View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: T. Liu, J. Tian, W. Gao, H. H. Chang, Q. Liu, X. Li and W. L. Wei*, Org. Biomol. Chem.*, 2017, DOI: 10.1039/C7OB01225J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Intermolecular sulfenoamination of alkenes with sulfonamides and N-sulfanylsuccinimides to access β -sulfonylamino sulfides and dihydrobenzothiazines

Tao Liu,^a Jun Tian,^b Wen-Chao Gao,*^a Hong-Hong Chang,^a Qiang Liu,*^a Xing Li,^a and Wen-Long Wei^a

An acid-catalyzed intermolecular sulfenoamination reaction of alkenes is developed with sulfonamides as nitrogen source and *N*-sulfanylsuccinimides as sulfur source. This methodology provides a straightforward and general way to synthesize various β -sulfonylamino sulfides with high regio- and diastereoselectivity. The developed method was coupled with intramolecular C-N coupling in a one-pot procedure to afford a series of dihydrobenzothiazine derivatives, one kind of important heterocycles as biologically active compounds in medicinal chemistry.

Introduction

 β -Amino sulfides are important building blocks in organic synthesis, and have been widely used in synthetic chemistry as well as modern pharmaceutical industry (Figure 1). For example, these scaffolds exist in commercially approved drugs including Amoxicillin (a β -lactam-based antibiotic) and Viracept (an antiretroviral drug),^{1a} in bioactive non-natural compounds like K_{ATP} channel openers (embedding a dihydrobenzothiazine core)^{1b} and in some N-S bidentate ligands for transition metal catalysis.^{1c}

Figure 1. Useful structures containing β -amino sulfides

- ^{a.} College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- <u>gaowenchao@tyut.edu.cn</u>; <u>liuqiang@tyut.edu.cn</u> ^{b.} College of Date Science, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- ⁺ Footnotes relating to the title and/or authors should appear here.

Sulfenoamination reaction of alkenes directly couples two common groups, sulfenyl group and amino group to C-C double bond, which is abundant and readily available in nature, and is one of the most useful tools to construct β -amino sulfides. Specifically, several methods for the intramolecular sulfenoamination using N-alkenyl sulfonamides as substrates have been well investigated to prepare N-heterocyclic sulfides. Denmark and Shi groups separately reported the intramolecular enantioselective reaction of N-alkenvl sulfonamides with electrophilic sulfenyl reagent methyl benzenesulfenate (MeOSPh) or phenylthiophthalimide (PhthSPh).² Most recently, Wirth and coworkers also described enantioselective efficient intramolecular an and sulfenoamination of N-alkenyl sulfonamides mediated by iodine(III) reagents with sulfur nucleophiles (Scheme 1a).³ However, compared with intramolecular process,

(c) This work: direct intermolecular sulfenoamination with sulfonylamides as N-source

Electronic Supplementary Information (ESI) available: [Conditions optimization for the synthesis of **11a**, Mass Spectrometry for mechanism study, Copies of NMR and IR spectra for all new compounds; X-ray crystal data for **4m** and **9** (CIF)]. See DOI: 10.1039/x0xx00000x

ARTICLE

which are kinetically and thermodynamically favoured, the development of catalytic intermolecular sulfenoamination is more challenging and highly desirable.⁴ To realize an intermolecular sulfenoamination of alkenes, an alternative option was assisted with nitriles as solvent and N-nucleophiles,⁵ and successful examples on the synthesis of β -acetamino sulfides have been disclosed using nitrile as nitrogen source and thiol as sulfur source through a Ritter-type reaction (Scheme 1b).6 In addition, the electrophilic fluorinating agents Nfluorobenzenesulfonimide (NFSI),^{7a,b} could also serve as nitrogen source for intermolecular sulfenoamination under copper catalysis. However. direct intermolecular sulfenoamination of alkenes using simple sulfonamides as nitrogen source, to the best of our knowledge, has been scarcely explored.

N-Sulfanylsuccinimides, bench stable and readily accessible reagents, have been widely used to introduce sulfenyl groups to various molecules.8 For example, our group have recently developed an efficient method for the synthesis of 3sulfenylated coumarins through the electrophilic cyclization of alkynoates with N-sulfanylsuccinimides as sulfur sources.^{9a} Fu and coworkers reported the isothiocyanatophenylthiation and azidoarylthiation of alkenes using the combination of Nsulfanylsuccinimides and superstoichiometric amount of trimethylsilyl derivatives (TMSNCS or TMSN₃).¹⁰ Although βsulfonamino sulfides could be accessed through ring-opening of N-tosylaziridines with sulfur nucleophiles,¹¹ the preparation of N-tosylaziridines and the lower stereoselectivity of nucleophilc substitution often made these methods not practicable.11a-c Considering the availability, the safety and enviromental issues of nitrogen source, the direct, stereoselective sulfenoamination of alkene to access β -amino sulfides using stoichiometric amount of sulfonamides and N-sulfanylsuccinimides is more attractive and highly warranted. In continuation of our research work on C-heteroatom bond formation,⁹ we herein report an acid-catalyzed regio- and stereoselective intermolecular sulfenoamination for the synthesis of β -sulfonylamino sulfides using simple alkenes, stoichiometric amount of sulfonamides and N-sulfanylsuccinimides as starting materials, and a new strategy for the synthesis of dihydrobenzothiazine derivatives also be developed through this intermolecular has sulfenoamination reaction coupled with copper-mediated intramolecular C-N coupling in a one-pot procedure (Scheme 1c).

Results and discussion

Initially, styrene (1a), N-(p-tolylthio)succinimide (2a), and ptoluenesulfonamide (3a) were used as model substrates to investigate the intermolecular sulfenoamination reaction (Table 1). To our delight, *p*-toluenesulfonamide could serve as nitrogen source in 1.1 equivalent amount for the sulfenoamination of styrene in the presence of catalytic amount of Brønsted or Lewis acid (entries 1-8), and the desired product 4a was regioselectively produced in 84% yield when BF₃·Et₂O was used as the catalyst (entry 8). Further evaluation on reaction solvents showed that CH₂Cl₂ was more suitable for this transformation than other solvents (entries 9-14), and no desired product was detected when the reaction was performed in MeGN708Frand EtOAc (entries 11, 12 and 14). Moreover, we also tested three sulfenylating reagents such as p-tolylthiophthalimide (5), ptolylthio chloride (6), and methyl p-tolylsulfenate (7), that were previously used for intramolecular sulfenoamination of olefins,² while none of them could give better results than 2a (entries 15-17). For example, 5 had weak reactivity for the intermolecular sulfenoamination, and 4a was only obtained in 41% yield even the reaction was stirred for 24 h (entry 15); as for sulfenylating reagents 6 and 7, β -sulfonylamino sulfide 4a was produced in low yield, while the corresponding β -chloro sulfide or β methoxyl sulfide was isolated as a major product (entries 16 and 17).

