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Abstract: Functional-group-compatible cross-coupling reaction of
alkyl halides with arylzinc reagents takes place under iron catalysis
in the presence of TMEDA, producing a variety of aromatic
compounds in good to excellent yield. The pronounced effect of a
magnesium salt was found to be the key to the promotion of the
iron-catalyzed coupling reaction.
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Iron has enormous practical advantages as a catalyst due
to its low cost, ample supply, environmental friendliness,
and lack of toxicity. Iron catalysis therefore is intensively
studied now to achieve controlled organic synthesis,
especially in cross-coupling reactions.1,2 Considerable
progress has been made recently by ourselves3 and others4

in this field. Iron catalysis not only improves known cata-
lytic processes but also brings about new possibilities in
synthesis; for instance, iron catalysis solved the long-
standing synthetic problem5,6 in the coupling of primary
or secondary alkyl halides with organometallic com-
pounds.3 However, a drawback of the iron-catalyzed
cross-coupling reaction of haloalkanes is that the nucleo-
philic partner has been limited largely to organomagne-
sium reagents,7 in which electrophilic substituents can
survive only at low temperatures.8 Here, we report an
iron-catalyzed cross-coupling of primary or secondary
alkyl halides with arylzinc reagents, where the mild reac-
tivity of the zinc reagents much improves the functional
group tolerance and the synthetic practicability of the
cross-coupling reaction.

We first examined various organozinc reagents generated
by several methods. The results summarized in Table 1
show that a diorganozinc reagent (carbanion ligand/
zinc, 2:1) is necessary (Table 1, entries 1 and 2) but not
sufficient (Table 1, entry 4); the presence of a magnesium
salt is mandatory for the cross-coupling reaction. Thus,
we found that bromocycloheptane can be coupled with
Ph2Zn·2MgBrCl in the presence of a stoichiometric
amount of TMEDA and 5 mol% of FeCl3 (Table 1, entry
1). Both, PhZnCl or PhZnBr (Table 1, entries 2–4) pre-
pared by transmetalation from a phenyl Grignard reagent

or phenyllithium, and by the direct insertion of Rieke zinc
with bromobenzene were inert under the same coupling
conditions. Diphenylzinc prepared from ZnCl2 and two
equivalents of phenyl lithium did not react at all with bro-
mocycloheptane under the reaction conditions (Table 1,
entry 5). The results indicate that magnesium halide is
essential for the reaction.

A subtle but practically important consequence of the use
of zinc in place of the magnesium reagents is that the
reagent can be mixed at once with other reactants as op-
posed to the required (to achieve high yield) slow addition
of the Grignard reagent in our previous protocol.3a We
tentatively ascribe this difference to the lower ligand
transferability of the zinc reagent, which can avoid mal-
function of the iron catalyst caused by further reaction
with the nucleophile.

The requirement for a diarylzinc reagent is a clear draw-
back of the above reaction, as one of the two aryl groups
cannot be utilized for the coupling. This problem can be
resolved by the use of a mixed diorganozinc reagent bear-
ing a Me3SiCH2 non-transferable ligand.9 In this way,
only one equivalent of an aryl nucleophile in the form of
either an aryllithium or an arylzinc reagent is allowed to
couple with one equivalent of bromocycloheptane in high
yield (Table 1, entries 6 and 7).

Scheme 1 Iron-catalyzed cross-coupling between bromocyclo-
heptane and arylzinc reagent.

In the absence of the catalyst, no coupling product was
produced (data not shown). Though we used hygroscopic
anhydrous ZnCl2 for our initial studies, we subsequently
found that air- and moisture-stable ZnCl2·TMEDA
complex10 can be used with equal success and hence was
used for the remaining studies.

The results of the cross-coupling of alkyl halides possess-
ing various functional groups with arylzinc reagents
(Scheme 1) are summarized in Table 2.11 Iodo- and
bromocyclohexane reacted smoothly to give cyclohexyl-
benzene in quantitative yield (Table 2, entries 1, 2).

Br Ar

+

arylzinc reagent
(1.5 equiv)

FeCl3 (5 mol%)
TMEDA (1.5 equiv)

THF, 50 °C, 0.5 h

+

1 2 3 4

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f P

itt
sb

ur
gh

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



CLUSTER Iron-Catalyzed Cross-Coupling of Primary and Secondary Alkyl Halides with Arylzinc Reagents1795

Synlett 2005, No. 11, 1794–1798 © Thieme Stuttgart · New York

Chlorocyclohexane also takes part in the reaction with a
slightly diminished yield and reaction rate (Table 1, entry
3). A steroidal chloride (100% a) reacted smoothly to give
the phenylated product in high yield (Table 1, entry 4;
a/b, 14:86).

