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AbstractÐNd-Fmoc protected nucleoamino acids of type I (Base=T, C, A) have been synthesized and employed as building blocks
for the construction of novel polyamide based nucleic acid analogues. Homopyrimidine oligomer A binds to complementary RNA
with signi®cant a�nity and in a sequence-speci®c fashion, while no binding was observed to complementary DNA. # 2000 Elsevier
Science Ltd. All rights reserved.

DNA analogues with modi®ed backbone structures have
attracted considerable attention as nuclease resistant
antisense and antigene agents.1,2 The majority of mod-
i®ed oligonucleotide analogues that have been investi-
gated in this context are characterized by an alternating
arrangement of natural phosphodiester and modi®ed
internucleoside linkages;2 however, as illustrated by the
discovery of peptide nucleic acids (PNA), which are
entirely based on an aminoethyl glycyl backbone, even
the complete replacement of the deoxyribose-phosphate
backbone in natural oligodeoxyribonucleotides can lead
to analogues with superior DNA- and RNA-binding
properties.3 A variety of other polyamide-type struc-
tures have subsequently been suggested to represent

useful DNA surrogates for possible antisense applica-
tions,4 some of which were reported to possess DNA-
and RNA-binding a�nities close to those of natural
DNA or even PNA.5

As part of a comprehensive program directed at the
identi®cation of genuinely new (i.e., not PNA-derived)
polyamide-based oligonucleotide analogues with RNA-
binding a�nities at least comparable to those of natural
oligodeoxyribonucleotides, we have recently described
the synthesis and RNA-binding properties of a series of
homopyrimidine 15-mers that were composed of rela-
tively ¯exible linear d-amino acids (Fig. 1, II±IV).6 As an
extension of this previous study we have now investigated
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a conformationally more rigid type of polyamide-based
DNA analogue incorporating pyrrolidine-derived
monomer units I (Fig. 1).7

In this communication we want to report on the synth-
esis of protected nucleoamino acids8 of type I as well as a
corresponding homo-pyrimidine oligomer and provide
some preliminary data on the RNA- and DNA-binding
properties of this novel type of oligonucleotide analogue.

The synthesis of nucleoamino acids of type I was based
on alcohol 5 as the central common intermediate, which
can be obtained in a four step sequence from known d-
hydroxyproline derivative 19 in 69% overall yield (Scheme
1). The conversion of 5 into fully protected nucleoamino
acids was achieved through alkylation of appropriately
protected nucleic acid base derivatives (N3-Bz-thymine or
-uracil) or nucleic acid base precursors (6-chloropurine)
under Mitsunobu conditions.6a,10 These alkylation pro-
ducts were subsequently elaborated into Nd-9-¯uor-
enylmethoxycarbonyl - (Fmoc -)protected nucleoamino
acids through base conversion (where required) fol-
lowed by appropriate protecting group manipulations.
In the case of fully protected thymine derivative 6
(Scheme 1) this involved simultaneous removal of the
base protecting group and hydrolysis of the tert-butyl

ester moiety by treatment with aqueous base, acid cata-
lyzed cleavage of the Nd-BOC protecting group, and
®nally reprotection of the free amino acid by reaction
with Fmoc-OSu11 to provide 8 in 35% overall yield
(based on 5).

Nd-Fmoc-N4-benzyloxycarbonyl-protected cytosine deri-
vative 13 (Scheme 2) was prepared via uracil 9 (obtained
from 5 and N3-Bz-uracil followed by cleavage of the N3-
Bz protecting group with aq ammonia/dioxane in 51%
overall yield).12 Conversion of 9 into triazolide 10 followed
by treatment of 10with aq ammonia/dioxane6a,13 provided
cytosine derivative 11, whose exocyclic amino function
was protected with a benzyloxycarbonyl (Cbz) group by
reaction with Cbz-OBt.14 Concomitant cleavage of the
BOC- and tert-butyl ester moieties and reprotection of
the d-amino group gave 13 in 18% overall yield for the
®ve step sequence from 9.

