3243

Co-ordination Chemistry of Higher Oxidation States. Part 41.¹ Synthesis, Spectroscopic and Electrochemical Studies of Cationic Ruthenium(III) Group 15 and 16 Donor Ligand Complexes. Structure of *trans*-[Ru{C₆F₄(AsMe₂)₂-o}₂Br₂]BF₄[†]

Neil R. Champness, William Levason,* Derek Pletcher and Michael Webster Department of Chemistry, University of Southampton, Southampton SO9 5NH, UK

The complexes *trans*-[Ru(L-L)₂X₂]BF₄ [X = Cl or Br; L-L = bidentate ligand including C₆H₄(PMe₂)₂-o, C₆H₄(AsMe₂)₂-o, C₆F₄(AsMe₂)₂-o, Me₂PCH₂CH₂PMe₂, Ph₂PCH₂CH₂PPh₂, Ph₂AsCHCHAsPh₂, C₆H₄-(PPh₂)₂-o, C₆F₄(PPh₂)₂-o, MeSCH₂CH₂SMe, PhSCH₂CH₂SPh and PhSeCH₂CH₂SePh] have been prepared by nitric acid oxidation of the corresponding [Ru(L-L)₂X₂] in aqueous HBF₄ and in other ways. The complexes have been characterised by analysis, IR and UV/VIS spectroscopies, and magnetic measurements, and the Ru^{II}-Ru^{III} redox potentials established by cyclic voltammetry. The crystal structure of *trans*-[Ru{C₆F₄(AsMe₂)₂-o}₂Br₂]BF₄ has been determined: monoclinic, space group C2/c, a = 22.080(5), b = 18.064(2), c = 8.576(3) Å, $\beta = 96.27(3)^\circ$, R = 0.040 for 2266 reflections [$F > 3\sigma(F)$]; Ru-Br 2.455(1), Ru-As 2.457(1), 2.460(1) Å. Electrochemical studies have provided evidence for the formation of ruthenium(IV) analogues in solution at low temperatures for certain ligands, but these are too unstable to isolate by chemical means. Comparisons with the analogous iron and osmium systems are made.

Ruthenium(II) complexes of the type $Ru(L-L)_2X_2$ with diphosphine, diarsine or dithioether ligands (L-L) are well known,² ⁷ and are mostly six-co-ordinate neutral complexes, often obtainable with both *cis* or *trans* geometries. If the ligands are bulky as in $(C_6H_{11})_2PCH_2CH_2P(C_6H_{11})_2$ or have longer backbones, five-co-ordinate cationic species of type $[Ru(L-L)_2X]^+$ are readily formed.^{8,9} The corresponding ruthenium(III) complexes have received cursory study,^{2,3,5} and we report here some detailed studies of the latter with a variety of Group 15 and 16 donor bidentate ligands. In marked contrast to both iron(IV)¹⁰ and osmium(IV),^{1,11} no analogous halogenoruthenium(IV) complexes have been obtained, although *trans*-[Ru(N₄)X₂]²⁺ cations are known with tetraazamacrocycles (N₄).¹² We also report a search for these elusive complexes using electrochemical techniques.

Experimental

Physical measurements were made as described previously.¹³ Electrochemistry at low temperatures ¹⁴ was carried out in a jointless cell at a vitreous carbon-disc electrode, using a silver wire as a reference electrode. Cyclic voltammograms were recorded for *ca*. 0.75×10^{-3} mol dm⁻³ solutions of selected complexes in acetonitrile at -45 °C and in trifluoroacetic acid at -23 °C. The electrolyte was NBuⁿ₄BF₄ in all cases, and the systems were calibrated against ferrocene in separate experiments under the same conditions.

Hydrated 'RuCl₃•xH₂O' was obtained from Johnson Matthey and used as supplied. The corresponding bromide was obtained by repeatedly evaporating to dryness a mixture of the trichloride and 48% aqueous HBr.

Ruthenium(III) *Complexes.*—Syntheses of ruthenium complexes with methyl-substituted ligands were carried out under a nitrogen atmosphere. The crude ruthenium(II) complexes were prepared mainly by one method, although slight variations were used for some as described below. Ruthenium(III) complexes were then prepared from the ruthenium(II) species.

trans-[Ru{C₆H₄(AsMe₂)₂-o}₂Cl₂]BF₄. To a deoxygenated solution of RuCl₃·xH₂O (0.24 g, 1.0 mmol) in ethanol (50 cm³) and water (15 cm³), was added C₆H₄(AsMe₂)₂-o (0.70 g, 2.4 mmol) via a syringe. This mixture was refluxed for 1 h under nitrogen, the solution changing from deep blue to yellow and yielding a green-yellow solid upon cooling. This precipitate was filtered off, washed with diethyl ether and dried *in vacuo*. It was suspended in 40% HBF₄ (15 cm³), concentrated HNO₃ added dropwise (1 cm³ in total) and the mixture was stirred for 10 min. The green solid was filtered off, washed with water (10 cm³) and then diethyl ether (3 × 10 cm³), and dried *in vacuo* (0.21 g, 28%) (Found: C, 28.7; H, 4.0. C₂₀H₃₂As₄BCl₂F₄Ru requires C, 28.9; H, 3.8%), Λ (MeNO₂) = 81.5 Ω^{-1} cm² mol⁻¹.

