [M + H]⁺ (100). Found, %: C 67.29; H 5.34; N 12.23. C₁₉H₁₉N₃0₃. Calculated, %: C 67.64; H 5.68; N 12.46-212°C. IR spectrum, v, cm⁻¹: 1656, 1601 (CO); 3265, 3152, 3057 (OH + NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.40 (3H, s, CH₃CO); 2.76-2.95 (2H, m, CH₂CO); 3.36-3.45 (1H, m, CH₂CHCH₂); 3.51-3.67 (2H, m, CH₂N); 6.82 (1H, t, *J* = 5.8, NH); 6.67-7.73 (8H, m, H arom.); 12.37 (1H, bs, COOH). ¹³C NMR spectrum, δ , ppm: 25.89 (CH₃); 35.36 (CH₂<u>C</u>HCH₂; 35.70 (<u>C</u>H₂CO); 46.04 (<u>C</u>H₂NH); 110.88, 121.22, 125.03, 130.42, 152.47, 155.54 (C=N); 172.99 (COOH); 195.01 (CO). Mass spectrum, *m/z* (*I*, %): 338 [M + H]⁺ (100). Found, %: C 67.29; H 5.80; N 12.19. C₁₉H₁₉N₃0₃. Calculated, %: C 67.64; H 5.68; N 12.02, 152.47, 155.54 (C=N); 172.99 (COOH); 195.01 (CO). Mass spectrum, *m/z* (*I*, %): 338 [M + H]⁺ (100). Found, %: C 67.29; H 5.80; N 12.19. C₁₉H₁₉N₃0₃. Calculated, %: C 67.64; H 5.68; N 12.46.

4-(4-Acetylphenylamino)-3-(1H-benzimidazol-2-yl)butyric Acid (4b). Yield 88%; mp 211-212°C. IR spectrum, v, cm⁻¹: 1656, 1601 (CO); 3265, 3152, 3057 (OH + NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.40 (3H, s, CH₃CO); 2.76-2.95 (2H, m, CH₂CO); 3.36-3.45 (1H, m, CH₂C<u>H</u>CH₂); 3.51-3.67 (2H, m, CH₂N); 6.82 (1H, t, *J* = 5.8, NH); 6.67-7.73 (8H, m, H arom.); 12.37 (1H, bs, COOH). ¹³C NMR spectrum, δ , ppm: 25.89 (CH₃); 35.36 (CH₂<u>C</u>HCH₂; 35.70 (<u>C</u>H₂CO); 46.04 (<u>C</u>H₂NH); 110.88, 121.22, 125.03, 130.42, 152.47, 155.54 (C=N); 172.99 (COOH); 195.01 (CO). Mass spectrum, *m/z* (*I*, %): 338 [M + H]⁺ (100). Found, %: C 67.29; H 5.80; N 12.19. C₁₉H₁₉N₃₀. Calculated, %: C 67.64; H 5.68; N 12.46.

4-(1H-Benzimidazol-2-yl)-1-[4-(1-hydrazonoethyl)phenyl]-2-pyrrolidinone (5). A mixture of compound **2b** (2.24 g, 7 mmol), hydrazine monohydrate (1.05 g, 21 mmol), and methanol (10 ml) was boiled for 2 h. The crystals that separated on cooling were filtered off and washed with 2-propanol and ether. Yield 41%; mp >350°C (decomp.) (1,4-dioxane). IR spectrum, v, cm⁻¹: 1703 (CO); 3387, 3212, 3086, 3052 (NH + NH₂). ¹H NMR spectrum, δ, ppm (*J*, Hz): 2.01 (3H, s, (C<u>H</u>₃)C=NNH₂); 2.94-3.10 (2H, m, CH₂CO); 3.93-4.06 (1H, m, CH₂C<u>H</u>CH₂); 4.20-4.32 (2H, m, CH₂N); 6.35 (2H, s, NH₂); 7.11-7.68 (8H, m, H arom.); 12.49 (1H, s, NH). ¹³C NMR spectrum, δ, ppm: 11.24 (CH₃); 30.61 (CH₂CHCH₂); 37.55 (<u>C</u>H₂CO); 52.04 (CH₂N); 111.03, 118.46, 118.86, 121.14, 121.97, 124.93, 135.45, 138.12, 141.61; 142.74 (C=N); 154.96 (N=CNH); 171.90 (NCO). Mass spectrum, *m/z* (*I*, %): 334 [M + H]⁺ (100). Found, %: C 68.07; H 5.59; N 20.78. C₁₉H₁₉N₈O. Calculated, %: C 68.45; H 5.74; N 21.01.