Preparation of Nd-Fmoc-N6-Cbz-protected adenine deri-
vative 15 initially involved reaction of 5 with 6-chloro-
purine as an adenine surrogate (Scheme 3).10 Although
the resulting N9-alkylated 6-chloropurine could not be
obtained in entirely pure form (contamination by residual
N,N0-diethoxycarbonyl hydrazine) treatment of this
material with aq ammonia at 60 �C provided adenine

Scheme 1. (i) TBS-Cl (1.5 equiv), imidazole (2.2 equiv), Et3N, DMF, rt, 2 h, quant. (ii) LiBH4 (3.5 equiv), THF, 0�, 2.5 h, 86%. (iii) BrCH2COOBut,
(2.5 equiv), Bu4NHSO4 (0.25 equiv), benzene/50% NaOH 1/1, 2 h, 88%. (iv) TBAF (2.5 equiv), THF, 0�, 1 h, 91%. (v) N3-Bz-thymine (2 equiv),
DEAD (2.5 equiv), Ph3P (2.5 equiv), THF, 0�, 7 h, 63%. (vi) 2N NaOH/MeOH/DMF 1.2/3/4 (4 equiv OHÿ), rt, 3.5 h, 77%. (vii) CF3COOH, rt, 45
min. (viii) Fmoc-OSu (1.15 equiv), Na2CO3 (1.6 equiv), dioxane/H2O 1/1, 73% (2 steps).

Scheme 2. (i) POCl3 (3.5 equiv), triazole (22.5 equiv), Et3N (23 equiv), CH3CN, rt, 43%. (ii) Concd NH3/dioxane 1/3, rt, 93%. (iii) Cbz-OBt (1.3
equiv), Et3N (1.3 equiv), CH2Cl2, rt, 82%. (iv) a) CF3COOH, rt; b) Fmoc-OSu (1.2 equiv), Na2CO3 (2.5 equiv), dioxane/H2O 6/4, rt, 55% (2 steps).

930 K.-H. Altmann et al. / Bioorg. Med. Chem. Lett. 10 (2000) 929±933



derivative 14 in a satisfactory 75% overall yield based
on 5. 14 was then elaborated into 15 by the same
sequence of reactions as described above for the pre-
paration of cytosine derivative 13. It should be noted,
however, that in contrast to 11 (Scheme 2) protection of
the exocyclic amino group of 14 with a Cbz-group could
only be achieved by means of the Rapaport reagent,15

whereas neither Cbz-OBt nor Cbz-Cl, even in large
excess, resulted in any of the desired acylation product.

In order to assess the hybridization a�nity of oligomers
of type I to complementary RNA and DNA, oligonu-
cleotide analogue A was prepared as a simple model
system, employing Fmoc-protected nucleoamino acids 8
and 13 as building blocks:16

H-Lys-ttt ttc tct ctc tct-Lys-NH2 (A) t,c=I-T, I-C

Lysine residues were attached to the N- as well as the C-
terminus of the actual base sequence in order to ensure
adequate solubility in UV-melting experiments. Oligomer
synthesis was performed on a 4-(20,40-dimethoxyphenyl-
aminomethyl)-phenoxy resin (copoly(styrene)-1% DVB;
f�0.24 mmol/g),17 with lysine residues being incorporated
into the growing polyamide chain as theNa-Fmoc-NE-tert-
butoxycarbonyl derivative (Fmoc-Lys(BOC)-OH). Chain
elongation was achieved by 2-(2-oxo-1(2H)-pyridyl))-
1,1,3,3-tetramethyluronium tetra¯uoroborate (TPTU)18-
mediated single couplings (2- or 3-fold excess of nucleo-
amino acid, similar excess of TPTU) in the presence
of ethyl-diisopropyl-amine (3.3 equiv) in N-methyl-
pyrrolidinone, followed by capping of unreacted amino
groups with acetic anhydride (Ac2O/DMA/pyridine 1/8/1).
The coupling time was set to 90 min, including 30 min at
40 �C.19 In general, coupling e�ciencies were >95%, as
determined by recording the UV absorption of the ful-
vene-piperidine adduct formed upon removal of the Nd-
Fmoc protecting group with 20% piperidine/DMF
(l=299.8 nm, E=7800 Mÿ1�cmÿ1).20 In order to
ensure complete deprotection of the terminal amino
group, on-line monitoring of the Fmoc-cleavage step
proved to be of crucial importance, as cleavage rates
varied as a function of sequence position. The 20%
piperidine/DMF treatment interval was thus adjusted in
each deprotection step according to the observed lability
of the protecting group. After cleavage of the protected
oligomer from the solid support with TFA/H2O (95/5,
v/v; 3.5 h), the Cbz-protecting groups on cytosine were

removed in solution at rt (TFMSA/TFA/DMS/m-cresol
(1/10/6/2, v/v/v/v),22 3.5 h). The crude compounds were
subjected to analysis and puri®cation on a standard C18

reversed-phase column eluting with an acetonitrile±
water gradient. The purity of the oligomer was veri®ed
by C18 reversed-phase analytical HPLC and was found
to be >95%. In addition, the identity of the ®nal pro-
duct was assessed by mass spectral (matrix-assisted laser
desorption ionization time-of-¯ight mass spectrometry,
MALDI-TOF) analysis, which gave the expected mole-
cular weight (4179.4 versus 4178.4 (calc)).