The following complexes were prepared analogously: trans-[Ru(Ph₂PCH₂PPh₂)₂Cl₂]BF₄ (65%) (Found: C, 58.3; H, 4.6. C₅₀H₄₄BCl₂F₄P₄Ru requires C, 58.4; H, 4.3%), Λ (MeNO₂) = 80 Ω^{-1} cm² mol⁻¹; trans-[Ru(Ph₂PCH₂CH₂PPh₂)₂Cl₂]BF₄ (68%) (Found: C, 59.2; H, 4.2. C₅₂H₄₈BCl₂F₄P₄Ru requires C, 59.2; H, 4.6%), Λ (MeNO₂) = 70 Ω^{-1} cm² mol⁻¹; trans-[Ru(Ph₂PCHCHPPh₂)₂Cl₂]BF₄ (62%) (Found: C, 59.2; H, 4.3. C₅₂H₄₄BCl₂F₄P₄Ru requires C, 59.4; H, 4.2%); trans-[Ru(Me₂PCH₂CH₂PMe₂)₂Cl₂]BF₄ (48%) (Found: C, 25.7; H, 5.8. C₁₂H₃₂BCl₂F₄P₄Ru requires C, 25.8; H, 5.8%); trans-[Ru(Ph₂AsCH₂CH₂AsPh₂)₂Cl₂]BF₄ (61%) (Found: C, 50.6; H, 4.1. C₅₂H₄₈As₄BCl₂F₄Ru requires C, 50.7; H, 3.9%); trans-[Ru{C₆F₄(AsMe₂)₂-o²₂Cl₂]BF₄ (26%) (Found: C, 24.7; H, 2.4. C₂₀H₂₄As₄BCl₂F₁₂Ru requires C, 24.6; H, 2.5%), μ = 1.91; trans-[Ru(Ph₂AsCHCHAsPh₂)₂Cl₂]BF₄ (85%) (Found: C, 50.9; H, 3.6%).

The complex *trans*-[Ru(PhSeCH₂CH₂SePh)₂Cl₂]BF₄ was prepared similarly but hypophosphorous acid (2 cm³) was added to the refluxing solution to give the crude, pink ruthenium(II) complex (36%) (Found: C, 36.2; H, 3.3. $C_{28}H_{28}$ -BCl₂F₄RuSe₄ requires C, 35.8; H, 3.0%).

The following complexes were prepared similarly, but using RuBr₃·xH₂O as the starting material: *trans*-[Ru(Ph₂PCH₂-

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

Table 1 Atomic coordinates for *trans*- $[Ru{C_6F_4(AsMe_2)_2-o}_2-Br_2]BF_4$

Atom	x	у	Ζ
Ru	0.2500	0.750 0	0.0000
Br	0.257 99(4)	0.641 95(5)	0.174 63(10)
As(1)	0.216 07(4)	0.827 45(5)	0.209 43(9)
As(2)	0.353 46(4)	0.787 78(5)	0.105 53(9)
F(1)	0.230 0(2)	0.939 4(3)	0.487 9(6)
F(2)	0.329 5(3)	0.990 2(3)	0.654 1(6)
F(3)	0.440 8(3)	0.952 5(4)	0.582 1(7)
F(4)	0.452 7(2)	0.861 0(4)	0.339 0(7)
C(1)	0.165 7(4)	0.913 1(5)	0.154 2(11)
C(2)	0.176 7(4)	0.779 4(5)	0.374 2(11)
C(3)	0.288 9(4)	0.869 8(5)	0.326 9(8)
C(4)	0.284 9(4)	0.917 9(4)	0.449 2(9)
C(5)	0.335 0(5)	0.945 3(5)	0.537 3(10)
C(6)	0.390 8(5)	0.927 0(5)	0.500 1(10)
C(7)	0.396 3(4)	0.877 8(6)	0.374 8(10)
C(8)	0.346 3(3)	0.849 8(5)	0.287 3(9)
C(9)	0.398 8(4)	0.849 2(6)	-0.0224(11)
C(10)	0.411 4(4)	0.714 3(6)	0.181 4(13)
В	0.0000	0.231 2(20)	0.7500
F(5)	0.040 1(4)	0.190 4(5)	0.677 3(10)
F(6)	0.034 1(5)	0.276 3(7)	0.854 8(16)

CH₂PPh₂)₂Br₂]BF₄ (81%) (Found: C, 54.7; H, 4.3. C₅₂H₄₈-BBr₂F₄P₄Ru requires C, 54.6; H, 4.2%), $\mu = 2.00$; trans-[Ru(Me₂PCH₂CH₂PMe₂)₂Br₂]BF₄ (60%) (Found: C, 21.9; H, 5.1. C₁₂H₃₂BBr₂F₄P₄Ru requires C, 22.2; H, 5.0%); trans-[Ru{C₆H₄(AsMe₂)₂-o}₂Br₂]BF₄ (17%) (Found: C, 26.0; H, 3.5. C₂₀H₃₂As₄BBr₂F₄Ru requires C, 26.1; H, 3.5%); trans-[Ru {C₆F₄(AsMe₂)₂-o}₂Br₂]BF₄ (23%) (Found: C, 22.6; H, 2.3. C₂₀H₂₄As₄BBr₂F₁₂Ru requires C, 22.6; H, 2.3%), $\mu = 2.02$.

The complex *trans*-[Ru(PhSeCH₂CH₂SePh)₂Br₂]BF₄ was prepared from the ruthenium(II) species, which was prepared by refluxing the analogous ruthenium(II) chloro complex in ethanol overnight, with a large excess of LiBr (Found: C, 32.5; H, 2.9. $C_{28}H_{28}BBr_2F_4RuSe_4$ requires C, 32.7; H, 2.7%).

The following complexes were prepared similarly from RuX₃·xH₂O, but using *N*,*N*-dimethylformamide as solvent, replacing ethanol and water: *trans*-[Ru{C₆H₄(PPh₂)₂-*o*]₂Cl₂]-BF₄ (67%) (Found: C, 62.5; H, 4.3. C₆₀H₄₈BCl₂F₄P₄Ru requires C, 62.6; H, 4.2%); *trans*-[Ru{C₆F₄(PPh₂)₂-*o*]₂Cl₂]BF₄ (53%) (Found: C, 55.3; H, 3.3. C₆₀H₄₀BCl₂F₁₂P₄Ru requires C, 55.6; H, 3.1%); *trans*-[Ru{C₆H₄(PPh₂)₂-*o*]₂Br₂]BF₄ (51%) (Found: C, 58.0; H, 4.1. C₆₀H₄₈BBr₂F₄P₄Ru requires C, 58.1; H, 3.9%), Λ (MeNO₂) = 70 Ω^{-1} cm² mol⁻¹, μ = 1.86; *trans*-[Ru{C₆F₄(PPh₂)₂-*o*]₂Br₂]BF₄ (57%) (Found: C, 52.1; H, 3.1. C₆₀H₄₀BBr₂F₁₂P₄Ru requires C, 52.0; H, 2.9%); *trans*-[Ru{Pu}(Ph₂AsCHCHAsPh₂)₂Br₂]BF₄ (72%) (Found: C, 46.9; H, 3.0. C₅₂H₄₄As₄BBr₂F₄Ru requires C, 47.4; H, 3.4%), μ = 1.96.