4-(1H-benzimidazol-2-yl)-1-(4-{1-[(1-{4-[4-(1H-benzimidazol-2-yl)-2-oxopyrrolidin-1-yl]phenyl}-ethylidene)hydrazono]ethyl}phenyl)-2-pyrrolidinone (6). A mixture of compound **2b** (21.8 g, 66 mmol), hexane monohydrate (6.51 g, 130 mmol), and 1,4-dioxane (100 ml) was boiled for 22 h. The crystals that separated on cooling were filtered off and washed with 2-propanol and with ether. Yield 51%; mp >360°C (decomp.) (1:1 mixture of 1,4-dioxane and DMF). IR spectrum, v, cm⁻¹: 1697 (CO); 3370, 3054 (NH). ¹H NMR spectrum, δ, ppm (*J*, Hz): 2.30 (6H, s, 2CH₃); 2.99-3.15 (4H, m, 2CH₂CO); 3.01-4.12 (2H, m, 2CH₂CH₂CH₂); 4.24-4.39 (4H, m, 2CH₂N); 7.17-7.97 (18H, m, 2NH + H arom.). ¹³C NMR spectrum, δ, ppm: 14.48 (CH₃); 30.46 (CH₂<u>C</u>HCH₂); 37.52 (<u>C</u>H₂CO); 51.93 (CH₂N); 114.69, 118.79, 121.76, 125.01, 126.96, 133.29, 140.41 (C₆H₅); 154.76 (N=CNH); 157.26 (C=N); 172.17 (CH₂<u>C</u>O). Mass spectrum, *m/z* (*I*, %): 635 [M + H]⁺ (100). Found, %: C 71.47; H 5.59; N 17.78. C₃₈H₃₄O₂. Calculated, %: C 71.91; H 5.40; N 17.65.

4-(1-Ethyl-1H-benzimidazol-2-yl)-1-(4-{1-[(1-{4-[4-(1-ethyl-1H-benzimidazol-2-yl)-2-oxopyrrolidin-1-yl]phenyl}ethylidene)hydrazono]ethyl}phenyl)-2-pyrrolidinone (7). A mixture of compound **6** (1.9 g, 3 mmol), iodoethane (50 ml), potassium hydroxide (2.36 g, 42 mmol), potassium carbonate (0.97 g, 7 mmol), and tetrabutylammonium iodide (ca 1 g) was boiled for 10 h. The liquid fractions were distilled under vacuum on a rotary evaporator, and the residue was inundated with water (10 ml) and stirred. The crystals were filtered off, washed with water, and dried. Yield 83%; mp 242-244°C (1,4-dioxane). ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.37 (6H, t, J = 7.2, 2CH₂CH₃; 2.30 (6H, s, 2CH₃C); 2.94-3.17 (4H, m, 2CH₂CO); 4.15-4.40 (10H, m, 2CH₂CH_CH₂ + 2CH₂N + 2CH₂CH₃); 7.16-7.98 (16H, m, H arom.). Found, %: C 72.87; H 5.86; N 16.15. C₄₂H₄₂N₈0₂. Calculated, %: C 73.02; H 6.13; N 16.22.