		II conditions ²		
h 🔨 1a	+ 0 N	≥0 + TsNH ₂ ⁻¹ STol 3a	Catalyst	NHTs Ph 4a
Entry	R-S-Tol	Cat. (10 mol %)	Solvent	Yield (%)
1	2a	0	CH_2CI_2	0
2	2a	TfOH (10)	CH_2CI_2	70
3	2a	TfOH (20)	CH_2CI_2	74
4	2a	MsOH (20)	CH_2CI_2	80
5	2a	H₃PO₄ (20)	CH_2CI_2	trace
6	2a	TFA (20)	CH_2CI_2	trace
7	2a	FeCl ₃ (20)	CH_2CI_2	20
8	2a	BF ₃ •Et ₂ O (20)	CH_2CI_2	84
9	2a	BF ₃ •Et ₂ O (20)	DCE	73
10	2a	BF ₃ •Et ₂ O (20)	CHCl ₃	76
11	2a	BF ₃ •Et ₂ O (20)	MeCN	0
12	2a	BF ₃ •Et ₂ O (20)	THF	0
13	2a	BF ₃ •Et ₂ O (20)	Toluene	70
14	2a	BF ₃ •Et ₂ O (20)	EtOAc	0
15 ^c	5	BF ₃ •Et ₂ O (20)	CH_2CI_2	41
16 ^{<i>d</i>}	6	BF ₃ •Et ₂ O (20)	CH_2CI_2	21
17 ^e	7	BF ₃ •Et ₂ O (20)	CH_2CI_2	0
	N-S	Me Me	Ме	SOMe

^a Reaction conditions: 1a (0.3 mmol), 2a (0.45 mmol), 3a (0.33 mmol), catalyst(10 mol %), in CH₂Cl₂ (1 mL), at room temperature for 4-8 h. ^b Isolated yields. ^c Reaction time: 24 h. d (2-Chloro-2-phenylethyl)(p-tolyl)sulfane was isolated in 41% yield. e (2-Methoxy-2-phenylethyl)(p-tolyl)sulfane was isolated in 67% yield.

2 | J. Name., 2012, 00, 1-3

Next, our efforts focused on exploring the scope and limitation of regioselective the intermolecular sulfenoamination reaction. As shown in Table 2, a variety of styrene derivatives with different functional groups were firstly subjected to the optimal reaction conditions (Table 1, entry 6). In general, various functional groups on the aryl ring of alkenes are well-tolerated, including p-methyl, p- or o-chloro, and p- or m-bromo groups (4b-f). 2-Vinylnaphthalene was also compatible with this transformation, and 4g was afforded in 66% yield. In addition to terminal alkenes, several substrates bearing internal C-C double bond were also examined for the present transformation, affording the corresponding β -sulfonylamido sulfides in good to excellent yields. For example, trans-stillbene gave the corresponding stereospecific product **4h** in 76% yield; as for trans- β -methyl styrene, the desired product 4i was obtained in 94% yield with lower diasteroslectivity. Due to their electron-

^{*a*} Typical conditions: **1** (0.3 mmol), **2a** (0.45 mmol), **3a** (0.33 mmol), BF₃·Et₂O (0.06 mmol), in CH₂Cl₂ (1.0 mL), at room temperature. ^{*b*} TfOH (0.03 mmol) was instead of BF₃·Et₂O. ^{*c*} TfOH (0.06 mmol) was instead of BF₃·Et₂O. ^{*d*} The ratio of two isomers was determined by ¹H NMR. ^{*c*} The reaction was performed with **1** (5 mmol), **2a** (7.5 mmol), **3a** (0.25 mmol) in CH₂Cl₂ (20 mL), at room temperature. ^{*f*} BF₃·Et₂O (0.12 mmol) was used.

deficient nature, α , β -unsaturated carbonyl compounds are particularly challenging substrates foPା difunctionalization reactions. Nevertheless, the sulfenoamination reactions using chalcones bearing either electron-rich or -poor groups on different aryl moieties also proceeded well, and delivered the corresponding α -sulfenyl- β -sulfonamido ketones **4j**-**n** with high reactivity and diastereoselectivity. The exact structure and stereoselectivity of 4n was unambiguously confirmed by its Xray crystallography. The $\alpha,\beta\text{-unsaturated}$ ester 1o was also tested for this reaction, and gave the product 40 with high yield and diastereoselectivity. The practicality of such process was also tested for a gram-scale synthesis of 4j with a lower catalyst loading (5 mol % of BF₃·Et₂O). To our delight, the reaction could produce 2.13 g of 4j in 85% yield with no significant loss of efficiency. As for the aliphatic alkenes, both the regio- and stereoselectivity of sulfenoamination reaction were tested using different substrates: the sulfenoamination reaction of linear 1-octene (1p) displayed poor regioselectivity, and gave a mixed β -sulfonamido sulfides **4pa** and **4pb** in 77% yield; cyclohexene was a good substrate for this transformation, and the desired product 4q was diastereoselectively obtained in 73% yield. Furthermore, for the complex olefin substrates, excellent regioselectivities were also observed. For example, the regioselective product 4r with a steroid skeleton could be obtained in 70% yield, and even for the molecule with two C-C double bonds such as (S)-(+)-Carvone, the sulfenoamination only regioselectively occurred at the terminal position, delivering the desired product 4s in 85% yield, but with lower diastereoselectivity. Additionally, the present transformation was also suitable for intramolecular sulfenoamination reaction, and both β -tosylamido and γ -tosylamido alkenes gave the kinetically favoured sulfenyl pyrrolidines 8 and 9 in excellent yields (for the X-ray structure of 9, see Supporting Information).

