ELECTROCHEMICAL SYNTHESIS OF THE VINYLOGS OF N-ACYL N,O-ACETALS AND THEIR REACTIVITY

D. Fasseur,¹ B. Rigo,^{1*} P. Cauliez,¹ M. Debacker², and D. Couturier³ ¹Laboratoire de Synthèses Organiques, Ecole des Hautes Etudes Industrielles ²Laboratoire d'Etude des Surfaces et Interfaces, associé au CNRS 13 rue de Toul, 59046 Lille, France ³Laboratoire de Synthèse Organique, Université des Sciences et Techniques de Lille 59655 Villeneuve d'Ascq, France

Abstract: Vinylogs of N-acyl N,O-acetals are formed in good yields by anodic oxidation, in methanol or water, of β -enaminoesters derived from pyroglutamic acid. These new acetals react easily with nucleophiles or silylated amines.

Anodic oxidation of N-acylamino acids was first reported in 1979.¹ The N-acyl N,O-acetals (1) obtained from that reaction, or from the anodic α -methoxylation of lactams (Shono's procedure)² or the reduction of imides (Speckamp's procedure),³ have found many applications as versatile organic building blocks,⁴ particularly in the synthesis of natural products.⁵

Scheme 1

In this Letter, we report that vinylogs of N-acyl N,O-acetals 3^6 can be obtained ' in an excellent yield by anodic oxidation, in methanol or water, of β -enaminoesters 2, derived from pyroglutamic acid (vinylogous N-acylamino acids)(scheme 2).

Scheme 2

1713

Z, C: Z,2	R	R ₁	Yield (%) [*]	mp. (*C)
$\bigvee_{{}^{\circ}} \overset{{}^{\circ}}{\overset{{}}}{\overset{{}^{\circ}}{\overset{{}^{\circ}}{\overset{{}}}{\overset{{}^{\circ}}{\overset{{}}{\overset{{}}}{\overset{{}^{\circ}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}}{\overset{{}}}{}}{$	Н	Me	62	126
	Me	Me	55	105
	Me	н	75	186
NС, С: МеО - Қ о	н	Me	72	111
	н	н	77	162
	Me	Me	67	88
	Me	н	87	110
ме0(С Ме(С Ме(С)	Н	Me	43	68

TABLE 1
Anodic oxidation of acids 2 : ß-enaminoesters 3

*Yield of pure, recristallized product.¹²

N-Acyl N,O-acetals 1 react easily with nucleophiles or silylated nucleophiles (acid catalysis).⁷ In the same way, their vinylogous analogs 3 yielded derivatives 4 when they were opposed to water, methanol, amines or silylated amines, and a catalytic amount of an acid (scheme 3).

Scheme 3

In the anodic decarboxylation $(2 \rightarrow 3)$, the iminium salts 5 were intermediates, and it was interesting to note that in this reaction as well as for the substitutions $(3 \rightarrow 4)$, formation of pyrrole 6 was never observed (anodic decarboxylation of the enacylamino acid 7 mainly furnishes the pyrroles 8 (scheme 1)⁸).

Many cyclic β -enaminoesters are used in the synthesis of natural products ;⁹ except the β -enaminoesters derived from succinimide^{6,10} or pyroglutamic acid,¹¹ all these compounds are not substituted on the carbon α to the nitrogen atom ; the synthetic pathway described in this work provides a useful method for the preparation of these substituted cyclic β -enaminoesters 3, 4,⁶ from a very available starting material, through easy transformation of functional group.

TABLE 2

z ₁ C: z ₂	R	R ₁	NuH or NuSiMe ₃	Yield (%) [*]	mp. (°C)
X°-K°	Н	Me	H ₂ O	72ª	188
NС С: Ме0 — О	н	Me	н ₂ 0	85ª	162
	Me	н	MeOH	90ª	88
	Me	н	NH2	63 ^b	150
	Ме	Me	NH-SiMe3	85°	150
	Me	Me	NH-SiMe3	49 ^d	85
	Me	Me	CF ₃ Me Me N·SiMe ₃	80°	154

 β -enaminoesters 4

*Yield of pure, recristallized product.¹²

^aMethod A : reflux 15 mn of a slightly acidified (HCl) solution of compound 3 in water or methanol. ^bReflux 5h of a slightly acidified (HCl) solution of compound 3 and aniline in methylene dichloride. ^cMethod B : see the "representative procedure". ^dSame as method B, with CH,Cl, as a solvent, and a water bath at room temperature.

A general electrolysis procedure for a preparation of β -enaminoesters 3 is as follows : a mixture of acid 2 (R = H, Z₁ = CO₂Me, Z₂ = CN) (141.8g, 0.675 mole), sodium methoxide (2.5g), tetra-n-butylammonium hydrogen sulfate (2.5g) and methanol (2500 ml) was stirred into an undivided jacketed beaker equipped with a nitrogen inlet, 25 graphite-rods anodes and 25 graphite-rods cathodes and an exit tube for venting purposes. The carbon-rods (6.15 mm in diameter), immersed 20 cm into the suspension, were spaced 10 mm apart. During the electrolysis, the temperature was maintained at 15°. The current was adjusted at 500 mA ; the initial cell voltage was 3.9 V. After 80 h, the suspension was filtered, the solution was slightly acidified with hydrochloric acid and evaporated. The combined solids were recristallized from methanol. The yield of β -enaminoester 3 (R₁ = Me) was 72 % ; mp. 144°, IR (nujol) ν cm⁻¹ : 3300 (N-H), 2200 (C=N), 1720 (C-O), 1600 (C-C), 1210 (C-O) ; ¹H NMR (CDCl₃) δ ppm : 1.9-2.4 (m, 2H), 2.7-3.2 (m, 2H), 3.30 (s, 3H), 3.74 (s, 3H), 5.1 (m, 1H).