The complex trans- $[Ru{C_6H_4(PMe_2)_2-o}_2Cl_2]BF_4$ was prepared similarly from RuCl₃•xH₂O, but using 2-methoxyethanol as the solvent (28%) (Found: C, 36.5; H, 5.0. $C_{20}H_{32}BCl_2F_4P_4Ru$ requires C, 36.7; H, 4.9%).

trans-[Ru(MeSCH₂CH₂SMe)₂Cl₂]BF₄. To a solution of RuCl₃·xH₂O (0.24 g, 1.0 mmol) in 2-methoxyethanol (60 cm³) was added MeSCH₂CH₂SMe (0.34 g, 2.8 mmol) via a syringe, and the mixture was refluxed for 2 h. The colour changed from dark red to orange-yellow upon addition of hypophosphorous acid (2 cm³) after 1 h of reflux. The solvent was removed under vacuum and the crude ruthenium(II) species was extracted into CH₂Cl₂ and reprecipitated with diethyl ether. The ruthenium(II) complex was prepared by suspending the ruthenium(II) complex in ethanol (30 cm³) and 40% HBF₄ (5 cm³), and bubbling chlorine gas through the suspension until no further colour change from yellow-orange to red was observed. The reaction mixture was left to stir for 15 min. The red precipitate was filtered off, washed with diethyl ether and dried *in vacuo* (0.21 g, 42%) (Found: C, 19.0; H, 4.1. C₈H₂₀BCl₂F₄RuS₄ requires

C, 19.1; H, 4.0%), Λ (MeNO₂) = 91.1 Ω^{-1} cm² mol⁻¹, μ = 2.05.

The complex trans-[Ru(PhSCH₂CH₂SPh)₂Cl₂]BF₄ was prepared analogously (39%) (Found: C, 45.0; H, 3.9. $C_{28}H_{28}$ -BCl₂F₄RuS₄ requires C, 44.7; H, 3.7%).

The complex *trans*-[Ru(MeSCH₂CH₂SMe)₂Br₂]BF₄ was prepared similarly from RuBr₃•*x*H₂O, except that the crude ruthenium(II) species was suspended in ethanol (30 cm³) and 40% HBF₄ (5 cm³) and bromine in CCl₄ (*ca.* 5% v/v) were added until a permanent excess of bromine was observed. The reaction mixture was stirred for 15 min. The blue precipitate was filtered off, washed with diethyl ether and dried *in vacuo* (45%) (Found: C, 16.3; H, 3.5. C₈H₂₀BBr₂F₄RuS₄ requires C, 16.2; H, 3.4%).

The following compounds were prepared similarly: trans-[Ru(PhSCH₂CH₂SPh)₂Br₂]BF₄ (44%) (Found: C, 40.0; H, 3.4. C₂₈H₂₈BBr₂F₄RuS₄ requires C, 40.0; H, 3.3%); trans-[Ru(Me-SeCH₂CH₂SeMe)₂Br₂]BF₄ (Found: C, 12.4; H, 2.7. C₈H₂₀-BBr₂F₄RuSe₄ requires C, 12.3; H, 2.6%).

X-Ray Structure Determination.—Air-stable green crystals of $[Ru{C_6F_4(AsMe_2)_2-o}_2Br_2]BF_4$ were grown by vapour diffusion of diethyl ether into acetonitrile solutions and sealed in glass capillaries. Preliminary photographic X-ray examination established the crystal system and approximate cell dimensions. Density measured by flotation (CCl₄-C₂H₄Br₂).

Crystal data. $C_{20}H_{24}As_4BBr_2F_{12}Ru$, M = 1063.78, monoclinic, space group C2/c, a = 22.080(5), b = 18.064(2), c = 8.576(3) Å, $\beta = 96.27(3)^{\circ}$, U = 3400.1 Å³, Z = 4, $D_m = 2.13(2)$, $D_c = 2.079$ g cm⁻³, F(000) = 2012, $\lambda(Mo-K\alpha) = 0.710$ 69 Å, $\mu = 66.7$ cm⁻¹.

Data collection. Using a CAD-4 diffractometer equipped with graphite monochromator and Mo-K α radiation, 3247 reflections ($\theta = 1.5-25^{\circ}$; $h \ 0-26$, $k \ 0-21$, $l \ -10$ to 10) were measured from a room-temperature crystal (0.45 \times 0.40 \times 0.4 mm). Two intensity check reflections showed no decay and a ψ -scan empirical absorption correction based on three reflections was applied (transmission: maximum 99.8, minimum 82.5%). The systematic absences indicated the space group Cc or C2/c of which the latter was confirmed by the structure solution. After data reduction there remained 2990 unique reflections ($R_{int} = 0.010$) of which 2266 with $F > 3\sigma(F)$ were used in the refinement.