Table 3. Screening of N-sulfanylsuccinimides and amides for the intermolecular

^{*a*} Typical conditions: **1a** (0.3 mmol), **2** (0.45 mmol), **3** (0.33 mmol), BF₃·Et₂O (0.06 mmol), in CH₂Cl₂ (1.0 mL), at room temperature. ^{*b*} BF₃·Et₂O (0.12 mmol) was used. ^{*c*} TfOH (0.06 mmol) was instead of BF₃·Et₂O. ^{*d*} TfOH (0.03 mmol) was instead of BF₃·Et₂O. Cepteo

ARTICLE

Furthermore, a series of N-sulfanylsuccinimides and amides were also examined in the present reaction system (Table 3). Likewise, substitutions on the thiophenol moiety, including electron-rich and -poor groups did not affect the reaction efficiency, and the desired products 4t-x were produced in moderate to excellent yields. Even if N-sulfanylsuccinimide was derived from aliphatic ethanethiol, the sulfenoamination reaction of styrene could also afford **4y** in 67% yield. Apart from p-toluenesulfonamide, sulfonamides, other including benzenesulfonamide, *p*-nitrobenzenesulfonamide and methanesulfonamide, were all suitable substrates, which could transform to the corresponding products 4z, 4aa and 4bb in good yields. However, this protocol also suffered the limitation of amino sources, and the attempts with acetoamide, succinimide or benzylamine as amino source failed to give any desired product.

As one of the most important heterocycles, dihydro-2Hbenzo[b][1,4]thiazine and their derivatives exhibit a broad spectrum of bio- and pharmacological activities.¹² After the efficient and regioselective synthesis of various β -sulfonylamino sulfides containing β -aryl group, we envisaged that dihydrobenzothiazines could be accessed using ßsulfonylamino sulfides through intramolecular C-N coupling. To our delight, after condition optimization (for details, see Supporting Information), the preparation of 3-aryl dihydro-2Hbenzo[b][1,4]thiazines could be realized with the use of simple alkenes, sulfonamides and N-(o-bromothiophenol)succinimides in a one-pot procedure. As is shown in Table 4, various aromatic alkenes, regardless of electron-poor or -rich properties of

 o Reaction conditions: (1) 1 (0.2 mmol), 2 (0.3 mmol), 3 (0.22 mmol), TfOH (0.04 mmol), in toluene (0.5 mL), at 60 °C for 2 h; (2) Cu powder (0.22 mmol), in DMF (1 mL) at 120 °C for 12 h under N₂.

substitution on the aryl ring, could be transformed to the corresponding dihydrobenzothiazines **11a-e** in moderate to

To gain insight into the mechanism of presented intermolecular sulfenoamination reaction, several control experiments were performed as shown in Scheme 2. First, when chalcone 1j was treated with N-(p-tolylthio)succinimide 2a under standard conditions for 1 h in the absence of TsNH₂, a sulfur-containing intermediate (331.24) was detected in mass spectroscopy (for details, see Supplementary Information); the addition of TsNH₂ (1.1 equiv) to this mixture could also stereoselectively gave the desired product in 75% yield. These experiments indicated that the thiiranium ion, which contained a three-membered episulfonium structure,13 was possibly sulfenoamination involved in the reaction, and stereoselectively converted to products by the nucleophilic attack of sulfonamides.

Scheme 3. A Tentative mechanism for intermolecular sulfenoamintion

Based on these results and previous reports,^{2-8, 13} a tentative mechanism was proposed in Scheme 3. Initially, sulfenylating agent **2** was activated by $BF_3 \cdot Et_2O$ and then transferred the sulfenyl moiety to alkenes (**1**) forming thiiranium ion **B**. Next, selective capture of intermediate **B** with $TsNH_2^{14}$ on the opposite side and subsequent deprotonation resulted in the desired product **4** in high diastereoselectivity.

Although the *N*-sulfonyl groups are robust protecting groups of amines, the present β -sulfonylamino sulfides can be readily desulfonated into the corresponding amines in high efficiency (Scheme 4). For example, the removal of *N*-nosyl group of **4y** can be achieved in almost quantitative yield upon treatment with K₂CO₃ in the mixed solvent of DMSO/PhSH/CH₃CN; *N*-

excellent yields. Methanesulfonamide was also suitable for this one-pot two-step reaction, and gave the desired product 11f in 69% yield. Moreover, with cyclohexene as a substrate, the dihydrobenzothiazine **11g** could be stereoselectively synthesized in 65% yield.

tosylated dihydrobenzothiazine **11a** can be detosylated to **14** in 85% yield with the use of sodium naphthalide.

Conclusions

Published on 26 June 2017. Downloaded by Cornell University Library on 28/06/2017 02:25:46.

In conclusion, an acid-catalyzed intermolecular sulfenoamination reaction of alkenes with sulfonamides as sources has been developed for the synthesis of various β sulfonylamino sulfides with high regio- and diastereoselectivity. Synthetically, the preparation of 4i can be scaled up in a reduced catalyst loading (5 mol %) with no obvious loss of efficiency. Furthermore, by coupling with Cu-mediated intramolecular C-N bond formation, dihydrobenzothiazine derivatives were also accessed through intermolecular sulfenoamination of alkenes and intramolecular C-N coupling in a one-pot procedure. Both the N-nosyl and -tosyl groups of products can be readily removed to release the corresponding amines. Mild reaction conditions, ready availability of starting materials, high reaction efficiency and selectivity, broad substrate scope, as well as feasible desulfonation of products make the present method valuable and practical for the synthesis of various β -amino sulfides and dihydrobenzothiazine derivatives.

Experimental

General information.

¹H NMR spectra were recorded at 600 MHz or 400 MHz and ¹³C NMR spectra were measured at 150 MHz or 100 MHz using NMR spectrometers with CDCl₃ as the solvent. Chemical shifts (δ) were measured in ppm and referenced to the deuterated chloroform (¹H: δ = 7.26 ppm, ¹³C: δ = 77.00 ppm). Highresolution mass spectrometry (HRMS) was performed on a TOF-Q spectrometer instrument with an ESI source. IR spectra were recorded on a FT-IR spectrometer in KBr pellets. Melting points were measured with a RD-II type melting point apparatus. X-ray structural analysis was obtained with an X-ray single-crystal diffractometer. N-Sulfanylsuccinimides are prepared following previous reports and the known compounds are identified by the comparison of their NMR spectra with reported data in literatures.^{9a} Unless otherwise noted, reagents obtained from commercial sources were directly used without further purification; all solvents were obtained from commercial sources and were purified according to standard procedures. Petroleum ether (PE), where used, has the boiling point range

60-90 °C. Column chromatography was performed on silica କ୍ଲୋ (200-300 mesh) by using ester acetate and bétroleum ବେମଧିକଥିଲି eluent.

