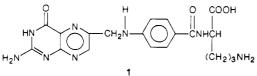
Inhibition of Mammalian Folylpolyglutamate Synthetase and Human Dihydrofolate Reductase by 5,8-Dideaza Analogues of Folic Acid and Aminopterin Bearing a Terminal L-Ornithine


Shirish A. Patil,^{†,‡} Barry Shane,[§] James H. Freisheim,^{II} Shyam K. Singh,[†] and John B. Hynes^{*,†}

Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, Department of Nutritional Sciences, University of California, Berkeley, California 94720, and Department of Biochemistry, Medical College of Ohio, Toledo, Ohio 43699. Received September 16, 1988

Six new 5,8-dideaza analogues of folic acid and aminopterin containing a terminal L-ornithine residue were prepared by using multistep synthetic sequences. Each was evaluated as an inhibitor of hog liver folylpolyglutamate synthetase and human dihydrofolate reductase. Structural modifications at positions 2, 4, 5, and 10 were included to help define structure-activity relationships for compounds of this type. The compound N^{α} -(4-amino-4-deoxy-5-chloro-5,8dideazapteroyl)-L-ornithine (**3f**) was identified as the most potent inhibitor of mammalian folylpolyglutamate synthetase reported thus far ($K_i \simeq 2$ nM). Its 4-oxy counterpart, N^{α} -(5-chloro-5,8-dideazapteroyl)-L-ornithine, was only 5-fold less inhibitory than **3f** toward folylpolyglutamate synthetase but was found to be a much weaker inhibitor of dihydrofolate reductase than **3f**.

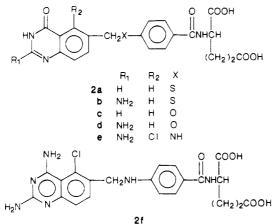
The enzyme folylpolyglutamate synthetase (FPGS) is responsible for the intracellular conversion of naturally occurring folates to poly- γ -L-glutamyl derivatives. Numerous studies have shown that the formation of these metabolites is essential for the cellular retention of folates in mammalian cells and results in the generation of more efficient substrates for many of the enzymes of one-carbon metabolism.^{1–3} The intracellular synthesis of polyglutamates of classical folate antagonists such as methotrexate (MTX) has been shown to be an important determinant of cytotoxicity, since longer chain polyglutamates of MTX are selectively retained by tumor cells in the absence of extracellular drug.⁴⁻⁷ Recently, impaired glutamylation of MTX has been identified as a primary mechanism of resistance to MTX in a CCRF-CEM human leukemia subline in vitro.⁸ Earlier, several mammalian cell lines auxotrophic for the end products of folate metabolism (methionine, glycine, thymidine, and a purine) were shown to be devoid of FPGS activity.9-11 These results suggest that a potent and selective inhibitor of FPGS could become a useful new chemotherapeutic agent. This paper describes our initial efforts directed toward achieving this objective.

Numerous analogues of folic acid, MTX, and aminopterin modified in the amino acid region have been prepared as potential inhibitors of FPGS. However, all of the potent inhibitors reported thus far having K_i values lower than the K_m values for reduced folate substrates contain a terminal L-ornithine residue. Initially, pteroyl-Lornithine (1) was found to be an effective inhibitor of hog

liver FPGS ($K_i = 5.9 \ \mu$ M), while reduction to its 5,6,7,8tetrahydro derivative caused a 30-fold reduction in the K_i value.^{12,13} Subsequent studies showed that the MTX analogue, in which an L-ornithine replaced the L-glutamate residue, had a K_i value in the same range as 1 against FPGS from K562, CCRF-CEM cells, and rat liver.^{14,15} The aminopterin derivative containing an L-ornithine was found to be considerably more potent toward FPGS, having K_i values around 0.2 μ M toward both the human and murine liver enzymes.^{15,16}

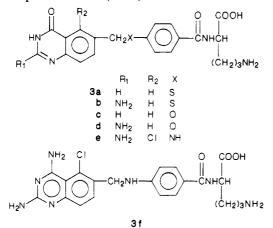
Recently, we reported the substrate activities of a wide variety of 5,8-dideaza analogues of folic acid and aminopterin using homogeneous hog liver FPGS.^{17,18} Several of these compounds were highly effective substrates, having activities approaching those of the best reduced folates. The compound 5-chloro-5,8-dideazaaminopterin

- McGuire, J. J.; Coward, J. K. In Folates and Pterins; Blakley, R. L., Benkovic, S. J., Eds.; Wiley Interscience: New York, 1984; Vol. 1, pp 135-190.
- (2) Cook, J. D.; Cichowicz, D. J.; George, S.; Lawler, A.; Shane, B. Biochemistry 1987, 26, 530.
- (3) Shane, B.; Stokstad, E. L. R. Annu. Rev. Nutr. 1985, 5, 115.
 (4) Balinska, M.; Galivan, J.; Coward, J. K. Cancer Res. 1981, 41,
- 2751.
- (5) Fry, D. W.; Yalowich, J. C.; Goldman, I. D. J. Biol. Chem. 1982, 257, 1890.
- (6) Samuels, L. L.; Moccio, D. M.; Sirotnak, F. M. Cancer Res. 1985, 45, 1488.
- (7) Curt, G. A.; Jolivet, J.; Carney, D. N.; Bailey, B. D.; Drake, J. C.; Clendeninn, N. J.; Chabner, B. A. J. Clin. Invest. 1985, 76, 1323.
- (8) Wright, J. E.; Rosowsky, A.; Waxman, D. J.; Trites, D.; Cucchi, C. A.; Flatow, J.; Frei, E., III Biochem. Pharmacol. 1987, 36, 2209.
- McBurney, M. W.; Whitmore, G. F. Cell (Cambridge, Mass.) 1974, 2, 173.
- (10) Taylor, R. T.; Hanna, M. L. Arch. Biochem. Biophys. 1977, 181, 331.
- (11) Moran, R. G. In Folyl and Antifolyl Polyglutamates; Goldman, I. D., Chabner, B. A., Bertino, J. R., Eds.; Plenum: New York, 1983; pp 327-339.
- (12) Cichowicz, D. J.; Cook, J. D.; George, S.; Shane, B. In Proceedings of the Second Workshop on Folyl and Antifolyl-polyglutamates; Goldman, I. D., Ed.; Praeger: New York, 1985; pp 7-13.
- (13) George, S.; Cichowicz, D. J.; Shane, B. Biochemistry 1987, 26, 522.
- (14) McGuire, J. J.; Hsieh, P.; Franco, C. T.; Piper, J. R. Biochem. Pharmacol. 1986, 35, 2607.
- (15) Rosowsky, A.; Freisheim, J. H.; Moran, R. G.; Solan, V. C.; Bader, H.; Wright, J. E.; Radike-Smith, M. J. Med. Chem. 1986, 29, 655.
- (16) Clarke, L.; Rosowsky, A.; Waxman, D. J. Mol. Pharmacol. 1987, 31, 122.
- (17) Hynes, J. B.; Cichowicz, D. J.; Shane, B. In Chemistry and Biology of Pteridines; Cooper, B. A., Whitehead, V. M., Eds.; deGruyter: Berlin, 1986; pp 997-1000.
- (18) Cichowicz, D. J.; Hynes, J. B.; Shane, B. Biochim. Biophys. Acta 1988, 957, 363.


[†]Medical University of South Carolina.

[‡]Present address: Department of Oncology, Montefiore Medical Center, Bronx, NY 10467.

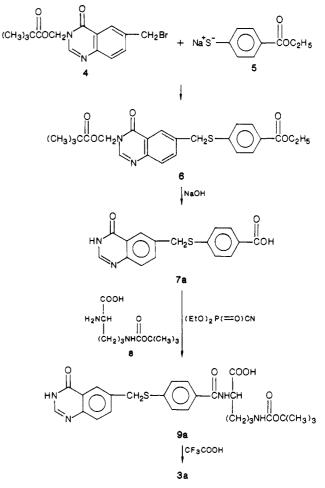
[§] University of California, Berkeley.


Medical College of Ohio.

(2f) was reported to be the most effective substrate iden-

tified thus far. Analogues where S or O replaced N¹⁰, 2b and -d, were less efficient than their nitrogen counterparts but were superior to MTX.^{17,18} The 2-desamino modifications 2a and -c were recently prepared and found to be 3- to 5-fold more cytotoxic toward L1210 leukemia cells in vitro than their 2-NH₂-containing counterparts 2b and -d.¹⁹ The enhancement in cytotoxicity caused by the removal of the 2-NH₂ group in structurally related compounds was attributed to enhanced cellular uptake.²⁰

It was of interest, therefore, to prepare the L-ornithine counterparts of 2a-d (3a-d) for evaluation as inhibitors

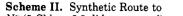


of FPGS. Also synthesized were the 5-chloro folate and aminopterin modifications bearing a terminal L-ornithine, **3e** and **-f**. In previous studies, the presence of a chlorine at position five of the quinazoline nucleus consistently produced the best substrates for FPGS within a given set of analogues.^{17,18} During the course of these studies, 5,8dideazapteroyl-L-ornithine was reported to have a K_i toward human FPGS in the 0.15 μ M range.