The catalyst system tolerates functional groups such as
alkenyl (data not shown), trimethylsilyl, and alkynyl
groups (Table 2, entry 5), as well as esters (Table 2,
entries 6–9) and nitriles (Table 2, entry 10). The rather
unreactive glucose derivative (Table 2, entry 11) was
completely consumed giving the product in 90% yield
with almost no loss of the acetyl groups, when two
equivalents of the diarylzinc reagent was used.

The method can be applied to cross-coupling with func-
tionalized arylzinc reagents or heteroarylzinc reagents
(Scheme 2, Table 3).12 The coupling was achieved in

good to quantitative yield by the use of the arylzinc re-
agents, ArZnCH2SiMe3 (ArZnCH2TMS) prepared by the
treatment of ArZnX (X = Br, I) with one equivalent of
Me3SiCH2MgCl. The aryl zinc reagents bearing an elec-
tron-withdrawing group, such as ethoxycarbonyl and
cyano groups, were found to be slightly less reactive than
the corresponding phenyl reagent, but reactive enough to
react with primary alkyl iodides (Table 3, entries 1, 2) and
secondary alkyl bromides (Table 3, entries 3–5) in good
yields. 2-Pyridylzinc also took part in the cross-coupling
to give the product in 98% yield (Table 3, entry 6). Some
other heteroaromatic organozinc reagents, which are
prepared easily from the corresponding organolithium
compounds gave 2-substituted benzofuran and indole in
good yield (Table 3, entries 7, 8).

Scheme 2

Table 1 Effect of Organozinc Reagents on the Iron-Catalyzed Cross-Coupling of Bromocycloheptanea

Entry Arylzinc reagent Yield (%)b

2 3 4 1

1 ZnCl2/2PhMgBr 96 3 trace 0

2 ZnCl2/PhMgBr 0 trace trace >95

3 PhZnBr (Mg free) 0 trace trace >95

4c ZnCl2/2PhLi 0 trace trace >95

5c ZnCl2/PhLi 0 trace trace >95

6d ZnCl2/PhMgBr/Me3SiCH2MgCl 95 4 trace 0

7e ZnCl2/PhLi/Me3SiCH2MgCl 92 7 0 0

a Reactions were performed by the addition of a THF solution of FeCl3 (5 mol%) to a mixture of an alkyl halide (1.0 mmol), PhMgBr 
(3.0 equiv), ZnCl2 (1.5 equiv), and TMEDA (1.5 equiv) in THF.
b Yield according to GC using a calibrated internal standard (decane).
c The solvent is THF–Bu2O (2:1).
d The solvent is THF–Et2O–Bu2O (2:2:1).
e The solvent is THF–pentane–Bu2O (2:2:1).
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Scheme 3

Cyclative cross-coupling4a,13 could also be achieved in
good yield and with high chemoselectivity (Scheme 3).
When iodoacetal 5 was treated with a diarylzinc reagent,
tandem 5-exo-cyclization/cross-coupling reaction gave
the tetrahydrofuran derivative 6 (Table 4). This result
suggests participation of radical related intermediates in
the iron-catalyzed cross-coupling of organozinc reagent.3

Table 2 Iron-Catalyzed Cross-Coupling of Functionalized Alkyl Halides with Diarylzinc Reagentsa

Entry (FG)Ralkyl–X Arylzincb Product Yield (%)c

1 5 98 

2 5 97 

3d 5 88 

4e 5 89

5 5 93

6
7

5 99
91

8 6 83

9 7 98

10 8 86

11f 9 90

a Reactions were performed at 50 °C by the addition of a THF solution of FeCl3 (5 mol%) to a THF solution of an alkylhalide, a diarylzinc 
reagent, and TMEDA under vigorous stirring.
b The diarylzinc reagent was prepared at ambient temperature, prior to the addition of the alkyl halide, by mixing ArMgBr (3.0 equiv) and 
ZnCl2·TMEDA (1.5 equiv) unless otherwise noted.
c Isolated yield.
d The reaction time was 3 h.
e The reaction time was 12 h.
f ZnCl2·TMEDA complex (2 equiv) and ArMgBr (4 equiv).
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