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Abstract—Interest is increasing in using biological community data to provide information on the specific types of anthropogenic
influences impacting streams. We built empirical models that predict the level of six different types of stress with fish and benthic
macroinvertebrate data as explanatory variables. Significant models were found for six stressor factors: stream corridor structure;
siltation; total suspended solids (TSS), biochemical oxygen demand (BOD), and iron (Fe); chemical oxygen demand (COD) and
BOD; zinc (Zn) and lead (Pb); and nitrate and nitrite (NOx) and phosphorus (P). Model R2 values were lowest for the siltation
factor and highest for TSS, BOD, and Fe. Model R2 values increased when spatial relationships were incorporated into the model.
The models generally performed well when applied to a random subset of the data. Performance was more mixed when models
were applied to data collected from a previous time period, perhaps because of a change in the spatial structure of these systems.
These models may provide a useful indication of the levels of different stresses impacting stream reaches in the Eastern Corn Belt
Plains ecoregion of Ohio, USA. More generally, the models provide additional evidence that biological communities can serve as
useful indicators of the types of anthropogenic stress impacting aquatic systems.
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INTRODUCTION

Biological assessment is becoming an increasingly popular
tool in the evaluation of stream ecosystem integrity. However,
little progress has been made to date in developing tools to
relate assessment results to specific stressors. This paper con-
tinues the investigation of the feasibility of using fish and
benthic macroinvertebrate community structure to distinguish
among major types and degrees of anthropogenic stressors in
the Eastern Corn Belt Plains ecoregion of Ohio, USA.

This paper builds on a previous effort that constructed a data
set of spatially and temporally matched stressor and response
data, reduced the stressor data to six orthogonal factors, and
explored the ability of the biological community to discriminate
among the different types and degrees of stress [1]. That study
found that biological variables could significantly distinguish
higher and lower quality sites classified on the basis of six
different types of stress: quality of stream corridor structure;
degree of siltation; total suspended solids (TSS), iron (Fe), and
biochemical oxygen demand (BOD); chemical oxygen demand
(COD) and BOD; lead (Pb) and zinc (Zn); and nitrate and nitrite
(NOx) and phosphorus (P). Functions based on biological var-
iables could also discriminate between sites having different
predominant stressors (12 of 15 pairwise combinations).
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The current effort investigated the feasibility of building
multiple linear regression models that predict the degree of
different types of stress based on characteristics of the bio-
logical community. These predictions may provide useful in-
formation for identifying which stressors should be the subject
of management action. In addition, the results can be used to
evaluate whether stream communities respond in distinctive
ways to different types of stress. If communities respond in
consistently different ways, then distinctive models should se-
lected for different types of stress.

MATERIALS AND METHODS

Data set and preliminary analyses

The Eastern Corn Belt Plains ecoregion of Ohio was se-
lected as a study location to take advantage of the large amount
of biological monitoring data that was collected in a consistent
manner and made available by the Ohio Environmental Pro-
tection Agency [1]. The study was confined to one ecoregion
to minimize some of the natural physical, biological, and geo-
logical factors that may confound responses to stressors.

The data set contained spatially and temporally matched
descriptors of fish and macroinvertebrate community structure,
and variables associated with potential stressors, including in-
stream chemistry and habitat. The complete data set encom-
passed the years 1988 to 1994 and included 179 sites, 42
biological variables, 18 variables associated with stressors, and
the stream gradient and drainage area size associated with each
sampling location. Descriptive statistics for the data set are
provided in Norton et al.[1] and Norton [2].

Before analysis, the variables were transformed to near nor-
mality on the basis of visual inspection of the transformation
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series q-q plots and results of the Shapiro–Wilkes test [3–5].
In addition, we identified variables that were significantly cor-
related (p 5 0.05) with drainage area. To minimize the influ-
ence of this covariate, we fit linear and quadratic regression
models to the identified variables and used the model residuals
as replacement variables [1,2]. Variables that proved important
in the models are shown in Appendix 1.

The 18 stressor variables and stream gradient were reduced
to a set of six factors by using principal components analysis
with varimax rotation in SASt [1,4]. Stream corridor structure
(factor 1) was highly correlated with ordinal scores for channel,
cover, the riparian zone, and pool depth; higher scores along
this factor correspond to higher quality sites (e.g., more sin-
uous reaches). Siltation (factor 2) was correlated with ordinal
scores for riffle quality, substrate quality, and embeddedness;
high scores along this factor correspond to higher quality sites
(i.e., less siltation). The last four factors were highly correlated
with stream chemistry variables: TSS, Fe, and BOD (factor
3), COD and BOD (factor 4); Zn and Pb (factor 5); and N and
P (factor 6). High scores along the stream chemistry factors
correspond to lower quality sites (i.e., higher chemical con-
centrations).

