COMMUNICATIONS

bishomotropylium cation 9 (16.6 kcalmol~! more stable than
4), was confirmed to be bishomoaromatic by Cremer based on
geometric and magnetic criteria.l'’] The NICS at the geometric
center of 9 (—11.8) and A4 =—18.5 ppm cgs (i.e., similar to
that of 4[61), corroborate this conclusion. This cation reacts to
give the observed cis-8,9-dihydroindenes 3 (X = OH or CI).[4

In summary, the geometric and magnetic criteria (NICS and
A) exhibited by 4 now reveal this species to be the first
Mobius aromatic system in the Heilbronner sense, for which
there is experimental evidence.[*3] Without such evidence, the
nature of 4 was not recognized originally. Furthermore, early
speculations were incorrect: While conformation 6 is avoided,
transition state 7 is not high in energy.’® The complete
scrambling of the deuterium label, observed for 3 even at
—66°C, is consistent with the low barrier computed for 7,
permitting rapid interconversion of the helical 4 enantiomers.
Ninefold repetition of the enantiomerization results in
complete distribution of a deuterium label in 4. In conclusion,
the experimental findings reported nearly three decades
agol*] are explained by assuming that the (CH)g intermedi-
ates were 4n-electron Mobius aromatic systems. Our predic-
tion that 4 is the most stable monocyclic (CH)g cation might
be verified by applying modern experimental techniques such
as laser flash photolysis, which has been employed to observe
short-lived carbocations.!'”
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aluminum. This isomer of the sesquichloride [Cp%Al,Cls]
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To prepare as stable an intermediate as possible, we
selected All; instead of AICI; and treated the iodide with
[{Cp*Al},] under the exclusion of donors; that is, we provided
soft substituents that have a proven capability for stabilizing
elements in low oxidation states. It became apparent that the
presence of AlLIs dramatically increased the tendency of
[Cp*Al] to disproportionate: Whereas pure [Cp*Al] can be
heated in solution to almost 90°C without visible decom-
position, it disproportionates in the presence of Al even
below room temperature. This means that even a relatively
stable Al' compound such as [Cp*Al] reacts so rapidly at
room temperature that intermediate products cannot nor-
mally be intercepted.’! In view of this, proof of the partic-
ipation of other Al species in the reaction between Al° and
Al should be even more difficult if not altogether impossible
to obtain. Therefore, the structurally characterized intermedi-
ate product presented here—[Cp# Alsl;] (1), which could be
isolated at —20°C—is of particular significance (Figure 1a).

Compound 1 is formed from a suspension of [{Cp*Al},] and
ALIg (molar ratio 1:2) in toluene at —20°C. It is a colorless
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Figure 1. a) Structure of 1 in the crystal (SCHAKALM). Hydrogen atoms
are not shown. b) Schematic representation of the structure of 1 with
several distances [pm]. Further distances [pm] and angles [°]: Al(2) - Al(3)
407(1), Al(2)/Al(3)-Ccp 214.4(6)-224.4(7), Al(4)-C(21) 233.6(6),
Al(4)-C(22) 227.1(6), Al(4)-C(23) 215.2(5), Al(4)-C(24) 215.6(6),
Al(4)-C(25) 225.3(7), Al(1)-ALS) 597(2), Al(1)-Al(4) 608(2); Al(2)-
Al(1)-Al(3) 107.23(7), I(1)-Al(1)-1(2) 111.73(9), Ccpe-Al-Al(1) 117.3(2) -
176.9(2), Al(5)-Al(4)-1(4) 104.83(7), Al(4)-Al(5)-1(6) 111.10(8), Al(4)-
Al(5)-1(3) 111.27(7), 1(6)-AL(5)-1(3) 108.04(13).
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substance and very sensitive to hydrolysis. Crystals of 1 thus
obtained contain toluene such that the formula may be
written as 1-0.5C,Hg. The X-ray structure analysis®! at
—73°C shows that 1 has a cagelike framework comprising
five Al and two I atoms, in which the aluminum atom Al(1) is
coordinated in a tetrahedral fashion by two iodine atoms
(Al(1)-1(1) 257, Al(1)-I(2) 254 pm) and two Cp*-substitut-
ed aluminum atoms (Al(2), Al(3); Al-Al 252-253, Al-C
214-224 pm) (Figure 1a). The iodine atoms I(3) and 1(4) lie
at a considerably larger distance from Al(1) (Al(1)-1(3) 398,
Al(1)-1(4) 388 pm) and form a plane with I(1) and I(2); Al(1)
also lies in this plane.