Structure solution. The positions of the Ru, As and Br atoms were determined by direct methods available in SHELXS 86¹⁵ and subsequent structure-factor and electron-density syntheses located the remaining non-H atoms. Hydrogen atoms were introduced into the model at a later stage in calculated positions [d(C-H) = 0.95 Å]. Full-matrix least-squares refinement¹⁶ minimising $\sum w\Delta^2$ converged to R = 0.040 {196 parameters, 2266 reflections, anisotropic (Ru, As, Br, F, C, B) and isotropic (H) atoms, $w = 1/[\sigma^2(F) + 0.0005F^2]$, R' = 0.058, $\Delta/\sigma =$ 0.14}. The final difference electron-density synthesis showed all features in the range 0.96 to -0.61 e Å⁻³. Neutral atom scattering factors and anomalous dispersion corrections were taken from ref. 17 (Ru, As) and SHELX 76¹⁶ (Br, F, C, B, H). All calculations were carried out on an IBM 3090 computer using the programs SHELXS 86,15 SHELX 76,16 ORTEP II 18 and PARST.¹⁹ The atomic coordinates are given in Table 1.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

The reduction of 'RuX₃· nH_2O '* (X = Cl or Br) with diphosphines, diarsines, dithioethers or diselencethers in

^{*} Despite the name, hydrated ruthenium trichloride and tribromide mostly contain Ru^{IV}, the 'trihalide' referring to the 1:3 Ru:X ratio.²⁰

Table 2 Selected spectroscopic data for the trans ruthenium(III) complexes

		$v(Ru-X)^{a}/$	
Compound	Colour	cm ⁻¹	Ultraviolet-visible $E_{max}^{b}/10^{3} \text{ cm}^{-1} (\epsilon/\text{dm}^{3} \text{ mol}^{-1} \text{ cm}^{-1})$
[Ru(Ph,PCH,PPh,),Cl,]BF ₄	Dark green	346	14.2 (420), 21.4 (530), 25.0 (550)
[Ru(Ph,PCH,CH,PPh,),Cl,]BF4	Red-brown	345	13.9 (690), 21.3 (680), 23.8 (670), 25.8 (670)
$[Ru{C_6H_4(PMe_2)_2-o}_2Cl_2]BF_4$	Blue-green	330	14.7 (735), 17.3 (120) (sh), 26.7 (1070)
$[Ru{C_{6}H_{4}(PPh_{2})_{2}-o]_{2}Cl_{2}]BF_{4}$	Red-brown	347	13.6 (1360), 16.6 (400), 20.4 (1470), 24.9 (1230)
$[Ru{C_6F_4(PPh_2)_2-o}_2Cl_2]BF_4$	Dark red	357	13.2 (1140), 16.9 (625), 19.6 (1280), 25.1 (1040), 32.9 (45 560)
[Ru(Ph ₂ PCHCHPPh ₂) ₂ Cl ₂]BF ₄	Dark brown	346	13.8 (1070), 20.4 (970), 24.4 (800)
$[Ru(Me_2PCH_2CH_2PMe_2)_2Cl_2]BF_4$	Blue-green	329	14.7 (1420), 16.6 (380) (sh), 27.2 (2580)
[Ru(Ph ₂ AsCH ₂ CH ₂ AsPh ₂) ₂ Cl ₂]BF ₄	Green	340	14.0 (860), 16.2 (260) (sh), 22.7 (900), 33.1 (37 810)
$[Ru{C_6H_4(AsMe_2)_2-o}_2Cl_2]BF_4$	Blue-green	342	15.2 (1400), 17.0 (340) (sh), 27.3 (1630)
$[Ru{C_6F_4(AsMe_2)_2-o}_2Cl_2]BF_4$	Blue	340	15.6 (735), 17.5 (225) (sh), 21.3 (340), 26.5 (880)
[Ru(Ph ₂ AsCHCHAsPh ₂) ₂ Cl ₂]BF ₄	Dark green	346	14.2 (1280), 16.6 (390), 22.6 (1290), 26.5 (1460)
$[Ru(MeSCH_2CH_2SMe)_2Cl_2]BF_4$	Dark red	348	17.2 (780), 23.2 (2665) in MeCN
[Ru(PhSCH ₂ CH ₂ SPh) ₂ Cl ₂]BF ₄	Dark brown	354	17.1 (340), 22.4 (1310), 32.8 (16 440)
$[Ru(PhSeCH_2CH_2SePh)_2Cl_2]BF_4$	Green	344	15.6 (450), 23.6 (1570), 32.4 (20 860)
$[Ru(Me_2NCH_2CH_2NMe_2)_2Cl_2]ClO_4$			27.2 (3100), 32.5 (1540) ^c in 0.1 mol dm ⁻³ HCl
[Ru(Ph ₂ PCH ₂ CH ₂ PPh ₂) ₂ Br ₂]BF ₄	Purple-brown	268	13.1 (5050), 18.7 (1360), 23.4 (1440)
$[Ru{C_6H_4(PMe_2)_2-o}_2Br_2]BF_4$	Green	268	13.4 (3615), 15.4 (530) (sh), 22.5 (1480), 23.8 (1385) (sh)
$[\operatorname{Ru}{C_6H_4(\operatorname{PPh}_2)_2-o}_2\operatorname{Br}_2]BF_4$	Dark blue	271	12.6 (3050), 15.0 (780), 17.4 (960), 23.2 (910), 32.3 (11 210) (sh)
$[Ru{C_6F_4(PPh_2)_2-o}_2Br_2]BF_4$	Blue-green	284	12.5 (3100), 14.9 (900), 16.6 (870), 22.8 (810), 32.1 (25 670)
$[Ru(Me_2PCH_2CH_2PMe_2)_2Br_2]BF_4$	Green	272	13.5 (4925), 23.15 (2500)
$[Ru{C_6H_4(AsMe_2)_2-o}_2Br_2]BF_4$	Green	283	13.9 (3380), 15.0 (500) (sh), 23.1 (1130), 24.7 (1290)
$[\operatorname{Ru}{C_6F_4}(\operatorname{AsMe}_2)_2 - o]_2\operatorname{Br}_2]\operatorname{BF}_4$	Green	271	12.1 (sh), 14.0 (5480), 15.6 (840) (sh), 22.5 (1110) (sh), 24.3 (1440)
[Ru(Ph ₂ AsCHCHAsPh ₂) ₂ Br ₂]BF ₄	Blue-black	268	13.1 (4190), 15.2 (785), 18.8 (1080), 22.5 (1130), 32.0 (21 220) (sh)
$[Ru(MeSCH_2CH_2SMe)_2Br_2]BF_4$	Dark blue	287	17.4 (3990), 21.1 (620), 27.9 (465) in MeCN
[Ru(PhSCH ₂ CH ₂ SPh) ₂ Br ₂]BF ₄	Grey-blue	260	15.3 (sh), 17.8 ($-$), 23.5 ($-$) ^{<i>d</i>} in HCONMe ₂
$[Ru(MeSeCH_2CH_2SeMe)_2Br_2]BF_4$	Dark blue	n.a.	17.4 (3910), 21.6 (580), 28.5 (460) in MeCN
$[Ru(PhSeCH_2CH_2SePh)_2Br_2]BF_4$	Blue	n.a.	15.3 (750), 18.8 (720) (sh), 22.9 (910) (sh), 31.6 (16 470)
$[Ru(Me_2NCH_2CH_2NMe_2)_2Br_2]ClO_4$			21.2 (4280), 27.0 (480) ^c in MeCN
			· · · · · · · · · · · · · · · · · · ·