Model fitting

The purpose of the models was to predict the site score
along each of the six factors representing different types of
stress. Multiple linear regression was used as the baseline mod-
eling approach (base models)

Y 5 b 1 b X 1 · · · 1 b X 1 «i 0 1 1 p21 p21 i (1)

where Yi are the values of the stressor factor being modeled;
b0, b1, . . . , bp21 are parameters (estimated by B0, B1, . . . ,
Bp21); Xi1, . . . , Xi, p21 are the values of the explanatory (i.e.,
biological) variables; and «i are errors that are independent
and normally distributed N(0, F2), estimated by the model
residuals, ei

i 5 1, . . . , n

An exploratory evaluation of the models (analysis not
shown) indicated that model residuals located adjacent to one
another on the same stream were significantly correlated. This
result was not surprising; the issue of spatial and temporal
correlation has been studied extensively in time series mod-
eling, economics, and geography [6–9], and distance decay
functions are commonly used in mechanistic models of water
quality [9,10]. Spatial correlation of residuals can result in
underestimates of the both variance of the error term of the
regression model and the standard deviation of the estimated
regression coefficients. As a result, the coefficient of multiple
determination (R2) can be overestimated, and variables can be
concluded to be significant when in reality they are not [11].
For this reason, we investigated approaches to mitigate the
correlation.

Three approaches for reducing the spatial correlation in
model residuals were pursued. Each modeling approach was
pursued for all six stressor factors and the Durbin–Watson test
was used to evaluate whether the spatial correlation of the
residuals was significant [6]. The first approach, the Cochrane–
Orcutt procedure, uses the correlation between adjacent values
to remove the influence of the spatial correlation [11]. Because
the spatial correlation is removed before the model is fit, R2

values are expected to decrease with this procedure. In addi-
tion, variables that may have been included in the baseline

models because of the spatial structure would be not be in-
cluded in the Cochrane–Orcutt models.

This procedure transforms the dependent and explanatory
variables by using an estimate of the correlation between ad-
jacent residuals

Y 9 5 b 9 1 b 9X 9 1 mt 0 1 t t (2)

where

Y9 5 Y 2 rY X9 5 X 2 rXt t t21 t t t21

b9 5 b (1 2 r) b9 5 b0 0 1 1

and mt is the uncorrelated error term

e 5 re 1 ut t21 t (3)

where et is the model residual associated with observation t,
et21 is the model residual associated with the closest upstream
observation, and ut is the uncorrelated error term. The spatial
correlation coefficient r is estimated by r

n

e eO t21 t
t52r 5 (4)n

2eO t21
t52

The second approach (Stream ID) included individual
stream identifiers as additional explanatory variables. In this
expanded version of the base model (Eqn. 1), the suite of
explanatory variables included indicator variables for the 40
individual streams in the data set in addition to the fish and
macroinvertebrate variables. Stream identifiers were based on
U.S. Geological Survey topographic maps (scale 1:250,000).

The last approach (Lag) included the closest upstream value
of the dependent variable as one of the explanatory variables
[7]. More complex models can incorporate the relationship
between distance and the correlation between adjacent points;
as the distance between adjacent observations increases, var-
iable values are expected to become less similar [6,7,10]. How-
ever, exploratory plots (i.e., variograms [5]) indicated no clear
structure, so we used the simplest approach and included a
first-order lagged value, unweighted for the distance between
observations

Y 5 b 1 aY 1 b X 1 · · · 1 b X 1 «t 0 t21 1 1 p21 p21 t (5)

where Yt is the value of the dependent variable at location t,
a is the first-order autoregressive coefficient, Yt21 is the closest
upstream value of Y, and the other variables are as defined in
Equation 1. By incorporating spatial information more ex-
plicitly into the models, these Stream ID and Lag approaches
would be expected to yield higher R2 values.

Within each stressor factor and modeling approach, several
models were fit by using a modified stepwise variable selection
procedure that was designed to select models while controlling
for correlation between the biological explanatory variables.
Up to four seed biological variables were selected (based on
their high correlation with the stressor factor) to initiate the
modeling process. Standard stepwise variable selection pro-
cedures were then used; however, variables that were highly
correlated (i.e., p , 0.01) with variables that were already in
the model were not considered for addition [4]. This procedure
resulted in up to four models for each modeling approach–
stressor factor combination. Final models were selected based
on testing performance (described below) and consistency of
explanatory variables.
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Table 1. Final models for stream corridor structurea

Modeling approach R2 Db Variablesc
Parameter
estimates

Base

Cochrane–Orcutt

0.21

0.18

0.29

20.068

CYPRINID
OLIGO
CYPRINID
OLIGO

0.14
21.49

0.12
21.35

Stream IDd

Lag

0.53
0.38e

0.31

20.05

20.055

CYPRINID
OLIGO
SUNFISH
CYPRINID
OLIGO

0.149
21.42

0.13
0.11

21.34

a Complete specifications for the models are provided in Appendices
2 and 3.

b D denotes the correlation between model residuals from adjacent
stream locations. Correlations significant at p 5 0.05 are shown in italic.

c Variables are defined in Appendix 1.
d Stream ID 5 Stream identifier.
e The R2 value adjusted for the number of variables [5].