General procedure for the synthesis of β-sulfonamino sulfide 4. To a solution of alkene (0.3 mmol, 1.0 equiv), *N*sulfanylsuccinimides (0.45 mmol, 1.5 equiv) and *p*toluenesulfonamide (0.33 mmol, 1.1 equiv) in CH₂Cl₂ (1.0 mL) was added BF₃·Et₂O (0.06 mmol, 0.2 equiv) dropwise at room temperature. The reaction mixture was continuously stirred until the starting material was consumed. The resulting mixture was then quenched with H₂O, extracted with ethyl acetate (3 × 10 mL), and dried over anhydrous Na₂SO₄. After the organic solvent was removed under reduced pressure, the crude product was purified by flash chromatography (Eluent: PE/EtOAc = 90:10).

4-Methyl-N-(1-phenyl-2-(p-

tolylthio)ethyl)benzenesulfonamide (4a).¹⁵ Yield: 120 mg (84%); time: 7 h; yellow solid; m.p. 100-102 °C; TLC, $R_f = 0.35$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, 2H, J = 8.0 Hz), 7.22-7.17 (m, 3H), 7.15-7.10 (m, 4H), 7.09-7.03 (m, 4H), 5.48-5.30 (m, 1H), 4.26 (q, 1H, J = 5.2 Hz), 3.14 (d, 2H, J = 7.2 Hz), 2.37 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 139.2, 137.1, 136.8, 131.1, 130.2, 129.9, 129.3, 128.5, 127.9, 127.2, 126.8, 56.5, 41.9, 21.5, 21.1; HRMS (ESI) m/z calcd. for C₂₂H₂₇N₂O₂S₂ [M+NH₄]⁺: 415.1508, found: 415.1516.

4-Methyl-N-(1-(p-tolyl)-2-(p-

tolylthio)ethyl)benzenesulfonamide (4b). Yield: 86.3 mg (70%); time: 5 h; white solid; m.p. 89-91 °C; TLC, R_f = 0.33 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.52 (d, 2H, J = 8.0 Hz), 7.18-7.09 (m, 4H), 7.06 (d, 2H, J = 8.0 Hz), 7.01 (d, 2H, J = 7.6 Hz), 6.96 (d, 2H, J = 8.0 Hz), 5.45-5.30 (m, 1H), 4.30-4.12 (m, 1H), 3.24-3.06 (m, 2H), 2.38 (s, 3H), 2.34 (s, 3H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.1, 137.7, 137.0, 136.8, 136.2, 130.9, 130.4, 129.8, 129.3, 129.2, 127.2, 126.7, 56.3, 41.7, 21.4, 21.0; HRMS (ESI) m/z calcd. for C₂₃H₂₉N₂O₂S₂ [M+NH₄]⁺: 429.1665, found: 429.1661.

N-(1-(4-Chlorophenyl)-2-(p-tolylthio)ethyl)-4-

methylbenzenesulfonamide (4c). Yield: 114 mg (88%); time: 20 h; white solid; m.p. 138-140 °C; TLC, $R_f = 0.34$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (d, 2H, J = 8.0 Hz), 7. 18-7.08 (m, 6H), 7.05 (d, 2H, J = 8.0 Hz), 7.00 (d, 2H, J = 8.4 Hz), 5.40 (s, 1H), 4.26 -4.16 (m, 1H), 3.14-3.00 (m, 2H), 2.39 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.4, 137.7, 137.5, 136.6, 133.7, 131.3, 129.9, 129.8, 129.4, 128.6, 128.3, 127.2, 55.8, 41.9, 21.5, 21.1; HRMS (ESI) m/z calcd. for C₂₂H₂₆ClN₂O₂S₂ [M+NH₄]⁺: 449.1119, found: 449.1121.

N-(1-(2-Chlorophenyl)-2-(p-tolylthio)ethyl)-4-

methylbenzenesulfonamide (4d). Yield: 119.6 mg (92%); time: 5 h; white solid; m.p. 88-90 °C; TLC, R_f = 0.35 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (d, 2H, *J* = 8.4 Hz), 7. 39-7.33 (m, 1H), 7.23-7.18 (m, 1H), 7.16-7.09 (m, 4H), 7.08-7.03 (m, 2H), 7.00 (d, 2H, *J* = 8.0 Hz), 5.65 (d, 1H, *J* = 4.8 Hz), 4.76-4.68 (m, 1H), 3.28-3.19 (m, 1H), 3.02-2.93 (m, 1H), 2.36 (s, 3H), 2.31 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 136.9, 136.8, 136.1, 132.0, 130.8, 129.7, 129.6, 129.5, 129.3, 128.8, 127.2, 126.9, 53.4, 40.1, 21.4, 21.0; HRMS (ESI) m/z calcd. for C₂₂H₂₆ClN₂O₂S₂ [M+NH₄]⁺: 449.1119, found: 449.1113.

ARTICLE

N-(1-(4-Bromophenyl)-2-(p-tolylthio)ethyl)-4-

methylbenzenesulfonamide (4e). Yield: 88 mg (63%); time: 8 h; white solid; m.p. 138-140 °C; TLC, R_f = 0.30 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.48 (d, 2H, J = 8.0 Hz), 7. 32-7.26 (m, 2H), 7.16-7.08 (m, 4H), 7.05 (d, 2H, J = 8.4 Hz), 6.97-6.91 (m, 2H), 5.34 (d, 1H, J = 4.4 Hz), 4.23-4.16 (m, 1H), 3.13-2.99 (m, 2H), 2.40 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.5, 138.2, 137.5, 136.6, 131.6, 131.4, 130.0, 129.7, 129.4, 128.6, 127.2, 121.9, 55.9, 41.9, 21.5, 21.1; HRMS (ESI) m/z calcd. for C₂₂H₂₆BrN₂O₂S₂ [M+NH₄]⁺: 495.0593, found: 495.0591.

N-(1-(3-Bromophenyl)-2-(p-tolylthio)ethyl)-4-

methylbenzenesulfonamide (4f). Yield: 117.6 mg (84%); time: 6 h; white solid; m.p. 95-97 °C; TLC, R_f = 0.34 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, 2H, J = 8.4 Hz), 7.29-7.25 (m, 1H), 7.12 (d, 4H, J = 8.0 Hz), 7.09-7.01 (m, 5H), 5.65 (d, 1H, J = 4.8 Hz), 4.28-4.19 (m, 1H), 3.13-3.00 (m, 2H), 2.38 (s, 3H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.4, 141.4, 137.4, 136.6, 131.3, 130.8, 129.93, 129.89, 129.8, 129.3, 127.1, 125.6, 122.4, 56.0, 41.7, 21.5, 21.0; HRMS (ESI) m/z calcd. for $C_{22}H_{26}BrN_2O_2S_2$ [M+NH₄]⁺: 493.0614, found: 493.0609.