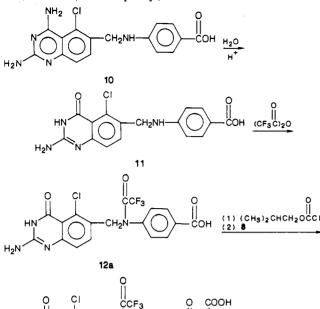
Chemistry. The preparation of 2-desamino-10-thia-5,8-dideazapteroyl-L-ornithine (**3a**) was facilitated by the recent description of the synthesis of 6-(bromomethyl)-3,4-dihydro-4-oxo-3-[(pivaloyloxy)methyl]quinazoline (**4**).²⁰ As shown in Scheme I, treatment of **4** with the sodium salt of ethyl *p*-mercaptobenzoate (**5**) gave the fully protected intermediate **6**, which in the presence of base yielded 2desamino-10-thiapteroic acid (**7a**). Peptide bond formation to N^{δ} -(*tert*-butyloxycarbonyl)-L-ornithine (**8**) using diethyl

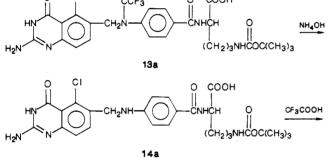
- (19) Hynes, J. B.; Patil, S. A.; Hagan, R. L.; Cole, A.; Kohler, W.; Freisheim, J. H. J. Med. Chem. 1989, 32, 852.
 (20) Jones, T. R.; Thornton, T. J.; Flinn, A.; Jackman, A. L.; Ne-
- (20) Jones, T. R.; Thornton, T. J.; Flinn, A.; Jackman, A. L.; Newell, D. R.; Calvert, A. H. J. Med. Chem. 1989, 32, 847.
- (21) McGuire, J. J.; Bolanowska, W. E.; Piper, J. R. Biochem. Pharmacol. 1988, 37, 3931.

Scheme I. Synthesis of N^{α} -(2-Desamino-10-thia-5,8-dideazapteroyl)-L-ornithine

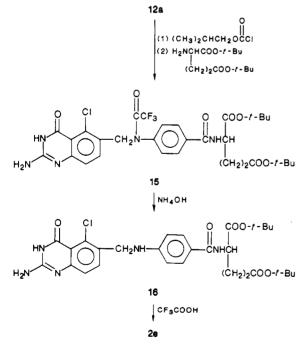


phosphorocyanidate (DEPC) afforded 9a, which upon treatment with trifluoroacetic acid produced the target compound 3a in reasonable overall yield. The remaining three new L-ornithine derivatives, 3b-d, were prepared in an analogous fashion from their corresponding pteroic acid analogues, 7b-d. The methods employed in preparing these 5,8-dideazapteroates have been described in previous communications.^{19,22,23}


The synthesis of the 5-chloro-L-ornithine analogue 3e was conducted as outlined in Scheme II. The key intermediate 6-[(p-carboxyanilino)methyl]-5-chloro-2,4-diaminoquinazoline (10) was prepared as described earlier²⁴ and then subjected to acid-catalyzed hydrolysis to yield 5-chloro-5,8-dideazapteroic acid (11), which was converted to the 10-(trifluoroacetyl) derivative 12a by using anhydrous trifluoroacetic anhydride. The coupling reaction of the latter compound to 8 was conducted by using isobutyl chloroformate as the activating reagent to afford 13a. This protected intermediate was not purified by silica gel chromatography after it was found that the trifluoroacetyl group was labile under the basic conditions required for elution. Instead, it was treated with ammonium hydroxide to yield 14a, which was completely characterized. Removal of the *tert*-butyloxycarbonyl group from the N^{δ} -amino


- (23) Hynes, J. B.; Patil, S. A.; Tomažič, A.; Kumar, A.; Pathak, A.; Tan, K.; Xianqiang, L.; Ratnam, M.; Delcamp, T. J.; Freisheim, J. H. J. Med. Chem. 1988, 31, 449.
- (24) Hynes, J. B.; Kumar, A.; Tomažič, A.; Washtien, W. L. J. Med. Chem. 1987, 30, 1515.
- (25) Susten, S. S.; Hynes, J. B.; Kumar, A.; Freisheim, J. H. Biochem. Pharmacol. 1985, 34, 2163.

⁽²²⁾ Oatis, J. E., Jr.; Hynes, J. B. J. Med. Chem. 1977, 20, 1393.


 N^{α} -(5-Chloro-5,8-dideazapteroyl)-L-ornithine

Scheme III. Synthetic Route to 5-Chloro-5,8-dideazafolic Acid

3e

function of 14a with trifluoroacetic acid gave the target compound N^{α} -(5-chloro-5,8-dideazapteroyl)-L-ornithine (3e). Compound 10 was also converted to its 10-(trifluoroacetyl) derivative 6-[[p-carboxy-N-(trifluoroacetyl)anilino]methyl]-5-chloro-2,4-diaminoquinazoline (12b) by using trifluoroacetic anhydride. Treatment of 12b **Table I.** Comparison of the Kinetic Constants of 5,8-Dideaza Analogues of Folic Acid and Aminopterin with Their L-Ornithine Counterparts for Homogeneous Hog Liver Folylpolyglutamate Synthetase^a

	L-glutamate			L-ornithine	
compd	$\frac{K_{\rm m}}{\mu { m M}}$	V _{max} ^b	$V_{\max} / K_{\mathrm{m}}^{b}$	$K_{i}, \mu M$	$\frac{K_{\rm i}(1)}{K_{\rm i}}$
2a	8.1	50	42		
3 a				0.42	14
2b	15°	33°	17°		
3b				2.8	2.1
2c	35	95	21		
3c				1.2	4.9
2d	22°	25°	8.7°		
3d				5.9	1.0
2e	0.3	68	1750		
3e				0.0083^{d}	710
2f	0.2	57	2210		
3f				0.0017 ^d	3470
PteGlu	93e	61 ^e	5.1^{e}		
1				5.9^{e}	1.0
(6S)-H ₄ PteGlu	7.7°	100^{e}	100 ^e		

^aStandard error of the mean, $K_{\rm m} < \pm 20\%$, $V_{\rm max} < \pm 10\%$. ^bRelative to results for (6S)-H₄PteGlu normalized to 100. ^cReported previously; cf. ref 18. ^dEvaluated by using 0.4 nM FPGS. ^eReported previously; cf. ref 13.

				$I_{50}, \mu \mathrm{M}^a$		
compd	R_1	R_2	Х	L-glutamate	L-ornithine	
2a	Н	Н	S	0.65		
3a	н	Н	\mathbf{S}		3.8	
2b	NH_2	н	s	0.33°		
3b	NH_2	н	s		1.5	
2c	н	н	0	0.26 ^b		
3c	н	н	0		3.8	
2d	NH_2	н	0	0.17°		
3d	NH_2	н	0		0.53	
2e	NH_2	Cl	NH	0.10		
3e	NH_2	Cl	NH		0.43	
2 f	NH_2	Cl	NH	0.0038°		
3f	NH_2	Cl	NH		0.0030	
MTX	-			0.0043		

^aLimits of variability <±15%. ^bReported previously; cf. ref 19. ^cReported previously; cf. ref 23.

in an analogous fashion to that shown in Scheme II then yielded the target compound, N^{α} -(4-amino-4-deoxy-5-chloro-5,8-dideazapteroyl)-L-ornithine (**3f**).

