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Abstract: In a new synthesis of pyrrolidine-trans-lactones, an acyl-
iminium pyrrolidine reacts with silyl ketene acetals. This reaction
selectively generates C2, C3 trans stereochemistry.

Serine protease inhibition is a field of enormous importance to the
pharmaceutical industry in the search for new therapies for, amongst
others, respiratory1 and cardiovascular2 diseases. Therefore our
introduction of a new scaffold known as pyrrolidine trans-lactones3,4 1
(and lactams),4 which are strained 5,5-trans fused bicycles, is both
timely and significant. We have studied these systems during a
programme to develop inhibitors of human neutrophil elastase (HNE)
for respiratory diseases and which has led to development candidates.
We required a flexible approach allowing stereocontrol and facile
introduction of substituents α to the lactone carbonyl (eg n-propyl in 1).
Our previous synthesis4a featured the creation of the pyrrolidine ring
and a stereocentre via an intramolecular Michael reaction. However it
lacked stereoselectivity and as inhibition of HNE requires specific
relative stereochemistry (as in 1) it was inefficient. This letter describes
a new route which generates the stereocentres on a preformed
pyrrolidine. It addresses some of the stereochemical issues, uses
chemistry suitable for larger scale work and avoids, for example, low
temperature alkylations.4a

In our retrosynthesis, concern for the potential lability of the highly
strained trans-lactone meant that its creation was deferred to the end of
the synthesis: hence the initial disconnection to the hydroxy-acid 2
(Scheme 1). This in turn was disconnected to either the epoxide 3 or the
diol 4 – a convenient acyl-iminium precursor. Both compounds may be
derived from the benzyl carbamate of 2-pyrroline 5.

Scheme 1

Although Thaning and Wistrand5 have described preparations of
analogues  of  4  an  alternative  procedure  was  developed   from   the
2-pyrroline 5. This would allow access to 3 or 4 and is also potentially a
precursor for asymmetric oxidations which have just recently been
described for these substrates.6 Our synthesis (Scheme 2) started from
commercially available 4-aminobutanal diethylacetal 6 which was
protected as its benzyl carbamate and then treated with pyridinium
tosylate in aqueous acetone. The resultant aldehyde spontaneously

cyclised to give the protected cyclic aminal 7. Heating a toluene solution
of 7 at reflux gave the 2-pyrroline 5 in 62% yield over the 3 steps.

We then examined the potential of the pyrroline 5 to act as an epoxide
precursor. Although oxidations of 2-pyrrolines are now known,6,7 at the
time of this work we were unable to find precedent for such

transformations. Whilst conventional peracid epoxidation in
dichloromethane failed to provide identifiable products,6b treatment
with N-bromosuccinimide in aqueous dioxan gave the bromohydrin 8 as
a single diastereomer (Scheme 3). 1H-NMR studies8 confirmed the
regio- and stereo-selectivity across C2 and C3 which suggested that the
reactivity profile of the epoxide 3 might provide the required control to
access the products of interest (such as 2). If pure pyrroline 5 is used the
crude bromohydrin 8 is stable when stored below room temperature.
After treatment of the bromohydrin with sodium hydride in THF (-70oC
to RT), (which produced a precipitate - presumed to be NaBr), addition
of the sodium salt of diethyl malonate gave a low yield of the alcohol 9
as the only isolated product;9 the hydroxyl had been transposed from C2
to C3 suggestive of an epoxide-like intermediate. In a separate
experiment, after treatment of 8 with NaH, dimethylketene acetal and
BF3·OEt2 were added. This gave the bromo-ester 10 (19%) and the
reduced bromide 11 (8%)10 suggesting that an acyl-iminium
intermediate rather than an epoxide intermediate was more likely.
Whilst unoptimised, the poor yields of these processes led us to focus on
the diol 4 (R = H) as an acyl-iminium precursor. There is precedent for
such reactions on pyrrolidine derivatives.11

Dihydroxylation of 5 under standard conditions gave a mixture of the
cis and trans diols 12 in 91% crude yield (Scheme 4).12 Acetylation
gave a mixture of di-acetates 13 in 32-49% yield after

Scheme 2

Scheme 3
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chromatography13 which, as expected, proved to be ideal acyl-iminium
ion precursors.

Reaction of 13 with trimethylallylsilane and BF3·OEt2 gave the 2-
allylpyrrolidine 15 in 80% yield as a 3:1 mixture of trans:cis isomers as
previously described in the literature.5a Treatment of the di-acetate 13
with substituted ketene acetals and BF3·OEt2 gave good yields of all
trans products across C2-C3 of the pyrrolidine 16, 17 and 18 and β and
α mixtures of the n-propyl group for 17 and 18. No cis-products across
C2-C3 were detected. We believe the trans stereoselectivity is
attributable to the greater steric bulk of the ketene acetals and the
conformation of the cations 14 and 19 which preferentially allow
nucleophilic attack from the less hindered exo face. It is interesting to
note  the  improved α-product selectivity when the bulk of the silyl
group  of the ketene acetal group is increased. Further variation of the
O-substituents and/or the geometry of the ketene acetal and the Lewis
acid may affect the selectivity further.14 The stereochemical ratios of the
β:α propyl groups in 17 and 18 were established by analytical HPLC.15

This was subsequently confirmed by conversion of 17 into the trans-
lactone 22 (Scheme 5).

Scheme 5

Removal of the acetate from 1716 and saponification under standard
conditions gave efficiently the hydroxy-acid 21. Yamaguchi
cyclisation17 at 0.025mM in toluene gave a 53% yield of 1:2 β:α propyl-
trans-lactones 22 (ratio determined by 1H-NMR).18,19 Analysis of the
1H-NMR spectra was aided by comparison with the spectra of pure
samples of α and β analogues prepared by other routes.2

NB. All new compounds gave satisfactory 1H-NMR, IR and
microanalytical data.
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