In a representative procedure for method B, triflic acid (0.2 ml) was slowly added via syringe through a septum cap, to a stirred mixture of β -enaminoester 3 (R. R₁ - Me) (2.1g, 10 mmole) and trimethylsilyl aniline (1.8g, 10 mmole). The reaction was exothermic and instantaneous. The solid was washed with methylene dichloride/ether, and the combined solvents were evaporated. The yield of crude β -enaminoester 4 (R - Me, Nu - C₆H₅-NH-) was 94 %. This product was recristallized from methylene dichloride/ether, mp. 150°, IR (nujol) ν cm⁻¹ : 3330 (C=O), 2190 (C=N), 1690 (C=O), 1600 (C=C), 1560 (C=C) ; ¹H NMR (CDC13) & ppm : 1.6-2.9 (m, 2H), 3-3.6 (m, 2H), 3.35 (s, 3H), 3.71 (, 3H), 4.2 (s, 1H), 5.27 (t, J = 6.7 Hz, 1H), 6.3-7.5 (m, 5H).

References and notes.

- T. Iwasaki, H. Horikawa, K. Matsumoto and M. Miyoshi, J. Org. Chem., 44, 1552 (1) (1979).
- T. Shono, Tetrahedron, 40, 811 (1984). (2)
- J. C. Hubert, W. Steege, W.N. Speckamp and H. O. Huisman, Synth. Commun., 2, 103 (3) (1971); M. H. A. M. Sho, R. J. Vijn and W. N. Speckamp, J. Org. Chem., 50, 4014 (1985).
- (4) L. G. Wistrand, Jansen Chim. Acta, 4, 34 (1986) ; W. N. Speckamp and H. Hiemstra, Tetrahedron, 41, 4367 (1985).
- J. B. P. A. Wijnberg and W. N. Speckamp, Tetrahedron, 34, 2579 (1978) ; (5) J. L. Moniot, D. M. Hindenlang and M. Shamma, J. Org. Chem., 44, 4347 (1979).
- Compounds ii, related to 3, were previously obtained by reduction of products i (6) with diisobutylaluminum hydride ; these products were used in a synthesis of depentylperhydrogephyrotoxin: D. J. Hart, J. Org. Chem., 46, 367 (1981).

- Y. Kosugi, T. Nagasaka, F. Hamaguchi and S. Ohki, Heterocycles, 24, 625 (1986) ; (7) N. M. Tsybina, B. I. Bryantsev, N. A. Loshakova, T. V. Protopopova, S. G. Rozenberg and A. P. Skoldinov, J. Org. Chem. USSR, 504 (1973); J. C. Hubert, J. B. P. A. Wijnberg and W. N. Speckamp, Tetrahedron, 31, 1437 (1975); N. A. Anisimova, E. P. Kramavora, I. Y. Belavin and Y. I. Baukov, J. Gen. Chem. U.S.S.R., 1631 (1986) ; T. Nishitani, H. Horikawa, T. Iwasaki, K. Matsumoto, I. Inoue and M. Miyoshi, J. Org. Chem., 47, 1706 (1982). H. Horikawa, T. Iwasaki, K. Matsumoto and M. Miyoshi, *ibid.*, 43, 335 (1978).
- (8)
- Y. Yamada, K. Hatamo and M. Matsui, Agr. Biol. Chem., 74, 1536 (1970); (9) S. Danishefsky and J. Etheredge, J. Org. Chem., 39, 3430 (1974). J. P. Célérier, M. Haddad, C. Saliou, G. Lhommet, M. Dhimane, J. P. Pommelet and J. Chuche, ,45, 6161 (1989). Tetrahedron
- T. Yamazaki, K. Matoba, S. Imoto and M. Terashima, Chem. Pharm. Bull., 24, 3011 (10)(1979).
- M. D. Bachi, R. Breiman and H. Meshulam, J. Org. Chem., 48, 1439 (1983) ; (11) T. Nagasaka, A. Tsukada and F. Hamaguchi, Heterocycles, 24, 2015 (1986); K. Shiosaki and H. Rapoport, J. Org. Chem., 50, 1229 (1985) ; J. S. Petersen, G. Fels and H. Rapoport, J. Amer. Chem. Soc., 106, 4539 (1984); F. G. Fang and S. J. Danishefsky, Tetrahedron Lett., 30, 3621 (1989).
- All new compounds have been fully characterized by elemental analysis (C, H, N, O (12) \pm 0.4), IR, ¹H NMR. The assignment of the substituents of the exocyclic double bound as $Z_1 = CO_2Me$ and $Z_2 = CN$, was made on the basis of NMR data.

(Received in France 22 November 1989)

1716