Compound 12a was also coupled to di-tert-butyl-Lglutamate by using isobutyl chloroformate to afford ditert-butyl-5-chloro- N^{10} -(trifluoroacetyl)-5,8-dideazafolate (15) as shown in Scheme III. This intermediate was not characterized but was treated with ethanolic ammonium hydroxide to yield di-tert-butyl 5-chloro-5,8-dideazafolate (16). Removal of the tert-butyl groups with trifluoroacetic acid then gave 5-chloro-5,8-dideazafolic acid (2e) in modest overall yield. This compound has been prepared earlier in low yield by the reductive condensation of 2-amino-5chloro-6-cyano-4-hydroxyquinazoline with diethyl (paminobenzoyl)-L-glutamate followed by basic hydrolysis of the ester functions.²⁶

Biological Evaluation. The six new L-ornithine derivatives, 3a-f, were evaluated as inhibitors of hog liver FPGS, and the K_i values obtained are presented in Table I. The value obtained earlier for 1 is included as a point of reference. Also presented are the kinetic constants for each of the corresponding compounds containing a ter-

(26) Jones, T. R. Eur. J. Cancer 1980, 16, 707.

minal L-glutamyl residue. The kinetic parameters for 2a, -c, and -e have not been described previously. Analogues 3a-f were also evaluated as inhibitors of human (WIL2) dihydrofolate reductase, and the I_{50} values obtained are summarized in Table II together with those for the corresponding L-glutamyl modifications. The value obtained with MTX at the time of assay is included for reference purposes.

Discussion

Turning first to the results presented in Table I, it will be seen that for glutamates containing S or O at position 10, removal of the 2-NH₂ group enhances the substrate activity for FPGS as estimated by $V_{\rm max}/K_{\rm m}$ by approximately 3-fold. Similarly, the $K_{\rm i}$'s for the 2-desamino-Lornithine modifications **3a** and -**c** are approximately 5- to 7-fold lower than their 2-NH₂ counterparts **3b** and -**d**. It may also be concluded that sulfur is superior to oxygen at position 10 for both substrate as well as inhibitory activity. For the FPGS reaction, the pseudo-first-order rate constant, $V_{\rm max}/K_{\rm m}$, reflects the on rate of the substrate.¹³

The presence of chlorine at position 5 of 5,8-dideaza analogues having a normal folate configuration at positions 9 and 10 affords extraordinarily effective substrates, since 2e and -f are far superior to (6S)-tetrahydrofolate [(6S)-H₄PteGlu]. The corresponding L-ornithine derivatives containing a chlorine at position 5, 3e and -f, are excellent inhibitors of FPGS, having K_i values that are up to 100-fold lower than any inhibitor of FPGS reported to date.

Various modifications of the analogue substrates cause relatively minor effects on catalytic efficiency, as reflected by V_{\max} values, but cause major changes in substrate binding rates, as reflected by V_{\max}/K_{\max} and K_{\max} values. An approximately linear relationship was observed between $K_{\rm m}$ values for various substrates and $K_{\rm i}$ values for the analogous ornithine inhibitors, and between $V_{\rm max}/K_{\rm m}$ values and the reciprocal of $K_{\rm i}$ values. It appears that superior L-glutamate substrates give rise to more potent L-ornithine inhibitors, and increased efficacy primarily reflects an increased binding rate. The potency of the inhibitor 3f is somewhat higher than would be suggested by the kinetic parameters for the analogous substrate 2f. However, it should be noted that because of the very low $K_{\rm m}$ values for analogues 2e and -f, kinetic parameters for these two substrates had to be determined by using very low enzyme concentrations, close to the limit of sensitivity of the assay, to limit the extent of conversion of substrate to product. As a result, the K_m values for 2e and -f may be somewhat lower than indicated in Table I.

In order for an inhibitor of FPGS to be useful in testing the hypothesis that inhibition of this enzyme can selectively kill tumor cells, it is necessary to develop compounds that have low affinity for other folate-requiring enzymes. Therefore, compounds 3a-f were also evaluated as inhibitors of human DHFR, and the results are compared with those obtained for the corresponding L-glutamates in Table II. For those compounds having a 4-OH configuration, **3a-e**, the replacement of L-glutamate by L-ornithine causes a 3- to 15-fold decrease in inhibitory potency. On the other hand, the $2,4-(NH_2)_2$ L-ornithine modification 3f is equipotent with its L-glutamyl counterpart 2f and MTX. The high affinity for DHFR exhibited by 3f is consistent with the earlier observation which showed that compound 10, which is devoid of an amino acid moiety, was equipotent with MTX toward L1210 leukemia DHFR.²⁵ Compound 3e, on the other hand, is only a modest inhibitor of DHFR and, therefore, appears to have the highest degree of selectively for FPGS of the inhibitors described thus far.

Experimental Section

Melting points were determined on a Mel-temp apparatus and are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN, or Atlantic Microlab, Inc., Atlanta, GA. All analytical samples gave combustion values for C, H, and N within $\pm 0.4\%$ of the theoretical values unless stated otherwise. Solvation due to H₂O was confirmed by the presence of a broad peak centered at approximately 3.4 ppm in the ¹H NMR spectra, which was transformed into a sharp singlet (DOH) by the addition of D₂O. The presence of CF₃COOH was confirmed by ¹⁹F NMR for each compound that contains CF₃COOH in the empirical formula. All intermediates were free of significant impurities on TLC using silica gel media (Kodak 13181). Free L-ornithine derivatives, **3a-f**, as well as **12a-b**, were assayed on Kodak 13254 cellulose (5% NH₄HCO₃). Column chromatographic separations were performed on Kieselgel 60 (70-230 mesh) obtained from E. Merck and Co. The UV spectra were determined on a Cary 219 spectrophotometer in 0.1 N phosphate buffer, pH 7.0. Highresolution ¹H NMR spectra were acquired on a Bruker AM-300 spectrometer at the Chemistry Department, University of South Carolina, Columbia, SC. NMR values for chemical shifts are presented in parts per million downfield from Me4Si as the internal standard, and the relative peak areas are given to the nearest whole number. Positive (M + 1) and negative ion (M - 1) FAB spectra were obtained on a VG 70SQ analytical spectrometer at the Chemistry Department, University of South Carolina, Columbia, SC, by Dr. Michael Walla. N^{δ} -(tert-Butyloxycarbonyl)-L-ornithine (8) was purchased from Bachem, Inc., Torrance, CA. Anhydrous DMF was obtained from Aldrich Chemical Co., Milwaukee, WI.

Synthetic methods for the preparation of the glutamates 2a and -c have recently been reported.¹⁹ Hog liver FPGS was purified to homogeneity as described previously.²⁷ The specific activity of the purified enzyme with (6S)-H₄PteGlu as the folate substrate was 123 µmol of H₄PteGlu₂ formed/(h·mg of protein) according to the assay conditions described below. Enzyme activity was measured by the incorporation of [14C]glutamate into products by using unlabeled folate or folate analogue as the substrate. Reaction mixtures (0.5 mL) contained 100 mM Tris-50 mM glycine buffer, pH 9.75 (22 °C), folate analogue (various concentrations), L-[¹⁴C]glutamate (2 mM, 2.5 mCi/mmol), ATP (1 mM), MgCl₂ (10 mM), KCl (20 mM), 2-mercaptoethanol (100 mM), bovine serum albumin (50 μ g), and enzyme. The enzyme concentration was adjusted to limit the conversion of substrate to product to less than 5%. The reaction tubes were capped and incubated at 37 °C for 1 h. The pH of the assay mixture was 9.0 at 37 °C. The reaction was stopped by the addition of ice-cold 30 mM 2-mercaptoethanol (1.5 mL) containing 10 mM unlabeled glutamate, and the labeled analogue product was separated from unreacted labeled glutamate by chromatography on small DEAE-cellulose (Whatman DE-52) columns, as described previously.²⁸ $K_{\rm m}$ and $V_{\rm max}$ values were determined by an unweighted nonlinear regression method.²⁹ Kinetic constants for inhibitors were determined by using various concentrations of PteGlu or (6S)-H₄PteGlu as the substrate and fixed concentrations of the inhibitor under study. K_i values were the same with either substrate within experimental error.¹³

Homogeneous DHFR was obtained from human WIL2 cells as described earlier.³⁰ It was assayed spectrophotometrically at 340 nm by using 9 μ M dihydrofolate, 30 μ M NADPH, and 0.15 M KCl in 0.05 M Tris buffer (pH 7.4); [DHFR] = 0.0086 μ M by MTX titration. The final volume was 1 mL, and the assay was performed at 22 °C after a preincubation period of 2 min. MTX was a gift from Dr. Suresh Kerwar, Lederle Laboratories, Pearl River, NY.

6-[[(4-Carbethoxyphenyl)thio]methyl]-3,4-dihydro-4-oxo-3-[(pivaloyloxy)methyl]quinazoline (6). A solution of diethyl4,4'-dithiobis[benzoate] (1.40 g, 3.86 mmol) in EtOH (80 mL) wasreduced with NaBH₄ (0.29 g, 7.67 mmol). After being stirred for15 min, the solution was added dropwise over a period of 15 min

- (28) Shane, B. J. Biol. Chem. 1980, 255, 5655.
- (29) Wilkinson, G. N. Biochem. J. 1961, 80, 324.
- (30) Delcamp, T. J.; Susten, S. S.; Blankenship, D. T.; Freisheim, J. H. Biochemistry 1983, 22, 633.