4-Methyl-N-(1-(naphthalen-2-yl)-2-(p-

tolylthio)ethyl)benzenesulfonamide (4g). Yield: 89.3 mg (66%); time: 4 h; white solid; m.p. 118-120 °C; TLC, R_f = 0.31 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.79-7.73 (m, 1H), 7.68-7.62 (m, 2H), 7.52-7.41 (m, 5H), 7.23-7.11 (m, 3H), 7.05 (d, 2H, J = 7.6 Hz), 6.98 (d, 2H, J = 8.0 Hz), 5.53 (d, 1H, J = 4.8 Hz), 4.49-4.41(m, 1H), 3.22 (d, 2H, J = 7.2 Hz), 2.33 (s, 3H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 137.2, 136.8, 136.3, 132.95, 132.91, 131.2, 130.2, 129.9, 129.2, 128.4, 127.8, 127.5, 127.2, 126.3, 126.12, 126.07, 124.3, 56.7, 41.8, 21.3, 21.0; HRMS (ESI) m/z calcd. for C₂₆H₂₉N₂O₂S₂ [M+NH₄]⁺: 465.1665, found: 465.1663.

N-(1,2-Diphenyl-2-(p-tolylthio)ethyl)-4-

methylbenzenesulfonamide (4h). Yield: 104.0 mg (76%); time: 6 h; white solid; m.p. 146-148 °C; TLC, R_f = 0.30 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.47 (d, 2H, J = 8.4 Hz), 7.24-7.11 (m, 4H), 7.10-6.92 (m, 10H), 6.79 (d, 2H, J = 7.2 Hz), 5.48 (d, 1H, J = 8.0 Hz), 4.80-4.71 (m, 1H), 4.33 (d, 1H, J = 5.6 Hz), 2.32 (s, 3H), 2.27 (s, 3H); $^{13}\mathrm{C}$ NMR (CDCl_3, 100 MHz): δ 142.9, 137.5, 137.4, 137.12, 137.09, 132.4, 130.3, 129.6, 129.1, 128.8, 128.3, 127.8, 127.7, 127.57, 127.54, 127.1, 61.3, 61.0, 21.4, 21.0; HRMS (ESI) m/z calcd. for $C_{28}H_{31}N_2O_2S_2$ [M+NH₄]⁺: 491.1821, found: 491.1819.

4-Methyl-N-(1-phenyl-2-(p-

tolylthio)propyl)benzenesulfonamide (4i). Yield: 108.7 mg (93%); time: 8 h; colourless oil; TLC, R_f = 0.37 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz, two isomers ratio: 2:1): δ 7.50 (d, 1.36H, J = 8.0 Hz), 7.43 (d, 0.64H, J = 8.0 Hz), 7.23 (d, 0.74H, J = 8.4 Hz), 7.19-7.00 (m, 10.3H), 5.86 (s, 0.34H), 5.46 (d, 0.68H, J = 6.0 Hz), 4.44-4.37 (m, 0.69H), 4.13-4.07 (m, 0.34H), 3.42-3.32 (m, 0.68H), 3.24-3.14 m, 0.35H), 2.34 (d, 6H, J = 6.4 Hz), 1.15 (d, 2H, J = 7.2 Hz), 1.02 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 143.0, 137.7, 137.5, 137.0, 134.3, 132.7, 130.0, 129.9, 129.8, 129.2, 129.1, 128.1, 128.0, 127.7, 127.6, 127.5, 127.4, 127.2, 61.6, 60.2, 51.1, 49.5, 21.4, 21.14, 21.12, 18.4, 16.7; HRMS (ESI) m/z calcd. for C₂₃H₂₉N₂O₂S₂ [M+NH₄]⁺: 429.1665, found: 429.1666.

4-Methyl-N-(3-oxo-1,3-diphenyl-2-(p-

View Article Online tolylthio)propyl)benzenesulfonamide (4)PI: 44889/439801245g (90%); time: 18 h; white solid; m.p. 117-119 °C; TLC, R_f = 0.30 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, 4H, J = 7.6 Hz), 7.66 (t, 1H, J = 7.2 Hz), 7.48 (t, 2H, J = 7.6 Hz), 7.36 (d, 2H, J = 8.0 Hz), 7.30-7.22 (m, 9H), 7.02 (d, 1H, J = 7.6 Hz), 5.29-5.21 (m, 1H), 4.97 (d, 1H, J = 5.2 Hz), 2.54 (s, 3H), 2.52 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.0, 142.6, 139.2, 138.1, 137.8, 136.0, 134.3, 133.5, 129.9, 129.1, 129.0, 128.4, 128.3, 128.2, 127.5, 127.04, 126.95, 59.9, 57.2, 21.3, 21.1; HRMS (ESI) m/z calcd. for C₂₉H₃₁N₂O₃S₂ [M+NH₄]⁺: 519.1771, found: 519.1775.

N-(3-(4-Methoxyphenyl)-3-oxo-1-phenyl-2-(p-

tolylthio)propyl)-4-methylbenzenesulfonamide (4k). Yield: 91 mg (88%); time: 18 h; colorless oil; TLC, $R_f = 0.28$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.59-7.50 (m, 4H), 7.21-7.15 (m, 2H), 7.11-6.97 (m, 9H), 6.89 (d, 1H, J = 7.6 Hz), 6.73 (d, 2H, J = 8.8 Hz), 5.03-4.95 (m, 1H), 4.70 (d, 1H, J = 4.4 Hz), 3.79 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H); 13 C NMR (CDCl₃, 100 MHz): δ 195.7, 163.9, 142.6, 139.1, 138.4, 138.0, 134.3, 130.8, 130.0, 129.5, 129.0, 128.9, 128.2, 127.4, 127.1, 126.9, 113.7, 60.1, 56.8, 55.4, 21.4, 21.2; HRMS (ESI) m/z calcd. for C₃₀H₃₃N₂O₄S₂ [M+NH₄]⁺: 549.1876, found: 549.1888.