^a Nujol mull, n.a. = not assigned. ^b In CH₂Cl₂ solution unless indicated otherwise. ^c Data from ref. 21. ^d Complex decomposes slowly in solution, ε_{mol} not cited.

Fig. 1 The UV/VIS spectra of *trans*-[$Ru{C_6H_4(PMe_2)_2-o}_2X_2$]BF₄ in CH₂Cl₂: X = Cl (---) or Br (----)

refluxing alcohols results in the production of yellow or orange ruthenium(II) complexes, *trans*-[Ru(L-L)₂X₂].²⁻⁷ In a few cases the reductions were completed by addition of H₃PO₂ (see Experimental section). The crude ruthenium(II) complexes suspended in 40% aqueous HBF₄ are easily oxidised to the deeply coloured [Ru(L-L)₂X₂]BF₄ (Table 2) by dropwise addition of concentrated HNO₃. The dithioether complexes tend to dissolve in this acid mixture from which they cannot be recovered. The ruthenium(III) dithioether complexes are better obtained by halogen oxidation of the ruthenium(II) analogues in EtOH-HBF₄ suspension. The new diselencether complexes *trans*-[Ru(RSeCH₂CH₂SeR)₂X₂]BF₄ (R = Ph, X = Cl or Br; R = Me, X = Br) were easily made, but repeated attempts to obtain a pure sample of *trans*-[Ru(MeSeCH₂CH₂SeMe)₂-Cl₂]BF₄ have been unsuccessful.

The trans- $[Ru(L-L)_2X_2]BF_4$ complexes are deeply coloured, air-stable solids, soluble in a wide range of organic solvents, in which they are 1:1 electrolytes. The diphosphine and diarsine complexes are stable in solution but the dithioether complexes,

especially those of $PhSCH_2CH_2SPh$, decompose in strong donor solvents such as dimethyl sulfoxide or *N*,*N*-dimethyl-formamide. The diselencether complexes appear more stable than the dithioethers, although all are reduced to Ru^{II} on boiling in alcohols.

The assignment of *trans* geometry to the ruthenium(II) precursors is based upon the characteristic UV/VIS spectra which in local D_{4h} symmetry exhibit two d-d transitions ${}^{1}A_{1g} \longrightarrow {}^{1}E_{g}$ and ${}^{1}A_{1g} \longrightarrow {}^{1}A_{2g}$, and for each of the diphosphine complexes a single ${}^{31}P$ NMR resonance.^{7,22,23} The outersphere oxidation of the inert $t_{2g}{}^{6}$ complexes would be expected to occur with retention of configuration. Confirmation that the ruthenium(III) complexes have *trans* geometries comes from the single IR-active v(Ru-X) vibrations, and the very similar UV/VIS spectra (Table 2) to those of the *trans*- $[Os(L-L)_2X_2]^+$ analogues.¹ Definitive evidence was provided by the X-ray study of *trans*- $[Ru\{C_6F_4(AsMe_2)_2-o\}_2Br_2]BF_4$ (below). The ruthenium(III) complexes are paramagnetic with μ ca. 1.7-1.9 consistent with 4d $t_{2g}{}^5$ ground states,²⁴ which precludes the use of NMR spectroscopy to establish the stereochemistry.

UV/VIS Spectra.—The assignment of the UV/VIS spectra (Table 2, Fig. 1) of the diphosphine and diarsine complexes follows from those of the iron(III)²⁵ and osmium(III)¹ analogues. For these low-spin d⁵ ions in a D_{4h} field the d-orbital configuration is $b_2^2 < e^3 < a_1^0 < b_1^0$ and the strong bands of the [Ru(L-L)₂Cl₂]⁺ complexes at 14 000–16 000 and 24 000– 27 000 cm⁻¹ are the $\sigma(P,As) \longrightarrow e(Ru)$ and $\sigma(P,As) \longrightarrow$ $a_1(Ru)$ charge-transfer (c.t.) transitions. For the bromides the corresponding features lie at 2000–3000 cm⁻¹ lower in energy. The reported spectra²¹ of *trans*-[Ru(Me₂NCH₂CH₂NMe₂)₂-X₂]⁺ provide the approximate energies expected for the transitions $\pi(X) \longrightarrow e(Ru)$ [the $\sigma(N) \longrightarrow e(Ru)$ transitions are in the UV region], which lie at *ca.* 27 000 (X = Cl) and 22 000 cm⁻¹ (X = Br). Unfortunately for *trans*-[Ru(L-L)₂-Cl₂]BF₄ the $\pi(Cl) \longrightarrow e(Ru)$ c.t. bands lie in the same region as

Fig. 2 The UV/VIS spectra of *trans*-[Ru(MeSCH₂CH₂SMe)₂X₂]BF₄ in MeCN: X = Cl(--) or Br (----)

Fig. 3 View of the cation of $trans-[Ru{C_6F_4(AsMe_2)_2-o}_2Br_2]BF_4$ showing the atom-labelling scheme. The thermal ellipsoids are drawn with boundary surfaces at the 50% level

Table 3 Selected bond lengths (Å) and angles (°) for trans-[Ru{ $C_6F_4(AsMe_2)_2 - o$ }_2Br_2]BF₄