⁽²⁷⁾ Cichowicz, D. J.; Shane, B. Biochemistry 1987, 26, 504.

to a stirred solution of 6-(bromomethyl)-3.4-dihydro-4-oxo-3-[(pivaloyloxy)methyl]quinazoline, (2.05 g, 5.80 mmol) (4)²⁰ in DMF (25 mL). After the solution was stirred at ambient temperature for 2 h, the solvent was removed at reduced pressure and the residue partitioned between H₂O and CHCl₃. The organic layer was separated and dried over MgSO₄. Removal of the solvent gave a residue, which was dissolved in C_6H_6 (2.5 mL) and applied to a silica gel column (33 \times 1.8 cm) and then eluted with C₆H₆. Fractions homogeneous by TLC were pooled and evaporated to yield a pale yellow oil, which when dried under vacuum at 50 °C for 15 h solidified to give 2.08 g (79%) of a pale yellow solid: mp 107.5-111.5 °C (preliminary softening); TLC R_f 0.30 (C₆H₆-MeOH, 99:1); NMR (Me₂SO-d₆) δ 1.11 [s, 9, C(CH₃)₃], 1.29 (t, 3, CH₂CH₃, J = 7.08 Hz, 4.27 (q, 2, CH₂CH₃, J = 7.02 Hz), 4.55 (s, 2, CH₂S), 5.90 (s, 2, COOCH₂N), 7.47 (d, 2, 3', 5', $J_0 = 8.34$ Hz), 7.65 (d, 1, H₈, $J_{8,7} = 8.34$ Hz), 7.83 (d, 2, 2', 6', $J_0 = 8.28$ Hz), 7.91 (app dd, 1, H_7 , $J_{7,8} = 8.43$ Hz), 8.22 (app d, 1, H_5), 8.44 (s, 1, H_2). Anal. (C24H26N2O5S) C, H, N.

6-[[(4-Carboxyphenyl)thio]methyl]-3,4-dihydro-4-oxoquinazoline (7a). A mixture containing 6 (1.95 g, 4.29 mmol), EtOH (55 mL), H₂O (55 mL), and 1 N NaOH (17 mL) was stirred at ambient temperature for 42 h. The pale yellow colored solution was filtered, and the pH was adjusted to 5.00 with 1 N HCl. The mixture was stirred for 15 min and then cooled. The product was separated by filtration, washed with H₂O (200 mL), and dried under vacuum, first at 60 °C for 5 h, and then at 100 °C over P₂O₅ for 15 h to give 1.19 g (89%) of an off-white solid: mp 287-291 °C dec (preliminary softening); TLC R_f 0.27; NMR (Me₂SO-d₆) δ 4.52 (s, 2, CH₂S), 7.44 (d, 2, 3', 5', J₀ = 8.01 Hz), 7.62 (d, 1, H₈, J_{8.7} = 8.37 Hz), 7.82 (d, 2, 2', 6', J₀ = 9.21 Hz, partially superimposed upon dd 1, H₇), 8.06 (s, 1, H₂ or H₅), 8.16 (s, 1, H₂ or H₆), 12.26 (s, 1, lactam NH), 12.91 (br s, 1, COOH). Anal. (C₁₆H₁₂-N₂O₃S) C, H, N.

 N^{δ} -(tert-Butyloxycarbonyl)- N^{α} -(2-desamino-10-thia-5,8dideazapteroyl)-L-ornithine (9a). To a stirred solution of 7a (0.30 g, 0.96 mmol) in DMF (10 mL) was added a solution of Et₃N (0.19 g, 1.88 mmol) in DMF (1 mL) followed by the addition of a solution of diethyl phosphorocyanidate (DEPC) (0.19 g, 1.17 mmol) in DMF (1 mL). The solution was stirred under N_2 for 1.5 h, at which time N^{δ} -(tert-butyloxycarbonyl)-L-ornithine (8) (0.25 g, 1.08 mmol) was added as a suspension in DMF (5 mL). After the mixture was stirred for 3 h, the reaction was terminated by the addition of $NaHCO_3$ (0.16 g, 1.92 mmol). After removal of the solvent at reduced pressure, the residual yellow-orange oil was dissolved in CHCl₃ (3 mL) and applied to a silica gel column $(30 \times 1.8 \text{ cm})$ packed with CHCl₃. The product was eluted with CHCl₃-MeOH, 9:1, and CHCl₃-MeOH, 85:15. Fractions homogeneous by TLC were pooled and evaporated to yield 0.34 g of crystalline solid. This was then dissolved in 5% aqueous NaHCO3 (10 mL) and the mixture stirred for 30 min and then filtered to remove insoluble material. The pH of the filtrate was adjusted to 3.50 with 0.2 N HCl. The precipitated product was removed by filtration, washed with H_2O , and dried under vacuum at 50 °C for 16 h to give 0.17 g (31%) of yellow solid: mp 163–164 °C dec; TLC R_f 0.27 (CHCl₃-MeOH, 7:3); NMR (Me₂SO- d_6) δ 1.32–1.88 [m, 13, CH₂CH₂ and C(CH₃)₃], 2.91 (app q, 2, CH₂NHCOO), 4.27 (br s, 1, orn α -CH), 4.51 (s, 2, CH₂S), 6.81 (app t, 1, NHCOO), 7.43 (d, 2, 3', 5', $J_0 = 8.43$ Hz), 7.61 (d, 1, H₈, $J_{8,7} = 8.40$ Hz), 7.78 (d, 2, 2', 6', $J_0 = 8.46$ Hz), 7.85 (dd, 1, H₇, $J_{7,8}$ = 8.46 Hz, $J_{7,5}$ = 2.13 Hz), 8.06 (s, 1, H₂), 8.16 (d, 1, H₅, $J_{5,7}$ = 1.83 Hz), 8.51 (d, 1, CONH, J = 7.77 Hz), 12.24 (br s, 1, lactam NH), 12.56 (br s, 1, COOH); FAB/MS 525 (M - 1). Anal. (C₂₆H₃₀N₄O₆S·1.75H₂O) C, N; H: calcd, 6.04; found, 5.49.

 N^{α} -(2-Desamino-10-thia-5,8-dideazapteroyl)-L-ornithine (3a). Compound 9a (0.10 g, 0.18 mmol) was dissolved in CF₃C-OOH (3 mL) and the solution stirred for 2 h. The solvent was removed under vacuum and the residual solid triturated three times with Et₂O. After drying, the resulting solid was dissolved in 10% NH₄OH (14 mL) and the yellow-colored solution stirred at ambient temperature for 1 h. The solvent was removed under vacuum, and the residual traces of NH₃ were removed by entrainment with 3 × 30-mL portions of H₂O. The residual solid was triturated with H₂O (15 mL) and the mixture stirred for 2 h. The compound was removed by filtration, washed with H₂O, and dried under vacuum over P₂O₅ at 65 °C for 20 h to yield 0.061 g (74%) of yellow solid: mp 197-198 °C dec; TLC R_f 0.54 $\begin{array}{l} ({\rm EtOH-NH_4OH}, 8:2); {\rm UV} \ \lambda_{\rm max} \ 228 \ (\epsilon \ 30.5 \times 10^3), 276 \ (16.1 \times 10^3) \\ {\rm nm}; \ {\rm NMR} \ ({\rm CF_3COOD}) \ \delta \ 1.96-2.44 \ ({\rm two} \ {\rm br} \ {\rm s}, 4, \ {\rm CH_2CH_2}), 3.42 \\ ({\rm br} \ {\rm s}, 2, \ {\rm CH_2NH_2}), 4.45 \ ({\rm s}, 2, \ {\rm CH_2S}), 5.04 \ ({\rm br} \ {\rm s}, 1, \ {\rm orn} \ \alpha\text{-CH}), 6.91 \\ ({\rm br} \ {\rm s}, 2), 7.44 \ ({\rm d}, 2, 3', 5', J_0 = 8.10 \ {\rm Hz}), 7.72 \ ({\rm d}, 2, 2', 6', J_0 = 8.25 \\ {\rm Hz}), 7.92 \ ({\rm d}, 1, \ {\rm H_7} \ {\rm or} \ {\rm H_8}, J_{7,8} = 8.52 \ {\rm Hz}), 8.22 \ ({\rm d}, 1, \ {\rm H_7} \ {\rm or} \ {\rm H_8}, J_{7,8} = 8.52 \ {\rm Hz}), 8.22 \ ({\rm d}, 1, \ {\rm H_7} \ {\rm or} \ {\rm H_8}, J_{7,8} = 8.25 \ {\rm Hz}), 8.52 \ ({\rm s}, 1, \ {\rm H_5}), 9.31 \ ({\rm s}, 1, \ {\rm H_2}); \ {\rm FAB/MS} \ 427 \ ({\rm M}+1), \\ 425 \ ({\rm M}-1). \ {\rm Anal.} \ ({\rm C_{21}H_{22}N_4O_4S\cdot 2H_2O}) \ {\rm C}, \ {\rm N}; \ {\rm H:} \ {\rm calcd}, 5.67; \\ {\rm found}, 5.14. \end{array}$