Table 3. Final models for TSS, Fe, and BODa

Modeling approach R2 Db Variablesc
Parameter
estimates

Base

Cochrane–Orcutt

0.34

0.12

0.47

20.04

TOXTOL
HEADWATR
RELWT
TOXTOL
HEADWATR

21.89
21.05
20.069
21.18
20.26

Stream ID

Lag

0.76
0.69d

0.66

0.13

20.27

TOXTOL
HEADWATR
HEADWATR
OTHDIP
RELWT
TOPCAR

21.29
20.41
20.30
20.31
20.023

0.06

a Complete specifications for the models are provided in Appendices
2 and 3; TSS 5 total suspended solids; Fe 5 iron; BOD 5 bio-
chemical oxygen demand; Stream ID 5 Stream identifier.

b D denotes the correlation between model residuals from adjacent
stream locations. Significant correlations are shown in italic.

c Variables are defined in Appendix 1.
d The R2 value adjusted for the number of variables [5].

Table 2. Final models for siltationa

Modeling approach R2 Db Variablesc
Parameter
estimates

Base

Cochrane–Orcuttb

Stream IDd

Lag

0.10

0.07
0.46
0.30e

0.18

0.30

0.11
20.038

20.12

GLYP
INSECT
GLYP
GLYP
INSECT
GLYP

21.05
0.011

21.28
21.52

0.009
21.00

a Complete specifications for the models are provided in Appendices
2 and 3.

b D denotes the correlation between model residuals from adjacent
stream locations. Significant correlations are shown in italic.

c Variables are defined in Appendix 1.
d Stream ID 5 Stream identifier.
e The R2 value adjusted for the number of variables [5].

Table 4. Final models for COD and BODa

Modeling approach R2 Db Variablesc
Parameter
estimates

Base

Cochrane–Orcutt

0.29

0.19

0.44

20.04

DEP
PIONEERP
MAYFLY
TANY
DEP
PIONEERP
TANY

21.22
0.18

20.09
20.138
21.53

0.12
20.096

Stream ID

Lag

0.68
0.58d

0.52

20.030

20.20

DEP
OTHDIP
DEP
PIONEERP
OTHDIP

21.58
0.26

21.75
0.089
0.30

a Complete specifications for the models are provided in Appendices
2 and 3; COD 5 chemical oxygen demand; BOD 5 biochemical
oxygen demand; Stream ID 5 Stream identifier.

b D denotes the correlation between model residuals from adjacent
stream locations. Significant correlations are shown in italic.

c Variables are defined in Appendix 1.
d The R2 value adjusted for the number of variables [5].

Model testing

The models were tested against data from a previous time
period and against a random subset of the data. The first ap-
proach tested models that had been fit with all of the 179
observations available for years 1988 to 1994 (n 5179) against
data collected from 1980 to 1987. A limitation of the test data
set was that only 28 samples representing seven streams had
complete data for the variables of interest. When the additional
constraints of the lagged variable approach were included (i.e.,
the observations in the test data set must be downstream of
those in the training data set), the sample size decreased to
15. All of the instream chemistry variables in samples from
1980 to 1987 had lower or similar concentrations as the 1988
to 1994 data set except for Fe. Iron concentrations were sub-
stantially higher in the earlier time period. They ranged from
300 to 3,380 mg/L during 1980 to 1987 compared with 22 to
743 mg/L from 1988 to 1994. Before testing, the variables in
the 1980 to 1987 data set were transformed to near-normality
and regressed against drainage area by using the same rela-
tionships as used in the training data sets.

For the second testing approach, the 1988 to 1994 data set
was randomly split 80:20, resulting in a data set of n 5 143
for model building. Models were fit by using the procedures
described above and then were tested against the 36 withheld
samples.

The expected predictive performance of the models was

evaluated by calculating the mean square prediction residuals
(MSPR) with the mean square error (MSE) of the training
model [11]. To aid in this comparison, the ratio of the MSPR
and the MSE was calculated. If the MSPR is less than or equal
to the MSE (i.e., ratios less than or equal to 1), the residuals
in the test data set are comparable to those of the training data
set. If the MSPR is greater than the MSE (i.e., ratios greater
than 1), errors associated with application of the model would
be larger than expected. The MSPR values substantially greater
than the MSE indicate that the models would have poor pre-
dictive performance.