Ru-As(1) Ru-As(2)	2.457(1) 2.460(1)	Ru–Br	2.455(1)
As–C C–C	1.918(9)–1.958(8) 1.35(1)–1.41(1)	C-F 1.31	(1)-1.35(1)
B-F(5) B-F(6)	1.36(2) 1.38(2)	$\begin{array}{c} \operatorname{As}(1)\cdots\operatorname{As}(2)\\ \operatorname{Br}\cdots\operatorname{As}\end{array}$	3.332(1) 3.449(1) (minimum)
As(1)-Ru- Br-Ru-As Ru-As(1)- Ru-As(1)- Ru-As(1)- Ru-As(1)- C-As-C As-C-C	$\begin{array}{ccc} -As(2) & 85.3(1) \\ s(1) & 90.8(1) \\ -C(1) & 119.3(3) \\ -C(2) & 118.3(3) \\ -C(3) & 107.4(2) \\ 102.0(4)-104.2(4) \\ 119.4(6)-121.6(6) \end{array}$	Br-Ru-As(2) Ru-As(2)-C(8) Ru-As(2)-C(9) Ru-As(2)-C(10) C-C-C 118.3(F-C-C 117.1(F-B-F 106.5(89.7(1) 107.6(2) 118.2(3) 119.6(3) 8)–122.5(8) 7)–121.3(8) 6)–114.0(9)

the $\sigma(P,As) \longrightarrow a_1(Ru)$ and as argued elsewhere ¹ are rarely seen due to the high intensity of the latter. However for the bromides the $\pi(Br) \longrightarrow e(Ru)$ are often evident at ca. 22 000 cm⁻¹. Medium-intensity features are also seen at ca. 20 000 cm⁻¹ in the spectra of the aryl-substituted ligand complexes, but these are weak or not observed with alkyl-substituted ligands. Examination of several samples of the same complexes showed these features to have constant relative intensities to the c.t. bands, eliminating the possibility that they are due to impurities, and they are assigned as metal-centred (d-d) transitions which 'borrow' intensity from the nearby chargetransfer bands. Such borrowing is known to be much less in alkyl-substituted ligand systems.²⁶ It is notable that the energies of the lowest $\sigma(P,As) \longrightarrow Ru$ c.t. transitions are *ca.* 3000 cm⁻¹ to lower energies than those of the corresponding osmium(III) complexes,¹ reflecting the greater oxidising ability of the ruthenium(III) complexes, and paralleling the trends in RuII-Ru^{III} and Os^{II}-Os^{III} redox potentials (below).

The UV/VIS spectra of the Group 16 donor ligand complexes (Table 2, Fig. 2) are less readily interpreted since $\pi(S,Se) \longrightarrow$ Ru c.t. bands are expected at similar energies to those of the $\pi(Cl,Br) \longrightarrow Ru$ bands. For the chlorides *trans*-[Ru(L-L)₂-Cl₂]⁺ (L-L = RSCH₂CH₂SR or RSeCH₂CH₂SR) the intense features at 22 000–24 000 cm⁻¹ as well as the weaker lowerenergy absorptions are probably $\pi(S,Se) \longrightarrow e(Ru)$, consistent with the optical electronegativities of $\sigma(P,As) < \pi(S,Se) < \pi(Cl)$.²⁷ For the bromo-complexes the corresponding main absorption lies at *ca*. 17 000 cm⁻¹ with weaker ill-defined features to higher energy. Both $\pi(Br) \longrightarrow e(Ru)$ and $\pi(S,Se) \longrightarrow e(Ru)$ are expected in this region, and a definite assignment of the individual bands is not possible.

X-Ray Structure of trans-[Ru{C₆F₄(AsMe₂)₂-o}₂Br₂]BF₄.— The structure consists of discrete anions and cations with the ruthenium atom located on a centre of symmetry (Fig. 3). The diarsine ligand has been structurally characterised in the nickel complex ²⁸ [Ni{C₆F₄(AsMe₂)₂-o}₂Br₂]BF₄ and the present geometry is in accord with it. Good comparator molecules are rare and although a number of Ru–Br and Ru–As distances have been reported ²⁹ these are usually for ruthenium(II) compounds and chemically rather different from the present example. The Ru–Br distance [2.455(1) Å] (Table 3) may be compared with 2.552(2) Å reported ³⁰ for Ru^{III}–Br (*trans* to P) in a porphyrin complex and 2.540(1) Å for Ru–Br (*trans* to Br) in the ruthenium(II) complex [Ru(Me₂SO)₄Br₂].³¹ The Ru–As distances [2.457(1) and 2.460(1) Å] may be compared with 2.404(1) and 2.455(1) Å found ³² in [Ru{C₆H₄(AsMePh)₂-o}-(CO)₂Cl₂] and the range of values 2.308(5)–2.472(5) Å reported ³³ in [Ru{As[C₆H₄(AsPh₂)-o]₃}Br₂].

Many trans octahedral bis(chelate) complexes adopt a 'stepped' structure²⁸ but in the present example the angle between the RuAs₄ and C_6As_2 planes is very small (1.7°). The As atoms are displaced by ca. 0.1 Å (average) from the C_6 plane but on opposite sides and as expected the benzene ring is planar. The B atom of the tetrahedral BF₄⁻ anion is on a two-fold axis and the ion is not apparently disordered although there are large values for the thermal parameters of B and F. Although this material crystallises in the same space group as that of the analogous nickel compound²⁸ in which the Ni is also on a centre of symmetry, the two materials are not isomorphous although they are isostructural.

Electrochemistry.—Cyclic voltammetry was used to determine the formal potentials of the Ru^{II} – Ru^{III} couples. Voltammograms were recorded at potential scan rates over the range 0.05–0.2 V s⁻¹, at a polished, vitreous carbon-disc electrode for 0.5 × 10⁻³ mol dm⁻³ solutions of the ruthenium(III) complexes in MeCN, containing 0.1 mol dm⁻³ NBuⁿ₄BF₄. The results are listed in Table 4 and Fig. 4 shows a typical example.