4-(1H-Benzimidazol-2-yl)-1-(4-{1-[(9-ethyl-9H-carbazol-3-ylmethylene)hydrazono]ethyl}phenyl)-2pyrrolidinone (8). A mixture of compound **6** (3.0 g, 9 mmol), 9-ethyl-3-formyl-carbazole (4.0 g, 18 mmol), and 1,4-dioxane (100 ml) was boiled for 4 h. The crystals that formed on cooling were filtered off, washed with 2-propanol, and dried. Yield 52%; mp 195-197°C (1:1 mixture of 1,4-dioxane and 2-propanol). IR spectrum, v, cm⁻¹: 1697 (CO); 3051 (N=CH); 3386 (NH). ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.33 (3H, t, *J* = 7.2, CH₂CH₃); 2.56 (3H, s, CH₃C); 2.99-3.15 (2H, m, CH₂CO); 4.00-4.10 (1H, m, CH₂CH₂CH₂); 4.26-4.39 (2H, m, CH₂N); 4.45-4.52 (2H, m, CH₂CH₃); 7.14-8.73 (16H, m, N=CH + H arom.); 12.53 (1H, s, NH). ¹³C NMR spectrum, δ, ppm: 13.70 (CH₃); 14.48 (CH₃); 30.54 (CH₂CHCH₂); 37.12 (CH₂); 37.61 (CH₂CO); 51.97 (CH₂N); 109.51, 118.66, 119.46, 120.57, 121.49, 121.60, 125.39, 125.64, 126.24, 127.16, 133.12, 139.94, 139.99, 140.69; 141.11, 154.86 (C₆H₅ + N=CH); 159.27 (C=N); 162.63 (N=CNH); 172.32 (NCO). Mass spectrum, *m*/*z* (*I*, %): 561 [M + Na]⁺ (100). Found, %: C 75.27; H 5.69; N 15.84. C₃₄H₃₀N₆O. Calculated, %: C 75.81; H 5.61; N 15.60.

4-(1H-Benzimidazol-2-yl)-1-(4-{1-[(4-diethylaminobenzylidene)hydrazono]ethyl}phenyl)-2-pyrrolininone (9). A mixture of compound **6** (1.0 g, 3 mmol), of *para*-diethylaminobenzaldehyde (0.64 g, 3.6 mmol), and 1,4-dioxane (10 ml) was boiled for 5 h. The crystals that formed on cooling were filtered off, washed with 2-propanol and with ether, and dried. Yield 66%; mp 244-245°C (1,4-dioxane). IR spectrum, v, cm⁻¹: 1672 (CO); 3055, 3012 (N=CH); 3391, 3182, 3146 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.12 (6H, t, *J* = 7.2, 2CH₂C<u>H₃</u>); 2.48 (3H, s, CH₃C); 2.97-3.13 (2H, m, CH₂CO); 3.32-3.43 (4H, m, 2CH₂CH₃); 3.98-4.09 (1H, m, CH₂C<u>H</u>CH₂); 4.25-4.37 (2H, m, CH₂N); 6.71-8.40 (13H, m, N=CH + H arom.); 12.49 (1H, s, NH). ¹³C NMR spectrum, δ , ppm: 12.38 (2CH₃); 14.33 (CH₃); 30.54 (CH₂<u>C</u>HCH₂); 37.61 (<u>C</u>H₂CO); 43.74 (2CH₂); 51.99 (CH₂N); 110.92, 111.02, 118.46, 118.65, 120.75, 121.13, 121.97, 126.98, 130.07, 133.35, 134.50, 140.47, 142.73, 149.43, 152.36, 154.87 (C₆H₅ + N=CH); 159.02 (C=N); 161.66 (N=CNH); 172.27 (NCO). Mass spectrum, *m/z* (*I*, %): 515 [M + Na]⁺ (100). Found, %: C 72.73; H 6.48; N 16.72. C₃₀H₃₂N₆O. Calculated, %: C 73.14; H 6.55; N 17.06.

REFERENCES

- 1. M. D. Mashkovsky, I. N. Yakhontov, M. E. Kaminka, E. E. Mikhlina, M. D. Nair, K. Nagarajan Satyavan Sharma, Syed Abuzar J. Symoens, G. Cauwenbergh, and I. Zirngibl, *Progress in Drug Research*, **27**, 85 (1983).
- 2. A. Rao, A. Chimirri, S. Ferro, A. M. Monforte, P. Monforte, and M. Zappala, ARKIVOC, v, 147 (2004).
- 3. D. Yang, D. Fokas, J. Li, L. Yu, and C. M. Baldino, *Synthesis*, 47 (2005).
- 4. J. V. Starikova, G. V. Dolgushin, L. I. Larina, T. N. Komarova, and V. A. Lopyrev, *ARKIVOC*, xiii, 119 (2003).
- 5. J. Hazelton, B. Iddon, A. D. Redhouse, and H. Suschitzky, *Tetrahedron*, **51**, 5597 (1995).
- 6. M. A. Phillips, J. Chem. Soc., 1143 (1931).
- 7. P. L. Paytash, E. Sparrow, and J. C Gathe, J. Am. Chem. Soc., 72, 1415 (1950).