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A facile and expeditious synthetic approach for the synthesis of a-ketoamides 3 is described. A series of
a-ketoamides 3 was synthesized via reaction of selenium dioxide-mediated oxidative amidation between
arylglyoxals 1 and secondary amines 2, and accelerated with microwave irradiation. Our findings indicate
that constrained amines, such as piperazine and piperidine exhibit higher conversions for this transfor-
mation. This reaction was explored by synthesizing a series of a-ketoamides 3 from various arylglyoxals 1
with cyclic and acyclic secondary amines 2.

� 2012 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthesis of a-ketoamides 3 via oxidative amidation.
a-Ketoamides1 are of great interest within the realms of medic-
inal chemistry, and this structural scaffold represents a key frame-
work of many biologically active agents in natural products such as
immunosuppressive drugs FK506 and rapamycin.2 Moreover, a-
ketoamides have been developed as serine or cysteine protease
inhibitors,3 human cytosolic phospholipase A2 (GIVA PLA2) inhibi-
tors,4 androgen and estrogen receptor antagonists,5 p38 inhibitors,6

and cathepsin S inhibitors.7 Thanks to their pharmacological rele-
vance, a variety of synthetic methodologies to access them have
been developed, such as palladium-catalyzed amino(double)
carbonylation of organic halides8 and reactions of carbamoylstann-
ane and carbamoysilane with acid chlorides.9 Indeed more recently,
2,2-dibromoacetophenone was reported to undergo oxidative ami-
dation reaction with secondary amines via aerial oxidation with
moderate to good yields.10 Through efforts to develop an expedi-
tious and efficient protocol for the synthesis of a-ketoamides 3,
we herein utilize commercially available arylglyoxal 1, an equal
oxidative status of 2,2-dibromoacetophenone, to undergo oxidative
amidation with secondary amines 2 mediated by selenium dioxide
under microwave irradiation to give the desired a-ketoamides 3,
Scheme 1.

The feasibility of aerial oxidative amidation was initially investi-
gated in Table 1 (entries 1–3) and upon microwave irradiation of
phenylglyoxal 1a with 1-phenylpiperazine 2a in the absence of an
oxidizing agent, no appreciable oxidative amidation product was
found.10 Indeed when hydrogen peroxide was utilized as an oxidant
ll rights reserved.

Hulme).
(entries 4, 5), no significant transformation was observed.11 We fur-
ther examined the oxidative amidation potential of pyridinum
dichromate (PDC) which resulted in slight improvement with 11%
conversion rate (entry 6).12 Subsequently, we turned our attention
to employ selenium dioxide as the oxidizing agent, Table 1 (entries
7–13). Encouragingly, the oxidative amidation product 3a was
significantly increased over all attempted aerial oxidations and
moreover, results suggested that reaction times were shortened
at higher temperatures (entries 10, 11). It was also noted that the
reaction could be completed in DCM or DCM/1,4-dioxane (3/1) with
comparable isolated yields (entries 9, 10). Compared to the above-
mentioned oxidative amidation of 2,2-dibromoacetophenone that
required 4 equiv. of secondary amines, this method dramatically
reduced the amount of required secondary amine for successful
SeO2-mediated oxidative amidation.13

With optimized conditions in hand, a series of oxidative amida-
tions of phenyglyoxal 1a with various secondary amines 2a–2l was
thus carried out, Table 2. Results revealed that the desired a-keto-
amides were obtained in moderate to good yields, the reactivity
domain being broad including acyclic amines, five-membered,
six-membered, and seven-membered cyclic amines. Interestingly,
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Table 3
Preparation of a-ketoamides 3m–3va
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Entry Ar 2 Yield(%)b

3

1 6-Methoxy-2-naphthyl
(1b)

1-Phenylpiperazine (2a) 49 (3m)

2 3-Br-Ph (1c) 4-Benzylpiperidine (2j) 85 (3n)
3 3-NO2-Ph (1d) 4-Benzylpiperidine (2j) 66 (3o)
4 Benzo[d][1,3]dioxol-5-yl

(1e)
1-p-Tolylpiperazine (2m) 56 (3p)

5 3,4-di-MeO-Ph (1f) 1-p-Tolylpiperazine (2m) 62 (3q)
6 3,4,5-tri-MeO-Ph (1g) 1-(4-Methoxyphenyl)piperazine

(2n)
71 (3r)

7 4-F-Ph (1h) 1-(4-Methoxyphenyl)piperazine
(2n)

57 (3s)

8 4-NO2-Ph(1i) 4-Phenylpiperidine (2o) 56 (3t)
9 3,4-di-F-Ph (1j) 4-Phenylpiperidine (2o) 72 (3u)
10 4-OMe-Ph (1k) 1-(2-Fluorophenyl)piperazine

(2p)
68 (3v)

a All reactions were performed with arylglyoxal 1 (1 mmol), secondary amine 2
(1.5 mmol), selenium dioxide (1 mmol) in the solvents of DCM/1,4-dioxane (3 mL/
1 mL). All reactions were heated at 100 �C for 20 min under microwave irradiation.

b Isolated yield.