RESULTS

Significant models were found for all factors and all model
approaches. Biological variables selected for each model are
shown in Tables 1 through 6 and complete specification of all
of the models is provided in Appendices 2 and 3. Cyprinids
and oligochaetes were important variables predicting the quality
of stream corridor structure (Table 1). Percent Glyptotendipes
and insectivorous fish were important for predicting siltation
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Table 5. Final models for Zn and Pba

Modeling approach R2 Db Variablesc
Parameter
estimates

Base

Cochrane–Orcutt

Stream ID

Lag

0.13

0.09

0.57
0.44d

0.29

0.46

0.054

20.008

20.039

ALLINT
NUMTAXA
ALLINT
NUMTAXA
ALLINT
NUMTAXA
ALLINT

20.06
20.03
20.057
20.02
20.06
20.02
20.047

a Complete specifications for the models are provided in Appendices
2 and 3; Stream ID 5 Stream identifier.

b D denotes the correlation between model residuals from adjacent
stream locations. Significant correlations are shown in italics.

c Variables are defined in Appendix 1.
d The R2 value adjusted for the number of variables [5].

Fig. 1. Plots of observed versus predicted values for the six stressor
factors with the stream identifiers modeling approach. TSS 5 total
suspended solids; BOD 5 biochemical oxygen demand; COD 5
chemical oxygen demand; NOx 5 nitrate and nitrite.

Table 6. Final models for NOx and Pa

Modeling approach R2 Db Variablesc
Parameter
estimates

Base

Cochrane–Orcutt

0.13

0.11

0.45

0.003

TOPCARN
RDSUCKPC
RELNO
SHRED
TOPCARN
RDSUCKPC
RELNO

20.125
20.098
20.39

0.247
20.128
20.080
20.48

Stream ID

Lag

0.56
0.42d

0.36

0.0039

0.0005

TOPCARN
INTOLS
TOPCARN
RDSUCKPC
RELNO

20.16
20.11
20.09
20.057
20.35

a Complete specifications for the models are provided in Appendices
2 and 3; NOx 5 nitrate and nitrite; P 5 phosphorus; Stream ID 5
Stream identifier.

b D denotes the correlation between adjacent model residuals. Sig-
nificant correlations are shown in italic.

c Variables are defined in Appendix 1.
d The R2 value adjusted for the number of variables [5].

(Table 2). Percent headwater fish species, toxic tolerant inver-
tebrate taxa, and noninsect and dipteran invertebrate taxa were
important variables in the TSS, Fe, and BOD models (Table 3).
The proportions of mayflies, midges in the tribe Tanytarsini,
and depositional insect species were important variables for the
COD and BOD models (Table 4). Percent intolerant fish and
invertebrate taxa richness were important for predicting Zn and
Pb concentrations (Table 5). Finally, percent round-bodied suck-
ers, carnivorous fish, numbers of fish, and shredding inverte-
brates were selected for the N and P models (Table 6).

Within each stressor factor, the explanatory variables se-
lected varied across the different modeling options. However,
when substitution occurred, the original and substituted vari-
ables were always strongly correlated with each other. For
example, the number of intolerant species was replaced by the
percent of round-bodied suckers in the Stream ID model for
N and P factor. For the Cochrane–Orcutt procedure, variables
that had high correlations between adjacent points tended to
be dropped from the models. For example, the percent of shred-
ders did not meet the criteria for inclusion in the N and P
model after it was corrected for spatial dependence. When the
same explanatory variable appeared in several model ap-
proaches for the same stressor factor, the directionality of the
parameter estimate remained consistent.

The R2 values were the highest for the Stream ID models,
ranging from 0.30 for the siltation factor to 0.69 for the TSS,
Fe, and BOD factor. Plots of predicted versus observed values
for these models are shown in Figure 1. Standard regression
diagnostic plots were produced for each of the final models
(residuals vs fitted values, quantiles of residuals vs standard
normal distribution, Cook’s distance) [5,11]. They indicated
that no issues (e.g., overly influential observations) required
mitigation.

Compared with the base approach, the Cochrane–Orcutt
procedure generally decreased the R2 values, whereas the
Stream ID code and the Lag modeling approaches increased
the R2 of the models. The Cochrane–Orcutt, Stream ID, and
Lag modeling approaches markedly decreased the correlation
between adjacent residuals (r); the correlations associated with
most models were not significant at p 5 0.05.

The application of the n 5 179 training set to the 28 samples
collected from earlier years showed mixed success. Almost
one half (11 of 24) of the model tests had MSPR:MSE ratios
greater than 1.5. The MSPR:MSE ratios (Table 7) were near
or less than 1 for the stream corridor structure factor but were
uniformly high for the siltation factor. At least one model under
each approach (except for Stream ID) had an MSPR:MSE ratio
near 1 for the TSS, Fe, and BOD factor. Only the base model
approach and the Cochrane–Orcutt procedure had MSPR:MSE
ratios that were near 1 for the COD and BOD factor. Only the
base model had MSPR:MSE ratios that were near 1 for the
Zn and Pb factor and the NOx and P factor.