The interactions of oligomer A with complementary
RNA and DNA were investigated in UV-melting
experiments and the results of these studies are sum-
marized in Table 1. Slow heating of a 1/1 mixture of A
and its antiparallel23 RNA complement immediately
after mixing produced a biphasic melting curve with two
cooperative transitions around 33 and 68 �C, respec-
tively. Upon subsequent cooling of the mixture only the
low temperature transition was still observed (33.2 �C);
likewise, re-heating resulted in a cooperative melting
curve with only a single transition at 33.4 �C. Although
the origin of the high-temperature transition in the
initial heating cycle is currently unresolved, the coop-
erative nature of the melting curve as well as its full
reversibility with regard to the low-temperature transi-
tion clearly indicate that A is able to bind to its anti-
parallel RNA complement, r[(AG)5A5], in a cooperative
fashion. The presence of a single mismatched base in the
RNA target sequence (r[(AG)4ACA5]) resulted in a
decrease in melting temperature of �10 �C (Table 1)
which con®rms that binding is (Watson±Crick)
sequence-speci®c. In addition, the results of titration
experiments indicate that complex formation between A
and r[(AG)5A5] occurs with 1/1 stoichiometry.24 Based
on the di�erence in Tm-values between the A/r[(AG)5A5]
complex and the corresponding natural DNA/RNA
duplex (�Tm � ÿ19 �C, Table 1), it is clear that A binds
to complementary antiparallel RNA with lower a�nity
than the corresponding oligodeoxyribonucleotide,
d[(T)5(CT)5]; however, the resulting �Tm-value of
between ÿ1.2 and ÿ1.3�/residue should be compared to
similar or signi®cantly more negative values that have
been reported for a variety of di�erently modi®ed DNA
analogues, which are more closely related to the struc-
ture of natural DNA than oligomer A.1,2 It should also
be noted that the complex between A and r[(AG)5A5] is

Scheme 3. (i) DEAD (2.5 equiv), Ph3P (2.5 equiv), 6-Cl-purine (2 equiv), THF, 0 �C, 1 h, rt, 48 h. (ii) Concd NH3/dioxane 1/1, 60�, 24 h, 75% (2

steps). (iii) (4 equiv), rt, 16h, 70%. (iv) CF3COOH, rt, 3 h, 60%. (v) Fmoc-OSu (1.15 equiv), Na2CO3 (2.3 equiv), dioxane/H2O

1/1, rt, 48 h, 62%.
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signi®cantly more stable than the corresponding com-
plexes incorporating oligonucleotide analogues of types
II±IV (cf. Fig. 1).6b On the other hand, Lowe et al.5a

have recently reported that oligonucleotide analogues
related to those of type I by the replacement of the
-CH2O- unit with an amide group -C(O)NH- supposedly
bind to natural RNA as well as DNA with similar a�-
nities as PNA (and thus more tightly than naturalDNA).
The di�erence between Lowe's system and our structure I
could conceivably be caused by an increase in conforma-
tional ¯exibility in the latter, which would entropically
disfavor hybrid formation (cf., however, ref 25).

Cooperative binding of A to its parallel23 RNA comple-
ment (r[A5(GA)5]) was also observed and occurs with
comparable a�nity as for complementary RNA with an
antiparallel alignment (Table 1). Most notably, only a
single transition was observed under all experimental
conditions and the binding curve was fully reversible upon
heating and cooling without any indication of hysterisis. It
is not clear, however, whether the interaction between A
and r[A5(GA)5] in fact involves formation of a parallel A/
RNA duplex, as binding of A to r[A5(GA)5] could also
occur through the formation of an 11-base pair anti-
parallel duplex based on Watson±Crick base pairs
between residues 5 to 15 of A and 15 to 5 of r[A5(GA)5].

26

In contrast to complementary RNA, cooperative bind-
ing of A to complementary DNA, either in an antiparallel
or parallel fashion, was not observed. This is contrary to
the behaviour of the corresponding oligomers of type II±
IV (Fig. 1), for which complexes with complementary
DNA appear to be of comparable stability as those with
RNA.6b

In summary, we have achieved the synthesis of a new
polyamide based oligonucleotide analogue incorporat-
ing thymine- and cytosine-derived building blocks of
type I. Homo-pyrimidine oligomer A exhibits sequence-
speci®c binding to complementary RNA, but not DNA.
As nucleoamino acids of type I easily lend themselves to
further chemical modi®cation (e.g., through introduction
of additional substituents on the pyrrolidine ring or at
the position a to the carboxy group; cf. also ref 6b),
these building blocks could represent an appropriate
template for the design of DNA analogues exhibiting
further improved RNA-binding properties.
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