The complexes gave electrochemically reversible $Ru^{II}-Ru^{III}$ couples, except for *trans*-[$Ru\{C_6H_4(PPh_2)_2-o\}_2Cl_2$]BF₄ and *trans*-[$Ru\{C_6H_4(PPh_2)_2-o\}_2Br_2$]BF₄ which gave irreversible $Ru^{II}-Ru^{III}$ couples, but this is almost certainly due to the insolubility of the corresponding ruthenium(II) complexes in MeCN.

Reversible Ru^{II}–Ru^{III} couples were found over the range 0.3–0.8 V as shown in Table 4. The effect of varying the halide ligands, the substituents on the donor atom, and the backbone of the bidentate ligand are similar to those previously observed for the iron and osmium analogues.^{1,10} The Ru^{II}–Ru^{III} couples were seen at *ca*. 0.3 V more positive than the Os^{II}–Os^{III} couples for corresponding diphosphine or diarsine ligand complexes.¹ The Ru^{II}–Ru^{III} couple for the corresponding *trans*-

The Ru^{II}-Ru^{III} couple for the corresponding *trans*-[Ru(Me₂NCH₂CH₂NMe₂)₂Cl₂]⁺ complex has been observed at -0.2 V [relative to the saturated calomel electrode (SCE), after correction for differing reference electrodes] which is *ca*. 0.5 V less positive than for the diphosphine and diarsine complexes. The Ru^{II}-Ru^{III} couples for corresponding tertiary amine macrocycle complexes are seen at similar potentials.^{12,21}

Table 4	Electrochemical	data, J	E_e°	$ \mathbf{V} $	vs.	SCE
---------	-----------------	---------	-------------	----------------	-----	-----

Compound	Ru ¹¹ –Ru ^{111 a}	Ru ^{III} Ru ^{IV a.}
[Ru(Ph,PCH,PPh,),Cl,]BF4	+ 0.55	+ 1.68
[Ru(Ph,PCH,CH,PPh,),Cl,]BF4	+0.54	+1.68
$[Ru C_6H_4(PMe_2)_2 - o]_2Cl_2]BF_4$	+0.50	+1.59
$[\operatorname{Ru} \{C_6H_4(\operatorname{PPh}_2)_2 - o\}_2 Cl_2]BF_4$	$(+0.62)^{b}$	+1.72
$[\operatorname{Ru}{C_6F_4(\operatorname{PPh}_2)_2-o}_2\operatorname{Cl}_2]BF_4$	+0.80	+2.04
[Ru(Ph ₂ PCHCHPPh ₂) ₂ Cl ₂]BF ₄	+0.62	+1.73
$[Ru(Me_2PCH_2CH_2PMe_2)_2Cl_2]BF_4$	+0.33	+ 1.47
[Ru(Ph ₂ AsCH ₂ CH ₂ AsPh ₂) ₂ Cl ₂]BF ₄	+0.54	+1.80
$[\operatorname{Ru}\{\operatorname{C}_{6}\operatorname{H}_{4}(\operatorname{AsMe}_{2})_{2}\text{-}o\}_{2}\operatorname{Cl}_{2}]\operatorname{BF}_{4}$	+0.40	+ 1.58
$[\operatorname{Ru}{C_6F_4(AsMe_2)_2-o}_2Cl_2]BF_4$	+0.75	+ 1.93
[Ru(Ph ₂ AsCHCHAsPh ₂) ₂ Cl ₂]BF ₄	+0.63	+1.91
$[Ru(MeSCH_2CH_2SMe)_2Cl_2]BF_4$	+0.55	d
[Ru(PhSCH ₂ CH ₂ SPh) ₂ Cl ₂]BF ₄	+0.65	d
$[Ru(PhSeCH_2CH_2SePh)_2Cl_2]BF_4$	+0.57	d
$[Ru(Ph_2PCH_2CH_2PPh_2)_2Br_2]BF_4$	+0.55	+1.65
$[Ru{C_6H_4(PMe_2)_2-o}_2Br_2]BF_4$	+0.55	+1.43
$[Ru{C_6H_4(PPh_2)_2-o}_2Br_2]BF_4$	$(+0.65)^{b}$	+ 1.86
$[\operatorname{Ru}{C_6F_4(\operatorname{PPh}_2)_2}-o]_2\operatorname{Br}_2]\operatorname{BF}_4$	+0.79	+1.87
$[Ru(Me_2PCH_2CH_2PMe_2)_2Br_2]BF_4$	+0.43	+1.52
$[Ru{C_6H_4(AsMe_2)_2-o}_2Br_2]BF_4$	+0.41	+1.56
$[\operatorname{Ru}\{\operatorname{C}_{6}\operatorname{F}_{4}(\operatorname{AsMe}_{2})_{2}-o\}_{2}\operatorname{Br}_{2}]\operatorname{BF}_{4}$	+0.79	+ 1.91
$[Ru(Ph_2AsCHCHAsPh_2)_2Br_2]BF_4$	+0.64	d
$[Ru(MeSCH_2CH_2SMe)_2Br_2]BF_4$	+0.57	d
$[Ru(PhSCH_2CH_2SPh)_2Br_2]BF_4$	+0.70°	d
$[Ru(PhSeCH_2CH_2SePh)_2Br_2]BF_4$	+0.59	d
$[Ru(MeSeCH_2CH_2SeMe)_2Br_2]BF_4$	+0.56	d

" In MeCN solution containing 0.1 mol dm⁻³ NBuⁿ₄BF₄; ΔE_p were between 60 and 100 mV. The [Fe(η -C₅H₅)₂]/[Fe(η -C₅H₅)₂]⁺ couple is at 0.41 V. ⁶ Irreversible couple. ^c Data obtained from the ruthenium(ii) complex due to instability of the Ru^{III} in solution. ⁴ Several irreversible waves observed.