Models constructed with the n 5 143 data set (not shown)
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Table 7. The MSPR: MSE ratios of test data (n 28 from 1980–1987)
and final models (n 5 179)a

Factor Base
Cochrane–

Orcutt Stream ID Lag

Stream corridor structure
Siltation
TSS, Fe, and BOD
COD and BOD
Zn and Pb
NOx and P

0.67
1.48
0.80
1.01
0.95
0.93

0.64
2.02
1.05
0.92
2.08
1.71

0.88
2.10
2.40
1.74
2.76
2.82

0.63
1.96
1.03
1.33
2.70
1.90

a MSPR 5 means square prediction residuals; MSE 5 mean square
error; Stream ID 5 Stream identifier; TSS 5 total suspended solids;
BOD 5 biochemical oxygen demand; COD 5 Chemical oxygen
demand; NOx 5 nitrate and nitrite.

Table 8. The MSPR: MSE ratios of test data (n 5 36, randomly
selected) and final models (n 5 143)a

Factor Base
Cochrane–

Orcutt Stream ID Lag

Stream corridor structure
Siltation
TSS, Fe, and BOD
COD and BOD
Zn and Pb
NOx and P

1.06
0.82
0.78
1.10
1.05
1.16

1.27
0.77
1.10
0.62
1.23
1.08

2.23
1.62
0.49
1.10
1.63
1.87

1.09
0.77
1.00
1.38
1.10
1.19

a MSPR 5 mean square prediction residuals; MSE 5 mean square
error; Stream ID 5 Stream identifier; TSS 5 total suspended solids;
BOD 5 biochemical oxygen demand; COD 5 chemical oxygen
demand; NOx 5 nitrate and nitrite.

were similar to those constructed with the full data set, with some
substitution of strongly correlated variables. The models generally
performed well with the randomly selected subset of 36 obser-
vations; 20 of the 24 model tests had MSPR:MSE ratios less than
1.5 (Table 8). The Stream ID models performed very well for
the TSS, Fe, and BOD factor and COD and BOD factors. The
Lag models performed well across all of the stressor factors.

DISCUSSION

This paper presents a series of models that use biological
assessment data to predict the degree of six types of anthro-
pogenic stress. Significant models were found for all six stress-
or factors explored in this study. The overall consistency in
explanatory variables and paramater estimates across the dif-
ferent modeling approaches increases the confidence that the
models are biologically meaningful.

The models with the highest R2 values included either the
Stream ID or the lagged dependent variable. The great im-
provement in R2 values seen in the last two modeling options
has several interpretations. One is that not all of the important
variables were included in the base models. Stream ID may
be acting as a surrogate for variables that might represent the
initial condition of the stream community, other stressor var-
iables, or attributes of the stream that might mitigate response
to stress. The lagged variable has a more physical, source-
related interpretation. The level of stress at any site logically
is affected by the level of stress at upstream sites, which reflects
underlying fate and transport processes within the stream.

The parameter estimates are difficult to interpret quanti-
tatively because of the data transformations and the regression
against drainage area. However, in terms of directionality, most

variables and parameter estimates are consistent with biolog-
ical expectation.

Sites with high scores for quality of stream corridor struc-
ture (Table 1) were associated with more minnows and fewer
oligochaetes. The increase in minnows may be related to the
existence of refugia at sites scoring high for stream corridor
structure. The increased number of oligochaetes at sites scoring
low for stream corridor structure generally is consistent with
the classification of oligochaetes as tolerant organisms.

Sites with high siltation were associated with a higher percent
of Glyptotendipes and fewer insectivorous fish (Table 2). High
proportions of Glyptotendipes have been associated with agri-
cultural nonpoint sources and with conventional municipal
waste treatment plants, perhaps because of the nutrients con-
tributed by both of these sources [12]. The increase in Glyp-
totendipes may provide evidence that the primary source of
sediments in the Eastern Corn Belt Plains ecoregion is from
agricultural soils that contain high concentrations of nutrients.
The relationships between siltation and the biological variables
were quite weak. A potential explanation for this is that the use
of the Hester–Dendy samplers mitigated the impacts of siltation
on the macroinvertebrates by providing hard surface habitat.
Still, the finding is inconsistent with another study in the same
region that found that the substrate metric was an important
predictor variable of index of biotic integrity (fish community)
scores [13]. However, the final explanatory variables used in
that study did not include drainage area or a surrogate (e.g.,
stream order), which may explain the inconsistency.