Table 1
Synthesis of a-ketoamide 3aa
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Entry 2a (equiv) Oxidant Solvent Temp (�C) Time (min) Conversionb (%) 3a

1 1.0 Air DCM 100 20 Trace
2 1.5 Air DCM 100 20 <5
3 2.0 Air DCM 100 20 <5
4 1.5 H2O2 1,4-Dioxane 100 20 <5
5 1.3 H2O2 — 80 120 NDc

6 1.5 PDC DCM 100 20 11
7 1.5 SeO2 1,4-Dioxane 100 20 (100)b (37)d

8 1.0 SeO2 DCM/1,4-dioxane (3/1) 100 20 (100)b (51)d

9 1.5 SeO2 DCM/1,4-dioxane (3/1) 100 20 (100)b (60)d

10 1.5 SeO2 DCM 100 20 (100)b (60)d

11 1.5 SeO2 DCM/1,4-dioxane (3/1) 120 10 (100)b (58)d

12 1.5 SeO2 DCM/1,4-dioxane (3/1) 120 20 (100)b (60)d

a All reactions were performed with phenylglyoxal 1a (1 mmol), 1-phenylpiperazine 2a in the absence and presence of oxidant (1 mmol) in the corresponding solvents
(4 mL). All reactions were carried out under microwave irradiation.

b The conversion rate was determined by LC–MS using Evaporative Light Scattering (ELS) detection
c Not detected from LC–MS analysis. The reaction performed in 1 mL of 50% hydrogen peroxide solution under conventional heating.
d Isolated yield.

Table 2
Synthesis of a-ketoamides 3b–3la
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Entry 2 Yieldb (%) 3

1 1-Phenylpiperazine (2a) 60 (3a)
2 N,N-Dicyclohexylamine (2b) 26 (3b)
3 N-Methylbenzylamine (2c) 47 (3c)
4 Pyrrolidine (2d) 45 (3d)
5 1-(4-Fluorophenyl)piperazine (2e) 80 (3e)
6 N,N-Dibenzylamine (2f) ND c (3f)
7 1-(2-Furoyl)piperazine (2g) 62 (3g)
8 1-(Pyrrolidinocarbonylmethyl)-piperazine (2h) 52 (3h)
9 t-Butyl piperazine-1-carboxylate (2i) 70 (3i)
10 4-Benzylpiperidine (2j) 74 (3j)
11 1-(4-Fluorobenzyl)-1,4-diazepane (2k) 43 (3k)
12 1-(4-Pyridyl)-piperazine (2l) 50 (3l)

a All reactions were performed with phenylglyoxal (1 mmol), secondary amine 2
(1.5 mmol), selenium dioxide (1 mmol) in the solvents of DCM/1,4-dioxane (3 mL/
1 mL). All reactions were heated at 100 �C for 20 min under microwave irradiation.

b Isolated yield.
c Not detected from [LC/MS] analysis.
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acyclic secondary amines bearing flexible appendages such as 2b
(N,N-dicyclohexylamine), 2c (N-methyl-benzylamine), and 2f
(N,N-dibenzylamine) displayed poor reactivity with isolated yields
of 26%, 47%, and 0%, respectively.

Furthermore, arylglyoxals 1b–j containing electron-donating
and electron-withdrawing substituents and secondary amines 2a–
p were examined and exhibited good scope of reaction, Table 3. Most
promising conversions were observed with substituted piperidines
such as 2j and 2o, of which the a-ketoamide 3n (Entry 2) was
isolated in 85% yield. Highly noteworthy was the performance of
primary amines in this sequence which failed to give any apprecia-
ble oxidized product. The generality and scope of the amine inputs
were clearly confined to secondary amines.

The plausible mechanism of this selenium dioxide driven oxi-
dative amidation is depicted in Figure 1. Upon nucleophilic
addition of amine 2a to phenylglyoxal 1a, a-hydroxyacetophe-
none 4 is produced, which subsequently generates intermediate
5 upon reaction with SeO2. Internal rearrangement of 6 via pro-
ton transfer affords the desired a-ketoamide 3a with release of
selanediol.

In summary, we have successfully demonstrated a facile synthe-
sis of a-ketoamides via the oxidative amidation of arylglyoxals with
secondary amines mediated by selenium dioxide and assisted by
microwave irradiation in moderate to good yields. The application
of this method to generate additional structural diversity will be
disclosed in the due course.
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Figure 1. Plausible mechanism to generate aryl a-ketoamide 3a.
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