Fig. 4 Cyclic voltammograms for $[Ru{C_6H_4(PMe_2)_2-o}_2Cl_2]BF_4$ in MeCN containing 0.1 mol dm⁻³ NBuⁿ₄BF₄, at potential scan rates of 0.05, 0.1 and 0.2 V s⁻¹

Ruthenium(IV) Complexes.—The complexes trans-[Os(L-L)2- $X_{2}[ClO_{4}]$, were prepared by concentrated nitric acid oxidation of the osmium(III) analogues,¹ but corresponding treatment of the ruthenium(III) complexes either with HNO3 or HNO₃ in CF₃CO₂H solution resulted in decomposition, although for a few complexes including those of C_6H_4 - $(AsMe_2)_2$ -o and $C_6H_4(PMe_2)_2$ -o fleeting dark colours were noted which disappeared in seconds. Cyclic voltammetry revealed that, for most of the complexes in either CH₂Cl₂ or MeCN solution at room temperature, completely irreversible oxidation was observed at highly positive potentials (Table 4). The electrochemical behaviour of the ruthenium(III) complexes of $C_6H_4(PMe_2)_2$ -o and $C_6H_4(AsMe_2)_2$ -o was also examined at low temperatures in MeCN (-45 °C) and CF₃CO₂H $(-23 \ ^{\circ}C)$, but again only completely irreversible oxidations were observed at scan rates ≤ 0.5 V s⁻¹. The irreversible $Ru^{III} - Ru^{IV}$ oxidations show a similar dependence upon the ligands to those reported previously for the (reversible) Os^{III}- Os^{IV} couples, but occur at *ca.* 0.3 V more positive values. Ruthenium(IV) complexes of tertiary amine macrocycles have been generated electrochemically in MeCN solution¹² with Ru^{III}-Ru^{IV} potentials of ca. 1.5-1.6 V, which are only slightly less positive than the potentials of the Group 15 ligands in the present work. However, the macrocycles clearly provide some kinetic stabilisation of the Ru^{IV}. The high potentials coupled with the very short lifetimes of the ruthenium(IV) species produced in the present work would seem to preclude their isolation.

Acknowledgements

We thank the SERC and BP Chemicals for financial support (to N. R. C.), Professor M. B. Hursthouse for the data collection by the SERC X-ray service, and J. M. Pearson for preliminary studies.

References

- 1 Part 40, N. R. Champness, W. Levason, D. Pletcher, M. D. Spicer and M. Webster, J. Chem. Soc., Dalton Trans., 1992, 2201
- 2 W. Levason and C. A. McAuliffe, Adv. Inorg. Chem. Radiochem., 1972, 14, 173; W. Levason, in The Chemistry of Organophosphorus Compounds, ed. F. R. Hartley, Wiley, New York, 1990, vol. 1, p. 567.
- 3 R. S. Nyholm and G. J. Sutton, J. Chem. Soc., 1958, 567.
- 4 J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 896.
- 5 L. F. Warren and M. A. Bennett, Inorg. Chem., 1976, 15, 3126.
- 6 A. R. Chakravarty, F. A. Cotton and W. Schwotzer, Inorg. Chim. Acta, 1984, 84, 179.
- 7 J. Chatt, G. J. Leigh and A. P. Storace, J. Chem. Soc. A, 1971, 1380.
- 8 J. C. Briggs, C. A. McAuliffe and G. Dyer, J. Chem. Soc., Dalton Trans., 1984, 423.
- 9 A. Mezzetti, A. Del Zotto, N. Bresciani Pahor and P. Rigo, J. Chem. Soc., Dalton Trans., 1989, 1045.
- 10 S. K. Harbron, S. J. Higgins, W. Levason, A. T. Steel and M. C. Feiters, Inorg. Chem., 1986, 25, 1789.
- 11 R. S. Nyholm and G. J. Sutton, J. Chem. Soc., 1958, 572.
- 12 C.-M. Che, K.-Y. Wong and C.-K. Poon, Inorg. Chem., 1986, 25, 1809. 13 R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and M.
- Webster, J. Chem. Soc., Dalton Trans., 1990, 2609. 14 R. P. Van Duyne and C. N. Reilley, Anal. Chem., 1972, 44, 142.
- 15 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Solution, University of Göttingen, 1986.
- 16 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.
- 17 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99–101, 149–150. 18 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge
- National Laboratory, Oak Ridge, TN, 1976.
- 19 M. Nardelli, Comput. Chem., 1983, 7, 95.
- 20 J. A. Rard, Chem. Rev., 1985, 85, 1.
- 21 C.-M. Che, S.-S. Kwong and C.-K. Poon, Inorg. Chem., 1985, 24, 1601.
- 22 D. M. Klassen and G. A. Crosby, J. Mol. Spectrosc., 1968, 25, 398.
- 23 N. R. Champness, M.Phil. Thesis, University of Southampton, 1990 and unpublished work.
- 24 B. N. Figgis and J. Lewis, Prog. Inorg. Chem., 1966, 6, 37.
- 25 J. I. Zink, P.-O. Liu and B. Anfield, Inorg. Chem., 1979, 18, 1013.
- 26 O. St. C. Headley, R. S. Nyholm, C. A. McAuliffe, L. Sindellari, M. L.
- Tobe and L. M. Venanzi, Inorg. Chim. Acta, 1970, 4, 93.
- 27 A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd edn., Elsevier, Amsterdam, 1984.
- 28 L. R. Hanton, J. Evans, W. Levason, R. J. Perry and M. Webster, J. Chem. Soc., Dalton Trans., 1991, 2039.
- 29 Cambridge Structural Database, Cambridge Crystallographic Data Centre, Cambridge (accessed through the SERC Daresbury Laboratory)
- 30 B. R. James, D. Dolphin, T. W. Leung, F. W. B. Einstein and A. C. Willis, Can. J. Chem., 1984, 62, 1238.
- 31 J. D. Oliver and D. P. Riley, Inorg. Chem., 1984, 23, 156.
- 32 S. R. Hall, B. W. Skelton and A. H. White, Aust. J. Chem., 1983, 36, 271.
- 33 R. H. B. Mais and H. M. Powell, J. Chem. Soc., 1965, 7471.

Received 23rd June 1992; Paper 2/03297J