The models for the TSS, Fe, and BOD factor (Table 3) had
the highest R2 values, but presented difficulties in interpreta-
tion. The proportion of headwater species decreased with high-
er concentrations of TSS, Fe, and BOD. Headwater species
are considered to be sensitive but are also strongly influenced
by stream gradient, and their inclusion in the model may in-
dicate a residual effect of this covariate. The number and
weight of fish decreased at higher concentrations. The percent
of toxic-tolerant invertebrate taxa and noninsect and dipteran
invertebrate taxa also decreased with increasing TSS, Fe, and
BOD. This finding is inconsistent with initial expectations,
because these organisms are considered to be tolerant of chem-
ical stress. High concentrations of suspended solids may re-
duce the bioavailability of toxic substances in the water col-
umn. The increase in suspended solids actually may reduce
the effective toxicity of chemicals in the water column, yield-
ing these counterintuitive results.

Increasing values for COD and BOD (Table 4) were asso-
ciated with decreasing proportions of mayflies, midges in the
tribe Tanytarsini, and depositional insect species. Mayflies and
midges in the tribe Tanytarsini appear frequently in the literature
as sensitive indicators of stressors such as nutrients, sources
such as sewer overflows and industrial outfalls, and land uses
such as agriculture and urbanization [14–18]. The percent of
pioneering species, considered to be tolerant of stress, increased
with increasing concentrations of COD and BOD.

Percent intolerant fish decreased with increasing Zn and Pb
concentrations (Table 5). The percent of round-bodied suckers
and intolerant fish species also decreased with increasing con-
centrations of NOx and P (Table 6). Although both of these
results are consistent with expectations in general terms, seeing
such similar explanatory variables indicates that the effects of
these two stressor factors may be difficult to differentiate in
the Eastern Corn Belt Plains ecoregion. The percent of shred-
ders increased with higher concentrations of NOx and P. If
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these nutrients increased plant growth, the detritus that shred-
ders feed on may also increase, or become more nutritive
through increased microbial colonization.

The results of this analysis were consistent with the dis-
criminant function results described previously [1]. In that
study, sites were grouped into low-, medium-, and high-stress
categories based on quartiles of each stressor factor distribu-
tion. In most cases, the variables selected in this study were
among the most strongly correlated with the discriminant func-
tion for the same stressor factor. In a few cases, additional
variables proved important in the models. These included per-
cent top carnivores in the TSS, Fe, and BOD factor models;
percent mayflies in the COD and BOD factor models; and the
number of fish and percent shredders in the NOx and P factor
models. Some of these differences can be attributed to the
clustering of sites into groups that was necessary for the dis-
criminant analysis. The regression approach has the advantage
of treating the stressor factor scores as continuous.

The strong testing results found by randomly partitioning
the 1988 to 1994 data set indicates that these models will have
predictive value for estimating the degree of stress at locations
where biological samples are available, but stream chemistry
or habitat variables are not, within this time period. In cases
where predictions are desired in streams that have at least one
existing sample, the use of the Stream ID or Lag models would
provide more accurate predictions.

In contrast, the mixed testing results and the generally high
MSPRs for the Lag and Stream ID models when tested against
the observations collected from 1980 to 1987 indicate that
these models will have little predictive value for additional
observations from that time period. The particularly high
MSPRs for the Lag and Stream ID models indicate that the
spatial structure of the data changed from the earlier time
period to the later. This conclusion is supported by an analysis
of the historical trends in one of the streams—the Big Darby
Creek [19]. In that study, a higher degree of spatial correlation
was seen in the time periods of 1986 to 1993, which would
roughly correspond to the period of time of the training data
set, as compared to an earlier time period of 1979 to 1981.
Differences in spatial structure may be attributable to contin-
ued refinement of the biological sampling methods during the
early 1980s (M. Smith, personal communication). However,
management actions, including the removal of low-head dams
and the institution of additional wastewater treatment, also
occurred in the mid- to late 1980s. These changes likely also
changed the spatial structure of the data by increasing con-
nectivity in the streams.

Finally, the modeling results provide insight into whether
biological communities respond in distinctive ways to different
types of stress. In this study, very different biological variables
and parameter estimates best explained the variability for four
of the stressor factors: stream corridor structure; siltation; TSS,
Fe, and BOD; and COD and BOD. This indicates that the
biological communities may be responding differently to these
types of stress. The model variables and parameter estimates
that fit for the Zn and Pb factor and the NOx and P factor were
very similar, with both relying on intolerant fish species. This
indicates that these two types of stress may be difficult to
distinguish with these models.

The models produced in this effort are product of the spe-
cific stressors, processes, and biological communities present
in the Eastern Corn Belt Plains ecoregion of Ohio. The same

models would be unlikely to accurately predict the degrees of
different types of stress when applied to other regions. How-
ever, the relationships seen should provide relevant insights
into the general patterns of biological responses that we can
expect in response to these stressors. Finally, the models pro-
vide additional evidence that biological communities can serve
as useful indicators of the types anthropogenic stress that are
impacting aquatic systems.
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APPENDIX 1. Biological variables used in modelsa

Variable Description Transformation used
Regressed against

drainage area?