4-Methyl-N-(3-(naphthalen-2-yl)-3-oxo-1-phenyl-2-(p-

tolylthio)propyl)benzenesulfonamide (41). Yield: 83 mg (75%); time: 24 h; colorless oil; TLC, $R_f = 0.35$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (s, 1H), 7.78 (d, 1H, J = 8.0 Hz), 7.73 (s, 2H), 7.63 (d, 1H, J = 8.0 Hz), 7.59-7.51 (m, 3H), 7.49-7.43 (m, 1H), 7.15 (d, 2H, J = 8.0 Hz), 7.12-6.98 (m, 9H), 6.87 (d, 1H, J = 8.8 Hz), 5.17-5.09 (m, 1H), 4.88 (d, 1H, J = 4.8 Hz), 2.29 (s, 3H), 2.26 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.8, 142.7, 139.3, 138.2, 137.9, 135.6, 134.6, 133.4, 132.0, 130.5, 130.0, 129.6, 129.5, 129.0, 128.8, 128.3, 127.6, 127.5, 127.09, 127.06, 126.7, 123.8, 60.2, 57.5, 21.3, 21.1; HRMS (ESI) m/z calcd. for C₃₃H₃₃N₂O₃S₂ [M+NH₄]⁺: 569.1927, found: 569.1912.

4-Methyl-N-(3-oxo-3-phenyl-1-(p-tolyl)-2-(p-

tolylthio)propyl)benzenesulfonamide (4m). Yield: 76 mg (75%); time: 28 h; white solid; m.p. 136-138 °C; TLC, R_f = 0.36 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.65-7.53 (m, 4H), 7.47 (t, 1H, J = 7.2 Hz), 7.33-7.26 (m, 2H), 7.16 (d, 2H, J = 8.0 Hz), 7.11-7.01 (m, 4H), 6.98-6.82 (m, 4H), 6.76-6.64 (m, 1H), 5.00 (s, 1H), 4.82-4.69 (m, 1H), 2.33 (s, 6H), 2.18 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.0, 142.6, 139.1, 138.0, 137.2, 136.1, 135.1, 134.3, 133.4, 129.9, 129.2, 129.0, 128.9, 128.40, 128.38, 127.1, 126.9, 59.8, 57.2, 21.3, 21.2, 20.9; HRMS (ESI) m/z calcd. for $C_{30}H_{33}N_2O_3S_2$ [M+NH₄]⁺: 533.1927, found: 533.1933.

N-(1-(4-Chlorophenyl)-3-oxo-3-phenyl-2-(p-tolylthio)propyl)-

4-methylbenzenesulfonamide (4n). Yield: 93 mg (86%); time: 28 h; colorless oil; TLC, $R_f = 0.34$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (d, 2H, J = 7.6 Hz), 7.55-7.44 (m, 3H), 7.35-7.27 (m, 2H), 7.20-6.90 (m, 10H), 6.82-6.65 (m, 1H), 5.50-4.93 (m, 1H), 4.71 (d, 1H, J = 4.8 Hz), 2.34 (s, 3H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.4, 143.0, 139.3, 137.6, 136.6, 135.8, 134.4, 133.6, 133.4, 130.0, 129.1, 128.7, 128.6, 128.5, 128.4, 128.3, 127.0, 59.3, 56.8, 21.3, 21.1; HRMS (ESI) m/z calcd. for C₂₉H₃₀ClN₂O₃S₂ [M+NH₄]⁺: 533.1381, found: 533.1387.

Methvl 3-(4-methylphenylsulfonamido)-3-phenyl-2-(ptolylthio)propanoate (40). Yield: 128.4 mg (94%); time: 17 h;

white solid; m.p. 136-138 °C; TLC, $R_f = 0.39$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (d, 2H, J = 8.4 Hz), 7.22 (d, 2H, J = 8.0 Hz), 7.18-7.11 (m, 3H), 7.08 (t, 4H, J = 7.6 Hz), 7.04-7.00 (m, 2H), 6.29-6.20 (m, 1H), 4.89-4.83 (m, 1H), 3.84 (d, 1H, J = 5.6 Hz), 3.51 (s, 3H), 2.33 (d, 6H, J = 4.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 171.0, 142.9, 138.8, 137.71, 137.68, 137.7, 133.6, 129.9, 129.2, 129.1, 129.2, 128.4, 127.8, 127.1, 126.6, 59.0, 57.4, 52.4, 21.4, 21.1; HRMS (ESI) m/z calcd. for C₂₄H₂₉N₂O₄S₂ [M+NH₄]⁺: 473.1563, found: 473.1563.

4-Methyl-N-(1-(p-tolylthio)octan-2-yl)benzenesulfonamide

(4p). Yield: 92.0 mg (77%); time: 18 h; colorless oil; TLC, $R_f = 0.48$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.65 (d, 2H, J = 8.4 Hz), 7.21 (d, 2H, J = 8.0 Hz), 7.16 (d, 2H, J = 8.0 Hz), 7.07 (d, 2H, J = 8.0 Hz), 4.93 (d, 1H, J = 8.0 Hz), 3.37-3.25 (m, 1H), 3.12-3.02 (m, 1H), 2.79-2.69 (m, 1H), 2.39 (s, 3H), 2.33 (s, 3H), 1.68-1.56 (m, 1H), 1.45-1.32 (m, 1H), 1.23-0.96 (m, 8H), 0.83 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 137.5, 136.6, 131.5, 130.5, 129.7, 129.5, 127.0, 52.9, 39.9, 33.5, 31.5, 28.7, 25.1, 22.4, 21.4, 21.0, 14.0; HRMS (ESI) m/z calcd. for C₂₂H₃₂NO₂S₂ [M+H]⁺: 406.1869, found: 406.1877.

4-Methyl-N-(2-(p-tolylthio)cyclohexyl)benzenesulfonamide

(4q). Yield: 82.2 mg (73%); time: 14 h; white solid; m.p. 90-92 °C; TLC, $R_f = 0.40$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.76 (d, 2H, J = 8.4 Hz), 7.29 (d, 2H, J = 8.0 Hz), 7.15 (d, 2H, J = 8.0 Hz), 7.05 (d, 2H, J = 8.0 Hz), 5.36 (d, 1H, J = 4.0 Hz), 3.00-2.88 (m, 1H), 2.85-2.74 (m, 1H), 2.44 (s, 3H), 2.33 (s, 3H), 2.32-2.24 (m, 1H), 2.04-1.94 (m, 1H), 1.65-1.52 (m, 2H), 1.34-1.16 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.3, 138.0, 137.2, 133.9, 129.7, 129.6, 128.5, 127.3, 55.3, 51.8, 32.5, 31.8, 24.8, 23.4, 21.5, 21.1; HRMS (ESI) m/z calcd. for C₂₀H₂₆NO₂S₂ [M+H]⁺: 376.1399, found: 376.1398.

