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Abstract: Hydrogenation of tetrahydropyrazine 4g with [(R)-BINAP(COD)Rh]TfO gave piperazine 6g in 
96% yield and 99% ee. Simple hydrogenolytic deprotection and crystallization afforded the key chiral (S)-N- 
Boc-piperazine MK-639 intermediate 1 in high yieM and enantiomeric purity. 

Of the many potential therapeutic targets in the treatment of AIDS, inhibition of the HIV protease enzyme 

continues to show the most promise as an effective means of antiretroviral therapy, l The progression of the 

Merck HIV protease inhibitor Indinavh" Sulfate (fo~xnerly L-735,524) 2 to phase III clinical trials has necessitated 

the development of practical and efficient methodology for the large scale pleparation of this complex molecule. 
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At present, Indinavir is consu'ucted by coupling epoxide 23 with (S)-2-tert-butylcarboxamide-4-tert- 

butoxycarbonylpiperazine (1). While 1 has been previously prepared utilizing classical chemical resolution 

methodology, 4 an asymmetric catalytic hydrogenation of tetrahydropyrazine derivatives, e.g. 3 or 4, appeared 

to be an attractive alternative. 

R1 R 1 

(NN2[~O X chiral catalystH2 ( N 2 ~  O N  X 

3 X=OMe 5 X=OMe 

4 X= NHt-Bu 6 X = NHt-Bu 

R1, R2 = H, Ac, Boc, Cbz 

While standard acyclic tx-(acylamino)acrylic acids and their methyl esters have been efficiently reduced 

asymmetrically with a variety of Rtdchiral bisphosphine catalysts,5 analogous reductions of tetrahydropyrazine 

derivatives 3 or 4 have not been reported. In addition, the cyclic nature of the tetrahydropyrazine system, and 
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the contribution of the vinylogous urethane (X = OMe) or urea (X = NHt-Bu) can be expected to perturb the 

catalyst-olefin interaction and hence the reduction. 

7 

O'x~" R2 

H H 

o -R, oAR, 
3 b :R  I = C H  3 3 e: R I = C H 3 ,  Rz =CH3 

¢: R 2 = Ot-Bu f: R 1 = CH 3, R 2 = Ot-Bu 
d: R 1 = OBn g: RI = OBn, R2 = Ot-Bu 

h: R~ = Ot-Bu, R2 = Ot-Bu 

The tetrahydropyrazine substrates 3 and 4 were readily obtained by partial hydrogenation of the 

corresponding pyrazines with Pd/C. In the case of pyrazine ester 7, the hydrogenation stopped cleanly at 3a 6 

and the two nitrogen atoms were readily differentiated by sequential protection. The lone pair of N4 is 

conjugated with the ester carbonyl group and is consequently less basic than N1. Protection of N1 as its 

acetamide, Cbz or Boc carbamate, 3 b-d, was accomplished under standard conditions; however, subsequent 

protection of N4 (Ac20 or Boc20) required the presence of DMAP and gave 3 e-h. 

While the partial hydrogenation of pyrazine amide 8 to 4a is possible under tightly controlled hydrogenation 

conditions, 7 tetrahydropyrazine 4a was also readily trapped as 4b or 4(: by hydrogenation of 8 in a Parr shaker 

with Pd/C in the presence of Ac20 or Boc20, respectively. Again, N4 was protected as its corresponding 

acetamide or Boc derivative using Ac20 or Boc20 in the presence of DMAP to give 4 e or f, respectively. 8 
O . ~ R 2  

H H 

" co  t. o 

" oA , oA.1 8 4 a  
4b:  R 1 =CI-I 3 4 e: R1 =CH3, R2=CH3 

¢: R1 = Ot-Bu f: R1 = CH3, 1:12 = Ot-Bu 
d: R 1 = OBn g: R 1 = OBn, R 2 = Ot-Bu 

A systematic study was undertaken to study the influence of substrate substitution pattern, reaction 

conditions, and various Rh catalysts on the hydrogenation. Since commonly studied chiral hydrogenation 

substrates contain an acetamide and a CO2Me group, 3f was chosen as the model substrate. The corresponding 

piperazine 5 was obtained with [(chiral bisphosphine)(COD)Rh]TfO catalysts; however, the observed ee's were 

unexpectedly low (Table 1). 9 Even Et-DUPHOS and BINAP ligands, which give >98%ee with simple acyclic 

o~-(acylamino)aerylie acids, resulted in <60% ee. 