 N^{δ} -(tert -Butyloxycarbonyl)- N^{α} -(10-thia-5,8-dideazapteroyl)-L-ornithine (9b). To a stirred suspension of 10thia-5,8-dideazapteroic acid (7b) (0.30 g, 0.90 mmol)²³ in DMF (50 mL) at 0 °C was added a solution of Et₃N (0.18 g, 1.80 mmol) in DMF (3 mL) followed by the addition of DEPC (0.18 g, 1.10 mmol) in DMF (5 mL). The mixture was stirred at 0 °C under N₂ for 1.2 h by which time a clear pale yellow solution was obtained. To this was added 8 (0.23 g, 0.99 mmol), and the stirring was continued at 0 °C for 3 h and then at ambient temperature for 1 h. The solvent was removed under vacuum and the residue applied to a column of silica gel $(30 \times 1.8 \text{ cm})$ packed with CHCl₃. The product was eluted with CHCl₃-MeOH-NH₄OH, 7:2.5:0.5. Appropriate fractions were pooled and evaporated to yield 0.38 g of a colorless solid. Next, the compound was dissolved in 10% NH₄OH (10 mL), and the milky white mixture was stirred at ambient temperature for 0.5 h. The solvent was removed under vacuum and the residual NH₃ removed by entrainment with 3 \times 40 mL portions of H₂O. The solid was triturated with H₂O (30 mL) and the product removed by filtration, washed with water, and dried under vacuum over P_2O_5 at 100 °C for 12 h to yield 0.29 g (58%) of white solid: mp 200-203 °C dec; TLC R_f 0.22 (CHCl₃-MeOH-NH₄OH, 7:2.5:0.5); NMR (Me₂SO-d₆) δ 1.00-1.88 [m, 13, C(CH₃)₃ and CH₂CH₂], 2.90 (br s, 2, CH₂NHCOO), 4.24 (br s, 1, orn α -CH), 4.38 (s, 2, CH₂S), 6.52 (br s, 2, 2-NH₂), 6.80 (br s, 1, NHCOO), 7.13 (d, 2, H₇ or H₈, $J_{7,8} = 8.25$ Hz), 7.41 (d, 2, 3', 5', $J_0 = 8.07$ Hz), 7.58 (d, 1, H₇ or H₈, $J_{7,8} = 8.76$ Hz), 7.78 (d, 2, 2', 6', $J_0 = 7.92$ Hz), 7.91 (s, 1, H₅), 8.45 (d, 1, CONH, J = 5.25 (d, 1, CONH, J), 9.25 (7.53 Hz). Anal. $(C_{26}H_{31}N_5O_6S\cdot 1H_2O)$ C, H, N.

 N^{α} -(10-Thia-5,8-dideazapteroyl)-L-ornithine (3b). A sample of 9b (0.10 g, 0.18 mmol) was dissolved in CF_3COOH (3 mL) and the solution stirred for 3 h. The solvent was removed under vacuum and the residue triturated three times with Et₂O. After drying, the solid was dissolved in 10% NH₄OH (14 mL) and the mixture stirred at ambient temperature for 1 h. The solvent was removed under vacuum and the residual traces of NH₃ removed by entrainment with 3×30 -mL portions of H₂O. The residual solid was triturated with H_2O (10 mL) and isolated by filtration. It was then washed with H_2O and dried under vacuum for 15 h at 45 °C to give 0.069 g (78%) of white powder: mp 289-290 °C dec; TLC, no satisfactory system found; UV λ_{max} 230 (ϵ 27 × 10³), 277 (9.6 × 10³) nm; NMR (CF₃COOD) δ 1.98–2.48 (m, 4, CH₂CH₂), 3.40 (br s, 2, CH_2NH_2), 4.34 (s, 2, CH_2S), 5.03 (br s, 1, orn α -CH), 6.90 (br s), 7.42 (br s, 3, 3', 5', and H_8), 7.69 (br s, 2, 2', 6'), 7.97 $(br s, 1 H_7), 8.27 (s, 1, H_5); FAB/MS 442 (M + 1), 440 (M - 1).$ Anal. (C₂₁H₂₃N₅O₄S·2.25H₂O) C, N; H: calcd, 5.75, found, 5.18.

 N^{δ} -(*tert*-Butyloxycarbonyl)- N^{α} -(2-desamino-10-oxa-5,8dideazapteroyl)-L-ornithine (9c). To a stirred solution of 6-[(4-carboxyphenoxy)methyl]-4-hydroxyquinazoline (7c) (0.25 g, 0.84 mmol)¹⁹ in DMF (35 mL) was added a solution of Et₃N (0.17 g, 1.68 mmol) in DMF (2.5 mL) followed by the addition of a solution of DEPC (0.28 g, 1.72 mmol) in DMF (2.5 mL). The solution was stirred under N_2 for 3 h, at which time 8 (0.22 g, 0.95 mmol) was added as a suspension in DMF (10 mL). After stirring for 15 h, the reaction was terminated by the addition of NaHCO₂ (0.14 g, 1.67 mmol). After removal of the solvent under vacuum, the residual yellow oil was dissolved in CHCl₃ (2 mL) and applied to a silica gel column (28 \times 1.8 cm) packed with CHCl₃. The column was eluted with CHCl₃-MeOH, 9:1. Fractions homogeneous by TLC were pooled and evaporated to yield 0.33 g of product. This was then dissolved in 5% aqueous NaHCO₃ solution (12 mL) and filtered to remove insoluble particles. The pH of filtrate was adjusted to 3.50 with 0.2 N HCl. The precipitated product was removed by filtration, washed with water, and dried under vacuum at 50 °C for 19 h to give 0.13 g (30%) of yellow solid: mp 130-133 °C dec; TLC R_f 0.28 (CHCl₃-MeOH, 7:3); NMR $(Me_2SO-d_6) \delta 1.22-1.90 [m, 13, CH_2CH_2 and C(CH_3)_3], 2.92 (app$ q, 2, CH_2NHCOO), 4.31 (m, 1, orn α -CH), 5.35 (s, 2, CH_2O), 6.81 (app t, 1, NHCOO), 7.12 (d, 2, 3', 5', $J_0 = 8.85$ Hz), 7.70 (d, 1, H₈,

 $J_{8,7}=8.34$ Hz), 7.87 (d, 2, 2′, 6′, $J_0=8.64$ Hz, superimposed upon dd, 1, H₇), 8.11 (s, 1, H₂), 8.21 (d, 1, H₅, $J_{5,7}=1.71$ Hz), 8.42 (d, 1, CONH, J=7.77 Hz), 12.31 (br s, 1, lactam NH), 12.44–12.72 (br s, 1, COOH). Anal. $(C_{26}H_{30}N_4O_7\cdot0.5H_2O)$ C, H, N.

N^α-(2-Desamino-10-oxa-5,8-dideazapteroyl)-L-ornithine (3c). Compound 9c (0.05 g, 0.096 mmol) was dissolved in a mixture of CHCl₃ (2 mL) and CF₃COOH (1 mL) and the solution stirred for 4.5 h. The reaction mixture was evaporated at reduced pressure and the residue triturated three times with Et₂O. The solid was dried at 45 °C under high vacuum for 4 h to give 0.032 g (62%) of white powder, mp 152-160 °C dec (preliminary softening). The analytical sample was dried in vacuo, over P₂O₅ at 65 °C for 15 h: TLC R_f 0.25; UV λ_{max} 230 (€ 30.4 × 10³), 256 (23.1 × 10³) nm; NMR (CF₃COOD) δ 2.04-2.44 (m, 4, CH₂CH₂), 3.44 (br s, 2, CH₂NH₂), 5.08 (br s, 1, orn α-CH), 5.45 (s, 2, CH₂O), 6.93 (br s), 7.19 (d, 2, 3', 5', J₀ = 8.79 Hz), 7.87 (d, 2, 2', 6', J₀ = 8.70 Hz), 8.05 (d, 1, H₇ or H₈, J_{7,8} = 8.64 Hz), 8.29 (d, 1, H₇ or H₈, J_{7,8} = 8.58 Hz), 8.66 (s, 1, H₅), 9.38 (s, 1, H₂); FAB/MS 411 (M + 1); 409 (M - 1). Anal. (C₂₁H₂₂N₄O₅·CF₃COOH·H₂O) C, H, N.