3-(2-(p-Tolylthio)-1-(p-tosylamino)ethyl)-1,3,5(10)-estratrien-

17-one (4r). Yield: 120 mg (70%); time:6 h; colorless oil; TLC, $R_f = 0.36$ (PE:EtOAc = 7:3); ¹H NMR (CDCl₃, 400 MHz): δ 7.51 (dd, 2H, J = 8.0, 4.4 Hz), 7.15-7.09 (m, 5H), 7.05 (d, 2H, J = 8.0 Hz), 6.85 (t, 1H, J = 6.0 Hz), 6.74 (s, 1H), 5.32 (dd, 1H, J = 6.8, 4.8 Hz), 4.24-4.16 (m, 1H), 3.14 (dd, 2H, J = 6.8, 3.6 Hz), 2.78-2.66 (m, 2H), 2.51 (dd, 1H, J = 9.4, 8.8 Hz), 2.38 (s, 3H), 2.33 (s, 3H), 2.26-1.95 (m, 6H), 1.68-1.30 (m, 5H), 0.91 (d, 3H, J = 2.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 220.7, 143.0, 139.5, 137.0, 136.9, 136.5, 136.4, 131.0, 130.9, 130.4, 129.8, 129.2, 127.4, 127.3, 125.4, 124.3, 56.2, 50.4, 47.9, 44.3, 41.6, 38.0, 35.8, 31.5, 29.2, 26.4, 25.6, 21.6, 21.5, 21.0, 13.8. HRMS (ESI) m/z calcd. for C₃₄H₃₉NO₃S₂Na [M+Na]⁺: 596.2264, found: 596.2261.

(5R)-5-(1-(p-Tolylthio)-2-(p-tosylamino)propan-2-yl)-2-

methylcyclohex-2-en-1-one (4s). Yield: 113 mg (85%); time: 3 h; colorless oil; TLC, $R_f = 0.40$ (PE:EtOAc = 7:3); ¹H NMR (CDCl₃, 400 MHz, two isomers): δ 7.15 (d, 1H, J = 8.4 Hz), 7.78 (d, 1H, J = 8.0 Hz), 7.24-7.14 (m, 4H), 7.11-7.05 (m, 2H), 6.66 (dd, 1H, J = 28.4, 6.0 Hz), 5.52 (d, 1H, J = 30.0 Hz), 3.14 (d, 0.5H, J = 13.2 Hz), 3.08 (s, 1H), 2.93 (d, 0.5H, J = 13.2 Hz), 2.60-2.40 (m, 2H), 2.39 (d, 3H, J = 2.4 Hz), 2.35-2.29 (m, 4H), 2.20-2.05 (m, 2H), 1.74 (s, 3H), 1.19 (d, 3H, J = 4.0 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 198.8 (198.4), 144.6, 143.9, 143.3 (143.2), 139.7 (139.6), 137.1 (137.0), 135.4 (135.3), 131.9 (131.8), 131.0, 130.9, 129.9, 129.6, 127.0 (126.9), 61.1 (61.0), 44.9 (44.8), 42.8, 42.5, 38.9 (38.8), 26.9

ARTICLE

(26.7), 21.5, 21.0, 19.8, 19.6, 15.5. HRMS (ESI) m/z, calcd for $C_{24}H_{30}NO_3S_2$ [M+H]⁺: 444.1662, found: 444.916591.039/C7OB01225J **3-(p-Tolylthio)-1-tosylpyrrolidine (8)**. Yield: 96.8 mg (93%); time: 6 h; colorless oil; TLC, $R_f = 0.46$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, 2H, J = 8.4 Hz), 7.32 (d, 2H, J = 8.0 Hz), 7.21-7.15 (m, 2H), 7.09 (d, 2H, J = 8.0 Hz), 3.68-3.60 (m, 1H), 3.58-3.49 (m, 1H), 3.36 (t, 2H, J = 7.2 Hz), 3.14-3.07 (m, 1H), 2.44 (s, 3H), 2.33 (s, 3H), 2.20-2.09 (m, 1H), 1.81-1.70 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.6, 137.9, 133.7, 132.6, 130.0, 129.9, 129.7, 127.6, 53.7, 46.9, 45.2, 31.8, 21.6, 21.1; HRMS (ESI) m/z calcd. for $C_{18}H_{22}NO_2S_2$ [M+H]⁺: 348.1086, found: 348.1098.

2-((*p***-Tolylthio)methyl)-1-tosylpyrrolidine (9).** Yield: 104.0 mg (96%); time: 5 h; white solid; m.p. 78-80 °C; TLC, $R_f = 0.46$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.54 (d, 2H, J = 8.4 Hz), 7.39-7.33 (m, 2H,), 7.23 (d, 2H, J = 8.0 Hz), 7.16 (d, 2H, J = 8.0 Hz), 3.68-3.55 (m, 2H), 3.51-3.44 (m, 1H), 3.14-3.04 (m, 1H), 2.79-2.68 (m, 1H), 2.40 (s, 3H), 2.36 (s, 3H), 1.94-1.73 (m, 2H), 1.68-1.61 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.4, 136.2, 133.9, 131.6, 129.8, 129.7, 129.6, 127.5, 59.0, 49.7, 39.0, 30.2, 27.8, 21.5, 21.1; HRMS (ESI) m/z calcd. for C₁₉H₂₄NO₂S₂ [M+H]⁺: 362.1243, found: 362.1247.

4-Methyl-N-(1-phenyl-2-

(phenylthio)ethyl)benzenesulfonamide (4t). Yield: 105.3mg (91%); time: 6 h; white solid; m.p. 104-106 °C; TLC, $R_f = 0.36$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.51 (d, 2H, J = 8.4 Hz), 7.26-7.18 (m, 8H), 7.12 (d, 2H, J = 8.0 Hz), 7.10-7.05 (m, 2H), 5.33 (s, 1H), 4.35-4.23 (m, 1H), 3.27-3.13 (m, 2H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.3, 139.1, 136.7, 134.1, 130.3, 129.4, 129.1, 128.6, 128.0, 127.2, 126.83, 126.77, 56.5, 41.1, 21.5; HRMS (ESI) m/z calcd. for C₂₁H₂₅N₂O₂S₂ [M+NH₄]⁺: 401.1352, found: 401.1350.