ALLINT Number of sensitive fish sp. (i.e., ‘‘I’’ and ‘‘M’’ in Ohio En-
vironmental Protection Agency [Ohio EPA] species file)

None Yes: quadratic

CYPRINID Number of minnow species None Yes: Quadratic
HEADWATR Number of headwater fish species in a sample Log Yes: linear
INSECT Percent insectivorous fish None Yes: quadratic
INTOLS Number of intolerant fish sp. (i.e., ‘‘I’’ in Ohio EPA species

file)
None Yes: quadratic

PIONEERP Percent individuals of pioneering fish species in a sample Square root Yes: linear
RDSUCKPC Percent round-bodied suckers in a sample Square root Yes: linear
RELNO Number of fish per unit distance Log Yes: linear
RELWT Weight of fish per unit distance Square root Yes: linear
SUNFISH Number of sunfish species None Yes: quadratic
TOPCARN Percent carnivorous fish in a sample Square root Yes: linear
DEP Percent of total number of invertebrates that are depositional

taxa
x0.25 Yes: linear

GLYP Percent of total number of invertebrates that are Glyptoten-
dipes

x0.25 Yes: linear

MAYFLY Percent of total number of invertebrates that are mayfly taxa Square root Yes: quadratic
NUMTAXA Total number of invertebrate taxa None No
OLIGO Percent of the total number of invertebrates that are oligo-

chaetes
x0.25 Yes: quadratic

OTHDIP Percent of total number of invertebrates that are dipterans
and noninsects

Log Yes: linear

SHRED Percent of total number of invertebrates that are shredding
insect taxa

x0.25 No

TANY Percent of total number of invertebrates that are midges in
the tribe Tanytarsini

Square root Yes: linear

TOXTOL Percent of the total number of invertebrates that are toxic
tolerant

x0.25 Yes: linear

a Fish were sampled by electrofishing a standard length of stream, and invertebrates were sampled with Hester–Dendy artificial substrate samplers
[20].

APPENDIX 2. Parameter estimates for final models: linear regression, Cochrane–Orcutt, and lag variable modelsa

Factor

Linear

Variable Estimate

Cochrane–Orcutt

Variable Estimate

Lag

Variable Estimate

Stream corridor structure Intercept
CYPRINID
OLIGO

20.02645255
0.13964855

21.49003922

Intercept
CYPRINID
OLIGO

0.01999269
0.12275532

21.35352723

Intercept
Lag
CYPRINID
OLIGO

0.02237040
0.26907438
0.11159972

21.33683716
Siltation Intercept

GLYP
INSECT

0.03597585
21.04670787

0.01135981

Intercept
GLYP

20.00337758
21.27996383

Intercept
Lag
GLYP

20.00127199
0.31097454

21.00714717
TSS, Fe, and BOD Intercept

TOXTOL
HEADWATR
RELWT

0.09890619
21.89898569
21.04728530
20.06888591

Intercept
TOXTOL
HEADWATR

0.01394814
21.18575477
20.26274274

Intercept
Lag
HEADWATR
OTHDIP
RELWT
TOPCAR

0.01816708
0.59953495

20.30390340
20.03121970
20.02352797

0.05957139
COD and BOD Intercept

DEP
PIONEERP
MAYFLY
TANY

0.07216969
21.22068150

0.18158845
20.09324662
20.13841174

Intercept
DEP
PIONEERP
TANY

20.01540381
21.53665446

0.12083238
20.09621573

Intercept
Lag
DEP
PIONEERP
OTHDIP

20.03241357
0.50199922

21.75314809
0.08922815
0.29757691

Zn and Pb Intercept
ALLINT
NUMTAXA

0.96872162
20.05394964
20.02599705

Intercept
ALLINT
NUMTAXA

0.42454920
20.05711383
20.01761057

Intercept
Lag ALLINT

0.01735244
0.46533381

20.04703134
NOx and P Intercept

TOPCARN
RDSUCKPC
RELNO
SHRED

20.14333429
20.12507637
20.09813103
20.38632408

0.24740824

Intercept
TOPCARN
RDSUCKPC
RELNO

0.05159821
20.12849238

20.07958748
20.47811403

Intercept
Lag
TOPCARN
RDSUCKPC
RELNO

0.06733056
0.44340646

20.09052676
20.05662102
20.34991299

a Variables are defined in Appendix 1; TSS 5 total suspended solids; BOD 5 biochemical oxygen demand, COD 5 chemical oxygen demand;
NOx 5 nitrate and nitrite.
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APPENDIX 3. Parameter estimates for final models: Stream identifier (Stream ID) modelsa