An Al, unit (Al(4), Al(5); Al-Al 254 pm) is arranged
almost perpendicular to the Al; group. One of the metal
atoms of this Al, unit is coordinated by three iodine atoms
(A1(5)-1(3) 260, Al(5)-I(5) 254, AL(5)-1(6) 257 pm), and
the other by one iodine atom and a Cp* substituent (Al(4) -
1(4) 281, Al(4)—C 215-234 pm). The iodine atoms 1(3) and
1(4) occupy an eclipsed conformation with respect to the Al,
unit. In addition, there are interactions between these iodine
atoms and the Al atoms Al(2) and Al(3) of the Al; unit. The
atomic distances are shown in Figure 1b.l In agreement with
the average oxidation number 1.8 for aluminum, the Al-Al
and Al-I distances in 1 resemble those in donor-stabilized
aluminum(i1) diiodides.'” The structure of 1 provides a first
indication of the reaction mechanism for the reaction of
[Cp*Al] with ALI (Scheme 1).

[Cp*Al] [Cp*All

[Cp*All

Ally + 3 [Cp*Al] ——s~ [Cp5Allg]

Scheme 1. Reaction of three molecules of [Cp*Al] with one molecule of
AlJ,. Schematic representation (top) and reaction equation (bottom).

It is apparent that monomeric [Cp*Al] has a tendency to
undergo insertion reactions. Even at —20°C—that is, at very
low [Cp*Al] concentrations!!l—three [Cp*Al] molecules are
inserted into bridging Al-1I bonds. At the same time, three
bridging Al-1 bonds of Al,I; are expanded so much that only
the weak AIl-I-Al bridging interactions mentioned above
remain.

To decide whether the experimentally observed species
should be described as separated ions [CpiALL]J*-
[Cp*AL1L]", as an ion pair, or as a donor—acceptor complex,
we carried out extensive quantum-chemical calculations.
These show that the calculated geometry parameters (e.g.,
several Al-1I distances and the angle Alc,-Al-Alg,.) for
isolated ions do not agree with the observed structural data.
Additional calculations were therefore carried out for the
model compounds [Cp;AlLsI] (1a), Br;AlsIg (1b), and H;Als,
(1¢).’7 Tt became clear that the geometry is decisively
influenced by the Cp* groups, because both the hydrogen-
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and the bromine-substituted compounds have quite different
Al -1 distances in the bridges and very acute Al-Al-Al angles
in the Al; unit when compared with 1a. The compounds 1la—¢
also differ from one another considerably with regard to the
population analyses. Whereas the calculations for 1a result in
a clear charge separation between the Al; and Al, units
(£0.38) and negatively charged bridging iodine atoms
(—0.15), there are virtually no charge separations (Al;:
approx. —0.04; Al,: ca. +0.04). Furthermore, there are only
very weakly negatively polarized bridging iodine atoms (ca.
—0.04) in 1b and 1¢.!

The compounds 1a-c also differ in their energy balance.
The insertion of three AIH units into a Al,I; molecule is, with
438 kJ mol~!, highly exothermic, whereas the insertion of the
CpAl units leads to an energy gain of just 199 kJmol~!. These
thermodynamic results are plausible in view of the calculated
charge separation in 1a. In conclusion, the quantum-chemical
calculations, which in the case of 1a produce results that are in
good agreement with the experimental structural data of 1,
permit the following bonding description for this intermedi-
ate. In contrast to the donor—acceptor complexes 1band 1¢, 1
and 1a are best described as contact ion pairs that dispropor-
tionate at room temperature to give elemental aluminum and
Al species.[?

This type of insertion of Al' species can also occur in
technically relevant electrochemical reductions!® of organic
aluminum(i11) compounds. The resulting primary products can
insert themselves into the reagents and react in an analogous
manner to 1 to give species rich in aluminum. Unstable
intermediates such as these can then spontaneously dispro-
portionate to give elemental aluminum. The starting com-
pound (AI'M) is also formed, which can then go through the
reaction cycle again. In a similar manner, Al' species could
also be important intermediates in the preparation of organic
aluminum compounds from aluminum and alkyl halides,
whereby the insertion of Al' compounds into AI™ species
already formed could possibly lead to compounds analogous
to 1.04