N^b-(tert-Butyloxycarbonyl)-N^a-(10-oxa-5,8-dideazapteroyl)-L-ornithine (9d). To a stirred suspension of 10oxa-5,8-dideazapteroic acid (7d) (0.21 g, 0.66 mmol)²² in DMF (35 mL) at 0 °C was added a solution of Et₃N (0.13 g, 1.31 mmol) in DMF (2.5 mL). This was followed by the addition of a solution of DEPC (0.13 g, 0.79 mmol) in DMF (2.5 mL). The mixture was stirred at 0 °C under N_2 for 1.2 h, by which time it had become clear and colorless. To this was added 8 (0.17 g, 0.72 mmol), and the mixture was stirred at 0 °C for 4 h and then for 7 h at ambient temperature. The reaction was terminated by the addition of $NaHCO_3$ (0.11 g, 1.31 mmol). The solvent was removed under reduced pressure and the residue triturated with H₂O. The resulting solid was separated by filtration, washed with water, and dried under vacuum over P_2O_5 at 65 °C for 17 h. There was obtained 0.31 g (84%) of white powder: mp 177-182 °C dec; TLC $R_f 0.13$ (CHCl₃-MeOH-NH₄OH, 7:2.5:0.5); NMR (Me₂SO- d_6) δ 0.94–1.92 (m, 4, CH₂CH₂), 1.36 [s, 9, C(CH₃)₃], 2.91 (br s, 2, CH₂NHCOO), 4.26 (br s, 1, orn α -CH), 5.19 (s, 2, CH₂O), 6.62 (br s, 2, 2-NH₂), 6.80 (br s, 1, NHCOO), 7.09 (d, 2, 3', 5', $J_0 = 7.38$ Hz), 7.21 (d, 1, H₈, $J_{8,7} = 8.22$ Hz), 7.63 (d, 1, H₇, $J_{7,8} = 7.08$ Hz), 7.85 (d, 2, 2', 6', $J_0 = 8.01$ Hz), 7.96 (s, 1, H₅), 8.28 (app d, 1, 2000) (app d, 1, CONH). Anal. (C₂₆H₃₁N₅O₇·2.25H₂O) C, N; H: calcd, 6.32; found, 5.89

 N^{α} -(10-Oxa-5,8-dideazapteroyl)-L-ornithine (3d). A sample of 9d (0.15 g, 0.27 mmol) was dissolved in CF₃COOH (3 mL) and the solution stirred at ambient temperature for 2 h. The solvent was removed under vacuum and the residue triturated three times with Et₂O. After drying, the solid was dissolved in 10% NH₄OH (21 mL) and the solution was clarified by centrifugation and decantation. The solvent was removed under vacuum and the residual traces of NH_3 removed by entrainment with 3×45 -mL portions of H_2O . The residue was then treated with Me_2CO , which was then removed under vacuum. The compound was finally triturated with H_2O (15 mL) and isolated by filtration. It was then washed with H_2O and dried under vacuum over P_2O_5 at 65 °C for 17 h to give 0.063 g (47%) of white solid: mp 190.5–197 °C dec; TLC R_f 0.33 (EtOH-NH₄OH, 8:2); UV λ_{max} 230 (ϵ 29.7 × 10³), 256 (18.7 × 10³) nm; NMR (CF₃COOD) δ 2.08–2.52 (m, 4, CH₂CH₂), 3.50 (br s, 2, CH₂NH₂), 5.15 (br s, 1, orn α -CH), 5.42 (s, 2, CH₂O), 7.00 (br s), 7.24 (d, 2, 3', 5', $J_0 = 8.49$ Hz), 7.63 (d, 1, H₈, $J_{8,7} = 8.22$ Hz), 7.92 (d, 2, 2', 6', $J_0 = 8.25$ Hz), 8.12 (d, 1, 1, H₈, $J_{8,7} = 8.22$ Hz), 7.92 (d, 2, 2', 6', $J_0 = 8.25$ Hz), 8.12 (d, 1, 1, H₈, $J_{8,7} = 8.22$ Hz), 7.92 (d, 2, 2', 6', $J_0 = 8.25$ Hz), 8.12 (d, 1, 1, H₈, $J_{8,7} = 8.25$ Hz), 8.12 (d, 1, 1, H₈, $J_{8,7} = 8.25$ Hz), 8.12 (d, 1, 1, H₈), $J_{8,7} = 8.25$ Hz), 8.12 (d, 1, 1, H₈), $J_{8,7} = 8.25$ Hz), 8.12 (d, 1, 1, H₈), $J_{8,7} = 8.25$ Hz), $J_{8,7} = 8.25$ Hz), J_{8,7} = 8.25 Hz), $J_{8,7} = 8.25$ Hz), $J_{8,7} = 8.25$ Hz), $J_{8,7} = 8.25$ Hz), J_{8,7} = 8.25 Hz), $J_{8,7} = 8.25$ Hz), J_{8,7} = 8.25 Hz), J_{8,7 H₇, $J_{7,8} = 8.76$ Hz), 8.49 (s, 1, H₅); FAB/MS 426 (M + 1), 424 (M - 1). Anal. (C₂₁H₂₃N₅O₅·0.5CF₃COOH·1.4H₂O) C, H, N.

5-Chloro-5,8-dideazapteroic Acid (11). To a suspension of 6 - [(p-carboxyanilino)methyl]-5-chloro-2,4-diaminoquinazoline (10)²⁴ (1.25 g, 3.37 mmol) in 2-methoxyethanol (25 mL) was added 2 N HCl (25 mL), and the resulting mixture was heated at reflux for 6 h. After cooling, 50 mL of H₂O was added together with 2 N NaOH until the pH reached 11.5. Insoluble material was removed by filtration and the filtrate acidified to pH 5.9 with 1 N HCl. After refrigeration, the product was collected on a filter and washed with H₂O. It was dried under vacuum first at 45 °C for 12 h and then at 100 °C over P₂O₅ for 20 h to yield 1.08 g (91%) of pale yellow solid: mp 251–253 °C dec; TLC R_{f} 0.69 (Baker silica gel 1B2-F, *n*-BuOH-HOAc-H₂O, 3:1:1); NMR (Me₂SO-d₆) δ 4.37 (app d, 2, CH₂N), 6.55 (d, 2, 3', 5', J₀ = 8.76 Hz), 6.60 (s, 2, 2-NH₂), 6.96 (app t, 1, CH₂NH), 7.10 (d, 1, H₈, J_{8,7} = 8.52 Hz), 7.46 (d,

1, H7, $J_{7,8}$ = 8.58 Hz), 7.66 (d, 2, 2′, 6′, J_0 = 8.64 Hz). Anal. (C16H13ClN4O3 0.5H2O) C, H, N.

5-Chloro-10-(trifluoroacetyl)-5,8-dideazapteroic Acid (12a). A sample of 11 (0.84 g, 2.37 mmol) (redried under vacuum at 100 °C just prior to use) in (CF₃CO)₂O (25 mL) was stirred in a N₂ atmosphere for 24 h. The mixture was concentrated under vacuum, and then Et₂O (35 mL) was added and the solution again evaporated at reduced pressure. The resulting foam was triturated with 1% aqueous CF₃COOH and the resulting solid collected on a filter, washed with H₂O, and dried under vacuum at 50 °C for 12 h to afford 1.09 g (92%) of cream-colored solid: mp 204-206 °C dec (preliminary softening); TLC R_f 0.59; NMR (Me₂SO-d₆) δ 5.14 (s, 2, CH₂N), 6.86–7.60 (m, 6, 2-NH₂, 3', 5', H₇ and H₈), 7.89 (d, 2, 2', 6', J₀ = 8.20 Hz); FAB/MS 441 (M + 1). Anal. (C₁₈-H₁₂ClF₃N₄O₄·0.4CF₃COOH·0.6H₂O) C, H, N.