Variable

Parameter estimates

Stream corridor
structure Siltation TSS, Fe, and BOD COD and BOD Zn and Pb NOx and P

Intercept
R01p001
R02p001
R02p069
R02p100

20.13832
0.23258
0.01478

20.45842
0.40057

0.73621
22.87121
21.40565
20.24102
20.63096

20.47070
0.07938
0.26025

20.51276
0.89464

20.17244
20.58324

0.26896
20.33583
20.46736

21.11789
0.49212
2.54876
1.41227
2.42228

22.38698
1.98291
2.95151
2.21760
1.41381

R02p109
R02p138
R02p200
R02p204
R02p207

0.21284
0.18139
0.30138
0.00533
0.72438

20.57209
20.80117
20.18803
21.39285
20.94588

0.43742
1.27789
0.64115

20.01615
0.36015

1.78086
0.34144

20.10655
0.07644
2.04947

3.51575
0.52495
1.69185
1.18871
2.23704

3.15929
2.91421
2.95129
2.98486
1.91627

R02p210
R02p211
R02p245
R02p400
R02p500

0.96912
0.82854
0.22640
0.71712

20.61610

0.68045
20.56214
20.59981
21.09356
20.51990

0.12643
20.17033

0.26492
0.55552
0.87093

20.25846
20.11336

0.16343
0.38431

20.78360

2.99707
0.99936
0.11115
1.54499
1.76447

2.54316
3.17029
2.87123
2.21479
3.56693

R04p100
R04p160
R04p168
R04p200
R04p221

20.53285
20.69266

0.18251
0.93667
0.87734

20.32446
0.39174

20.13204
0.21687
0.30182

1.50590
0.51196
0.03550
0.36231
0.11114

1.00706
0.30670
0.75101
1.34094
1.40664

1.00263
2.34784
2.19421
1.56977
1.59064

1.22028
3.24677
0.66129
2.20911
2.90545

R04p500
R05p001
R11p001
R11p040
R14p001
R14p043

0.60381
0.31761
0.58400
0.96371

20.50360
0.06205

20.19250
21.35300
20.10206

0.23852
21.44231
21.05509

1.49075
1.23285
0.23014

20.49322
0.65607

20.45680

1.97845
20.30789
20.11212

0.88966
1.40150

20.19528

1.53047
2.42373
1.82671
2.74914
1.02993
1.41889

1.83830
1.88610
2.83103
3.50999
1.14505
2.93159

R14p100
R14p110
R14p120
R14p130
R14p139

0.49696
21.19484
20.90821
20.25000
20.37439

20.89857
20.82392
21.77609
20.85427
20.50203

20.50141
20.55843
21.35892
20.32586
21.22770

20.65504
0.26939

20.01798
20.39862
21.70213

1.53569
0.85883
2.31634
1.80362
1.29954

2.45251
1.92109
1.88917
2.71530
2.60600

R14p200
R14p208
R14p220
R14p226
R14p227

20.14308
20.65938

0.67062
20.72319

0.76114

20.19281
0.76332

20.59810
20.08962
21.11363

1.43522
1.30825
1.41493
2.51133
1.24876

0.05287
0.37230

20.14842
20.87223
20.38875

1.65923
2.00498
1.80288
2.26296
1.01038

2.77636
3.00604
3.17934
2.29024
3.13625

R14p235
R14p400
R14p410
R14p600
R14p804

21.56217
1.23322
0.48859

20.27234
21.49138

20.33275
0.81730

20.41887
22.20998
20.36390

2.38426
0.62501

20.29473
1.01598
1.27986

0.55406
1.19479
0.04476
1.18842
2.57288

2.88834
2.92226
2.84301
1.12120
1.62348

3.24118
1.68723
2.78308
2.89603
1,57901

CYPRINID
OLIGO
SUNFISH
GLYP
INSECT

0.14653
21.44217

0.12931
—
—

—
—
—

21.53833
0.00892

—
—
—
—
—

—
—
—
—
—

—
—
—
—
—

—
—
—
—
—

TOXTOL
HEADWATR
DEP
OTHDIP

—
—
—
—

—
—
—
—

21.26984
20.37400

—
—

—
—

21.46668
0.26632

—
—
—
—

—
—
—
—

ALLINT
NUMTAXA
TOPCARN
INTOLS

—
—
—
—

—
—
—
—

—
—
—
—

—
—
—
—

20.05523
20.01726

—
—

—
—

20.16093
20.11649

a Variables beginning with R refer to Stream ID. Other variables are defined in Appendix 1. TSS 5 total suspended solids; BOD 5 biochemical
oxygen demand; COD 5 chemical oxygen demand; NOx 5 nitrate and nitrite.