Table  1: Hydrogenation of 3f with [(chiral bisphosphine)(COD)Rh]TfO 

I Boc-BPPM PROPHOS SKEWPHOS Et-DUPHOS DIOP BINAP Catal]tst 
I 

ee ] 21 22 23 50 55 56 
| 

yield 187 41 86 97 90 88 

Conditions: 3 tool% catalyst, 70 bar H2 at 40°C, CF3CH2OH(TFE) 
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Next, the influence of reaction conditions was examined using the Et-DUPHOS/Rh catalyst with substrate 

3f. The ee increased from a level of ca. 48% in MeOH or TFE to ca. 58% in the less polar IPA or t-amylaicohol 

solvents; however, addition of non-alcoholic solvents (CH2CI2/IPA) either did not improve the observed ee, or 

inhibited the reaction (toluene/IPA). In contrast to what is expected from the accepted mechanism for these 

reactions, the observed ee's were virtually identical at both 3 and 70 bar. t0 

As neither catalyst nor reaction condition variation resulted in a satisfactory chiral hydrogenation, the 

influence of the substrate structure was examined next with [Et-DUPHOS(COD)Rh]TfO (Table 2). 

Consequently, the hydrogenations of the N1 acylated substrates 3 f-h were examined. 11 The observed ee's 

were largely independent on the substitution at NI, and acetamide 3f, and Cbz and Boc derivatives 3g and 3h 

all gave ca. 50% ee. The effect of the electronic character of the olefin was then explored by evaluation of 

several differentially substituted N4 derivatives on both the Me ester and the tert-butylcarboxamide. Decreasing 

the availability of the N4 lone pair for conjugation with the ester or amide by going from N-H to Boe or 

acetamide improved the observed ee. The exception was 3e, where the olefin has become so electron poor, that 

it is a poor hydrogenation substrate. Interestingly, the optical inductions observed with the vinylogous urea 

derivatives 4 were slightly better than those of the corresponding vinyiogous urethanes 3. 

Table 2: Substrate Dependence of Hydrog, 

Substrate ee ),ield Subsu'ate 

3b 

3e 

3 f  

3g 

3h 

32 95 4 b 

47 78 4e 

50 97 4 f 

56 57 4 g 

49 94 

:nation with [Et-DUPHOS (COD) Rh]TfO 

ee yield 

39 97 

69 98 

70 95 

65 83 

Conditions: 3 tool% catalyst, 70 bar H2 at 40°C, 

CF3CH2OH solvent 

The above results (Table 1 and 2) coupled with the need for appropriate substitution in order to prepare the 

MK-639 intermediate 1, led us to attempt to reduce 4g in the presence of [(R)-BINAP(COD)Rh]TfO. 12 

Hydrogenation with 2% catalyst in MeOH at 70 bar gave a 96% yield of 6g in 99% ee. 13 

Hydrogenolytic removal (Pd/C, MeOH) of the Cbz group, followed by crystallization gave I in 99% yield and 

>99% ee. 

Boc Boc Boc 

(~ ~L"cONHI-~uu N~L~CONHI-~uu N~]~CONHt gu Cbz Cbz H 
4O ~ 1 

In summary, an efficient asymmetric synthesis of the key piperazine intermediate 1 for the HIV-protease 

inhibitor Indinavir Sulfate was developed utilizing a novel and efficient asymmetric catalytic hydrogenation of 

the cyclic vinylogous urea 4g. 
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