6-[[p-Carboxy-N-(trifluoroacetyl)anilino]methyl]-5chloro-2,4-diaminoquinazoline (12b). A mixture of 10 (0.50 g, 1.35 mmol) and (CF₃CO)₂O (15 mL) was stirred in a N₂ atmosphere for 7 h. The mixture was evaporated under reduced pressure and the resulting foam triturated with 2×20 mL of 1% aqueous CF_3COOH and then Et_2O (15 mL). The resulting solid was isolated by filtration, washed with Et₂O, and dried under vacuum at 45 °C to yield 0.33 g of pale yellow solid, mp 304-306 °C dec. The combined Et₂O washings and filtrate were evaporated to yield a second crop, which was triturated with 1% aqueous CF_3COOH , isolated by filtration, washed with H_2O , and dried as above to give an additional 0.32 g of product: total yield 0.65 g (95%); TLC R_f 0.39; NMR (Me₂SO- d_6) δ 5.15 (s, 2, CH₂N), 7.04 (br s, 2, NH₂), 7.14 (d, 1, H₇ or H₈, $J_{7,8} = 9.00$ Hz), 7.39 (d, 2, 3', 5', superimposed on d for H₇ or H₈), 7.89 (d, 2, 2', 6', $J_0 = 8.37$ Hz, superimposed on br s, NH₂). Anal. (C₁₈H₁₃ClF₃N₅O₃·0.5C- $F_3COOH \cdot 0.5H_2O)$ C, H, N.

 N^{δ} -(tert -Butyloxycarbonyl)- N^{α} -(5-chloro-5,8-dideazapteroyl)-L-ornithine (14a). To a stirred solution of 12a (0.50 g, 1.01 mmol) in DMF (35 mL) at 0 °C was added Et₃N (0.2 g, 2.01 mmol), followed by i-BuOCOCl (0.21 g, 1.51 mmol). The solution was stirred at 0 °C under N2 for 0.75 h, at which time 8 (0.35 g, 1.51 mmol) was added. Stirring was continued at 0 °C for 4 h, after which the solvent was removed under reduced pressure and the residual oil triturated with H₂O. The solid was isolated by filtration, washed with H2O, and dried overnight under vacuum at 45 °C to give 0.76 g of pale yellow solid. The TLC (CHCl₃-MeOH-NH₄OH, 7:2.5:0.5) showed two spots: a major one $(R_t 0.16)$, presumably 13a, and a minor spot $(R_t 0.08)$, which corresponded to 12a. A solution of crude 13a (0.76 g) in 10% NH₄OH (100 mL) was stirred at ambient temperature for 1.25 h. The solvent was removed under reduced pressure to give 0.75 g of crude 14a, which was purified in two batches on a silica gel column (17 \times 1.9 cm) packed in CHCl₃ and eluted with CHCl₃-MeOH-NH₄OH, 7:2.5:0.5. Fractions homogeneous by TLC were pooled and evaporated to dryness at reduced pressure. The residue was triturated with 3×15 mL of Et₂O and the resulting solid dried under vacuum over P_2O_5 at 65 °C for 8 h. There was obtained 0.34 g (52% overall yield) of greenish yellow solid: mp 115-120 °C dec (preliminary softening); TLC R_f (CHCl₃-MeOH-NH4OH, 7:2.5:0.5); NMR (Me2SO-d6) & 1.20-1.88 [m, 13, CH_2CH_2 and $C(CH_3)_3$], 2.89 (m, 2, CH_2NHCOO), 4.19 (m, 1, orn α -CH), 4.38 (app d, 2, CH₂NH, J = 5.79 Hz), 6.55 (d, 4, 3', 5', J_0 = 8.70 Hz, superimposed upon br s, 2-NH₂), 6.80 (m, 2, CH₂NH and NHCOO), 7.09 (d, 1, H_8 , $J_{8,7} = 8.55$ Hz), 7.46 (d, 1, H_7 , $J_{7,8}$ = 8.64 Hz), 7.62 (d, 2, 2', 6', J_0 = 8.76 Hz), 7.92 (d, 1, CONH, J= 6.84 Hz). Anal. $(C_{26}H_{31}ClN_6O_6.5.25H_2O)$ C, N; H: calcd, 6.40; found, 5.12. (Reproducible combustion analyses could not be obtained.)

 N^{α} -(5-Chloro-5,8-dideazapteroyl)-L-ornithine (3e). A solution of 14a (0.20 g, 0.31 mmol) in CF₃COOH (6 mL) was stirred at ambient temperature for 1 h. The CF₃COOH was removed under reduced pressure and the residue triturated with 3 × 15 mL of Et₂O. After drying, the solid was dissolved in 10% NH₄OH (15 mL) and the solution evaporated to dryness under vacuum. Residual NH₃ was removed by entrainment with 3 × 30 mL of H₂O and 20 mL of EtOH. The residue was triturated with cold EtOH and the resulting solid isolated by filtration, washed with cold EtOH and Et₂O, and dried under vacuum at 45 °C for 15 h and then over P₂O₅ at 65 °C for 8 h to give 0.11 g (58%) of greenish yellow solid: mp 194.5-199 °C dec; TLC R_f 0.22; UV

 $\begin{array}{l} \lambda_{\max} \ 234 \ (\epsilon \ 38.9 \times 10^3), \ 292 \ (22.7 \times 10^3) \ nm; \ NMR \ (CF_3COOD) \\ \delta \ 2.12-2.54 \ (two \ br \ s, \ 4, \ CH_2CH_2), \ 3.51 \ (br \ s, \ 2, \ CH_2NH_2), \ 5.14 \\ (s, \ 1, \ orn \ \alpha-CH), \ 5.21 \ (s, \ 2, \ CH_2NH), \ 7.03 \ (br \ s), \ 7.58 \ (d, \ 1, \ H_8, \ J_{8,7} = 8.70 \ H_2), \ 7.83 \ (d, \ 2, \ 3', \ 5', \ J_0 = 7.80 \ H_2), \ 8.04 \ (d, \ 1, \ H_7, \ J_{7,8} = 8.10 \ H_2), \ 8.17 \ (d, \ 2, \ 2', \ 6', \ J_0 = 9.00 \ H_2); \ FAB/MS \ 459 \ (M \ + \ 1), \ 457 \ (M \ - \ 1). \ Anal. \ (C_{21}H_{23}CIN_6O_4 \cdot CF_3COOH \cdot H_2O) \ C, \ H, \ N. \end{array}$

 N^{α} -(4-Amino-4-deoxy-5-chloro-5,8-dideazapteroyl)- N^{δ} -(tert-butyloxycarbonyl)-L-ornithine (14b). The N^{10} -(trifluoroacetyl) derivative 13b was prepared from 12b and 8 in an analogous fashion to that employed for 13a. The crude product showed two major spots on TLC (CHCl₃-MeOH- $\dot{N}H_4OH$, 7:2.5:0.5) with R_f values of 0.32 (13b) and 0.21 (12b). A solution of crude 13b (0.60 g) in 10% NH_4OH (100 mL) was stirred for 1.25 h and then worked up the same as for the preparation of 14a to give 0.15 g (28% overall yield) of a pale yellow solid: mp 178.5-180.5 °C dec; TLC R_f 0.25 (CHCl₃-MeOH-NH₄OH, 7:2.5:0.5); NMR (Me₂SO- d_6) δ 1.22–1.90 [m, 13, CH₂CH₂ and $C(CH_3)_3$], 2.91 (app q, 2, CH_2 NHCOO, J = 5.79 Hz), 4.26 (m, 1, orn α -CH), 4.38 (app d, 2, CH₂NH, J = 5.13 Hz), 6.18 (s, 2, NH₂), $6.57 (d, 2, 3', 5', J_0 = 8.64 Hz), 6.82 (m, 2, CH_2NH and NHCOO),$ 7.14 (d, 1, H_7 or H_8 , $J_{7,8} = 8.70$ Hz), 7.44 (d, 3, H_7 or H_8 , $J_{7,8} =$ 8.70 Hz, superimposed upon s, NH₂), 7.65 (d, 2, 2', 6', $J_0 = 8.64$ Hz), 8.05 (d, 1, CONH, J = 8.04 Hz). Anal. (C₂₆H₃₂ClN₇O₅· 1.55H₂O) C, H; N: calcd, 16.73; found, 16.14.

N^α-(4-Amino-4-deoxy-5-chloro-5,8-dideazapteroyl)-Lornithine (3f). This compound was prepared in a similar manner as 3e starting with 0.10 g (0.17 mmol) of 14b. There was obtained 52 mg (49%) of yellow solid: mp 174.5–176.5 °C dec; TLC R_f 0.15; UV λ_{max} 240 (ϵ 33.4 × 10³), 286 (21.9 × 10³) nm; NMR (Me₂SO-d₆) δ 1.46–2.00 (m, 4, CH₂CH₂), 2.79 (m, 2, CH₂NH₂), 4.12–4.56 (m, 3, CH₂NH and orn α-CH), 6.27 (s, 2, NH₂), 6.58 (d, 2, 3', 5', J₀ = 7.98 Hz), 6.86 (s, 1, CH₂NH), 7.14 (d, 1, H₇ or H₈, J_{7,8} = 9.03 Hz), 7.45 (d, 1, H₇ or H₈, J_{7,8} = 9.00 Hz), 7.50 (s, 2, NH₂), 7.65 (d, 2, 2', 6', J₀ = 8.22 Hz), 8.10 (d, 1, CONH, J = 9.00 Hz); FAB/MS 458 (M + 1). Anal. (C₂₁H₂₄ClN₇O₃·1.25CF₃COOH·H₂O) C, H, N.