Experimental Section

All; (50 mg, 0.12 mmol) was combined with [{Cp*Al},] (20 mg, 0.03 mmol),
and toluene was added. The suspension was stored at —20°C. After a few
days clear, colorless crystals of 1 were formed along with solid [{Cp*Al},].
Elemental aluminum was not deposited under these conditions. To transfer
the crystals quickly from the cold suspension onto the goniometer head,
they were warmed to room temperature in mineral oil (Aldrich) under an
argon stream. (The crystals decompose slowly in this oil; the color changes
from colorless to yellow and then to red.) In the cold N, stream (200 K) on
the goniometer head, a glass-like protective coating is formed around the
crystal, thus preventing attack by air and moisture.
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0(C;D;H)): 6=2.09; Al NMR (Bruker AMX-300 spectrometer;
room temperature; external reference: 0([Al(H,O)s]**)): 0 =0. After
a reaction period of a few days at —20°C: '"H NMR: 6 (w,,[Hz]) =
2.07 (10), 2.03 (10) (both with low intensity), 1.93 (2), 1.85 (3), 1.78 (3),
1.60 (3) (the latter in a ratio of about 3:3:2); 7 AINMR: 6 (w,,[Hz]) =
110 (br, weak), —21 (550), —83 (260). After about one month at
—20°C: '"H NMR: 6 (w,,,[Hz]) =1.85 (2), 1.74 (2), 1.60 (2) (in a ratio
of about 2:3:4); Al NMR: 6 (w,,[Hz]) =110 (br, weak), —21 (520),
—82 (260). After about three months and intermediate tempering at
120°C: 'H NMR: 6 (w,[Hz])=1.57 (sharp, s); Al-NMR: ¢
(w1, [Hz])=—-19 (500, weak), —81 (360), —114 (very weak,
[Cp¥Al]*).2] These NMR spectroscopic results indicate a more
complex reaction sequence than for the reaction between [{Cp*Al},]
and AICI, %

[13] See, for example, the electrochemical reduction of AI"™ species to
elemental aluminum or the preparation of simple organic alum-
inum(i11) compounds from aluminum and alkyl halides: K. Ziegler, H.
Lehmkuhl, Z. Anorg. Allg. Chem. 1956, 283, 414 -424; W. Kautek, W.
Fromberg, J. A. de Hek, Metalloberfliche 1992, 46, 67—74; J. Fischer,
Metalloberfliche 1996, 50, 183 -184; A. Ecker, H. Schnockel, VDI-
Nachrichten 1996, 50, 22 ; H. Koéhnlein, H. Schnockel, Aluminum 1997,
73, 766 —767.

[14] Additional Al species are formed by their subsequent disproportio-
nation. This should lead to an increase in the reaction rate for the
formation of the desired end products.
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Average Octet Radical Polymer: A Stable
Polyphenoxyl with Star-Shaped
n Conjugation™*

Hiroyuki Nishide,* Makoto Miyasaka, and
Eishun Tsuchida

The search for syntheses of organic molecules with very
high spin resulting from intramolecular through-bond mag-
netic ordering is driven by the desire to realize magnetism
based purely on organic components.!! High-spin alignment
in the ground state has been demonstrated for cross-conju-
gated polyradicals or radical polymer main chains, such as
poly(1,3-phenylenecarbene)™ and poly(1,3-phenylenephe-
nylmethine).l') Pseudo-two-dimensional branched, cyclic,
and ladder homologues have also been synthesized to increase
the spin quantum number S at low temperature.’l The aim
was to diminish the damage of a radical or spin defect, which
is fatal for the cross-conjugated polyradicals. In addition,
these polyradicals lacked chemical stability at room temper-
ature.

There is another approach to the high-spin molecules that
makes use of m-conjugated linear polymers bearing pendant
radical groups on the polymer backbone which are -
conjugated with the backbone to ensure the ferromagnetic
connectivity of the radicals.l'* In this type of polyradical, the
spin alignment between the pendant unpaired electrons is not
sensitive to a spin defects, which are unavoidable for radical
polymers of increasing molecular size because the magnetic
interaction is transmitted through the m-conjugated polymer
backbone. A further advantage is that the pendant, built-in
radical groups could be chosen from a series of chemically
stable organic radicals. We recently synthesized poly(1,2-
phenylenevinylene) containing di-terz-butylphenoxyl as the
pendant radical group (1) which has a through-conjugated
backbone bond and allows long-range ferromagnetic ex-
change interaction between the pendant unpaired electrons:
With a spin concentration of 0.7 per monomer unit, 1 displays
values for S of 4/2 to 5/2.F1 We report here our successful
improvement of both S and the stability of the polyradical by
extending 1 to the star-shaped homologue 2 (Scheme 1).

The precursor acetoxypolymer 2" was synthesized in a one-
pot reaction by the Pd-catalyzed Heck reaction of styrene 3
with 1,3,5-triiodobenzene (4), the core of the star-shaped
polymer (see the Experimental Section). The molecular
weight and degree of polymerization (DP=I/+m+n+6 for
2) of the star-shaped polymer was controlled by the feed ratio
of 3 to 4 during the polymerization. The iodide groups had
completely reacted in every polymer. The DP measured by
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Department of Polymer Chemistry
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