Di-tert-butyl-5-chloro-5,8-dideazafolate (16). To a stirred solution of 12a (0.135 g, 0.27 mmol) and di-tert-butyl-L-glutamate (0.082 g, 0.28 mmol) in anhydrous DMF (20 mL) at 0 °C was added Et_aN (0.051 g, 0.5 mmol) in DMF (2 mL) followed by immediate addition of i-Bu-OCOCl (0.069 g, 0.5 mmol) in DMF (2 mL). The solution was stirred at 0 °C under N2 for 2 h, at which time TLC of the reaction mixture showed the presence of the product as well as unreacted 12a; however, there was no trace of di-tertbutyl-L-glutamate in the reaction mixture. Consequently, ditert-butyl-L-glutamate (0.05 g, 0.169 mmol) was added to the reaction mixture followed by subsequent addition of *i*-Bu-OCOCl (0.05 g, 0.36 mmol) and Et_3N (0.05 g, 0.49 mmol). Stirring was continued at 0 °C for 2 h, followed by 16-h stirring at ambient temperature, after which the solvent was removed under reduced pressure and the residual brownish oil was washed three times with Et_2O and then triturated with H_2O . A pale yellow solid was isolated by filtration, washed with H_2O , and dried under vacuum at 50 °C to give 0.115 g (62.5%) of crude 15. TLC (CHCl₃-MeOH, 85:15) of the product showed two spots: a major UV-absorbing spot $(R_f 0.51)$ presumably due to 15 and a minor spot near the origin, which corresponded to 12a. A solution of crude 15 (0.115 g) in 10% ethanolic NH₄OH (50 mL) was stirred at ambient temperature for 18 h. The solvent was removed under reduced pressure, and residual traces of NH₃ and H₂O were removed by entrainment with EtOH and then with Et₂O. There was obtained a yellow solid, which was dissolved in a mixture of CHCl₃ (20 mL) and MeOH (1 mL), and the resulting solution was filtered to remove insoluble yellow material. The clear filtrate was evaporated to dryness under vacuum to give 0.103 g (52% overall yield) of a light yellow solid, 16, which was purified on a silica gel column (15 × 1.9 cm) packed in CHCl₃ and eluted with CHCl₃-MeOH, 95:5. Fractions homogeneous by TLC were pooled and evaporated to dryness under reduced pressure to give 0.071 g of a pale yellow solid: mp 167-168 °C dec; TLC (CHCl₃-MeOH, 9:1) R_f 0.27; NMR (Me₂SO- d_6 , 400 MHz) δ 1.36 [s, 9, C(CH₃)₃], 1.38 [s, 9, C(CH₃)₃], 1.82-2.02 (m, 2, glu- β -CH₂), 2.28 (t, 2, glu- γ -CH₂, J = 14.96 Hz), 4.23-4.29 (m, 1, glu- α -CH), 4.37 (d, 2, CH₂NH, J = 4.84 Hz), 6.38 (br s, 2, 2-NH₂), 6.54 (d, 2, 3', 5', J_0 = 8.76 Hz), 6.80 (t, 1, CH₂NH, J = 11.92 Hz), 7.08 (d, 1, H₈, $J_{8,7}$ = 8.58 Hz), 7.45 (d, 1, H₇, $J_{7,8}$ = 8.56 Hz), 7.63 (d, 2, 2', 6', J_0 = 8.76 Hz), 8.07 (d, 1, CONH, J= 7.64 Hz). This compound was not further characterized but was used directly for the preparation of 2e.

5-Chloro-5,8-dideazafolic Acid (2e). A solution of 16 (0.05 g, 0.085 mmol) in CF₃COOH (2 mL) was stirred at ambient temperature for 4 h. The CF₃COOH was removed under reduced pressure and the residue triturated with 3×5 mL of Et₂O and dried. The compound was purified by dissolving it in 0.1 N NaOH (5 mL) and stirring it with cellulose (EM Sciences/2331) (0.03 g) and charcoal (0.01 g) for 2 h. The solution was filtered by gravity and product precipitated from the clear filtrate by adding 1 N HCl and adjusting the pH to 3.5. The product was isolated by filtration, dried, and purified by applying to a cellulose column packed in 5% NH_4HCO_3 and eluted with 5% NH_4HCO_3 . Fractions homogeneous by TLC were pooled and evaporated under vacuum. The residue was dissolved in H_2O (5 mL) and the solution acidified to pH 3.5 with 1 N HCl. After the solution was cooled at 0 °C for 2 h, the white solid was collected by filtration and washed with cold H₂O, Me₂CO, and finally with Et₂O. The solid was dried under vacuum at 60 °C for 8 h to give 0.019 g (47%) of 2e. The overall yield from 12a was 24.5%: mp >232 °C dec (with preliminary darkening and shrinking) (lit.²⁶ mp >230 °C dec); TLC (cellulose 5% NH_4HCO_3), $R_f 0.34$; UV $\lambda_{max} 234 \ (\epsilon \ 38.0 \times 10^3), \ 286 \ (\epsilon \ 22.6 \times 10^3) \ nm; \ UV \ spectrum \ of$ 2e in 0.1 N NaOH was in good agreement with the literature values;²⁶ NMR (Me₂SO-d₆, 400 MHz) δ 1.82-2.10 (m, 2, glu-β-CH₂), 2.30 (t, 2, glu- γ -CH₂, J = 14.96 Hz), 4.29–4.34 (m, 1, glu- α -CH), 4.37 (d, 2, CH_2NH , J = 5.76 Hz), 6.38 (br s, 2, 2- NH_2), 6.55 (d, 2, 3', 5', J_0 = 8.8 Hz), 6.80 (t, 1, CH₂NH, J = 11.8 Hz), 7.08 (d, 1, H_8 , $J_{8,7} = 8.56$ Hz), 7.44 (d, 1, H_7 , $J_{7,8} = 8.56$ Hz), 7.64 (d, 2, 2', 6', $J_0 = 8.76$ Hz), 8.09 (d, 1, CONH, J = 7.72 Hz); FAB/MS 474 (M + 1). Anal. $(C_{21}H_{20}ClN_5O_6 \cdot 2.75H_2O)$ C, H, N.

Acknowledgment. This investigation was supported by PHS Grants CA 25014 (J.B.H.), CA 41461 (J.H.F.), and CA 41991 (B.S.), awarded by the National Cancer Institute, DHHS. We thank Alpana Pathak for the enzyme inhibition results using human DHFR, Claudia Okeke for determining the ultraviolet absorption spectra, and Denise Cesar for assistance with the FPGS assays. We also thank Dr. Thomas Williams for determining the 400-MHz NMR spectra of compounds 16 and 2e.

Registry No. 2a, 118895-96-8; 2c, 118895-97-9; 2e, 74671-08-2; 2f, 20242-62-0; 3a (free base), 120296-43-7; 3b (free base), 120296-44-8; 3c (free base), 120296-45-9; 3c-TFA, 120296-46-0; 3d (free base), 120296-47-1; 3d·TFA, 120296-48-2; 3e (free base), 120296-49-3; 3e·TFA, 120296-50-6; 3f (free base), 120296-51-7; 3f.TFA, 120296-52-8; 4, 106585-53-9; 6, 120296-53-9; 7a, 120296-54-0; 7b, 111718-85-5; 7c, 118895-93-5; 7d, 64088-70-6; 8, 13650-49-2; 9a, 120296-55-1; 9b, 120296-56-2; 9c, 120296-57-3; 9d, 120296-58-4; 10, 57343-54-1; 11, 120296-59-5; 12a, 120296-60-8; 12b, 120296-61-9; 13a, 120296-62-0; 13b, 120296-63-1; 14a, 120296-64-2; 14b, 120296-65-3; 15, 120296-66-4; 16, 120296-67-5; FPGS, 63363-84-8; DHFR, 9002-03-3; 4.4'-EtOCOC₆H₄SSC₆H₄COOEt, 20057-83-4; (CF₃CO)₂O, 407-25-0; H-Glu(OBu-t)-OBu-t, 16874-06-9.