N-(2-((4-Methoxyphenyl)thio)-1-phenylethyl)-4-

methylbenzenesulfonamide (4u). Yield: 112.4 mg (90%); time: 16 h; yellow solid; m.p. 113-115 °C; TLC, $R_f = 0.36$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.50 (d, 2H, J = 8.4 Hz), 7.22-7.15 (m, 5H), 7.12 (d, 2H, J = 8.0Hz), 7.08-7.02 (m, 2H), 6.82-6.76 (m, 2H), 5.44 (s, 1H), 4.26-4.17 (m, 1H), 3.81 (s, 3H), 3.07 (d, 2H, J = 6.8 Hz), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 143.1, 139.2, 136.8, 134.0, 129.3, 128.4, 127.8, 127.2, 126.8, 124.1, 114.7, 56.5, 55.3, 43.1, 21.4; HRMS (ESI) m/z calcd. for C₂₂H₂₇N₂O₃S₂ [M+NH₄]⁺: 431.1458, found: 431.1466.

N-(2-((4-Chlorophenyl)thio)-1-phenylethyl)-4-

methylbenzenesulfonamide (4v). Yield: 84.0 mg (68%); time: 20 h; white solid; m.p. 128-130 °C; TLC, $R_f = 0.33$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.51 (d, 2H, J = 8.4 Hz), 7.24-7.18 (m, 5H), 7.17-7.10 (m, 4H), 7.08-7.02 (m, 2H), 5.25-5.14 (m, 1H), 4.30-4.20 (m, 1H), 3.28-3.13 (m, 2H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.5, 138.9, 136.6, 133.0, 132.6, 131.7, 129.4, 129.2, 128.7, 128.2, 127.2, 126.7, 56.4, 41.3, 21.5; HRMS (ESI) m/z calcd. for C₂₁H₂₄ClN₂O₂S₂ [M+NH₄]⁺: 435.0962, found: 435.0957.

N-(2-((2-Bromophenyl)thio)-1-phenylethyl)-4-

methylbenzenesulfonamide (4w). Yield: 100.0 mg (73%); time: 18 h; white solid; m.p. 128-130 °C; TLC, $R_f = 0.33$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.54 (t, 3H, J = 5.2 Hz), 7.25-7.18 (m, 5H), 7.16-7.09 (m, 4H), 7.08-7.02 (m, 1H), 5.33-5.24 (m, 1H), 4.42-4.32 (m, 1H), 3.25 (d, 2H, J = 6.8 Hz), 2.35 (s, 3H); ¹³C

ARTICLE

NMR (CDCl₃, 100 MHz): δ 143.3, 139.0, 136.6, 135.5, 133.2, 129.7, 129.4, 128.7, 128.1, 127.8, 127.6, 127.1, 126.7, 124.8, 56.2, 40.1, 21.5; HRMS (ESI) m/z calcd. for C₂₁H₂₄BrN₂O₂S₂ [M+NH₄]⁺: 479.0457, found: 479.0449.

4-Methyl-N-(2-(naphthalen-2-ylthio)-1-

phenylethyl)benzenesulfonamide (4x). Yield: 87.0 mg (67%); time: 5 h; white solid; m.p. 118-120 °C; TLC, $R_f = 0.40$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.84-7.78 (m, 1H), 7.76-7.69 (m, 2H), 7.68-7.65 (m, 1H), 7.55-7.44 (m, 4H), 7.29 (dd, 1H, J = 8.0, 2.0 Hz), 7.25-7.19 (m, 3H), 7.14-7.07 (m, 2H), 6.97 (d, 2H, J = 8.0 Hz), 5.41 (d, 1H, J = 4.8 Hz), 4.39-4.28 (m, 1H), 3.40-3.24 (m, 2H), 2.24 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 139.1, 136.4, 133.6, 132.0, 131.5, 129.3, 128.64, 128.60, 128.3, 128.1, 127.7, 127.5, 127.2, 127.1, 126.8, 126.7, 126.1, 56.5, 40.7, 21.3; HRMS (ESI) m/z calcd. for C₂₅H₂₇N₂O₂S₂ [M+NH₄]⁺: 451.1508, found: 451.1503.

N-(2-(Ethylthio)-1-phenylethyl)-4-methylbenzenesulfonamide (4y). Yield: 67 mg (67%); time: 18 h; colorless oil; TLC, $R_f = 0.44$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (d, 2H, J = 8.4Hz), 7.22-7.16 (m, 4H), 7.16-7.10 (m, 3H), 5.57 (d, 1H, J = 4.8 Hz), 4.40-4.30 (m, 1H), 2.91-2.71 (m, 2H), 2.37 (s, 3H), 2.32-2.18 (m, 2H), 1.12 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 139.6,136.9, 129.3, 128.4, 127.7, 127.2, 126.7, 56.4, 38.8, 25.7, 21.4, 14.3; HRMS (ESI) m/z calcd. for C₁₇H₂₅N₂O₂S₂ [M+NH₄]⁺: 353.1352, found: 353.1368.

N-(1-Phenyl-2-(*p*-tolylthio)ethyl)benzenesulfonamide (4z). Yield: 91.0 mg (80%); time: 10 h; yellow solid; m.p. 86-88 °C; TLC, $R_f = 0.36$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.62 (d, 2H, J = 8.4 Hz), 7.46 (t, 1H, J = 7.2Hz), 7.32 (t, 2H, J = 7.6 Hz), 7.21-7.11 (m, 5H), 7.10-7.02 (m, 4H), 5.62-5.46 (m, 1H), 4.35-4.26 (m, 1H), 3.15 (d, 2H, J = 6.8 Hz), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.8, 139.0, 137.2, 132.3, 131.2, 130.2, 129.9, 128.7, 128.5, 127.9, 127.1, 126.8, 55.6, 41.9, 21.0; HRMS (ESI) m/z calcd. for C₂₁H₂₅N₂O₂S₂ [M+NH₄]⁺: 401.1352, found: 401.1362.

$\label{eq:2.1} 4 \text{-} \textit{Nitro-N-(1-Phenyl-2-(p-tolylthio)ethyl)} benzene sulfon a mide$

(4aa). Yield: 91.0 mg (71%); time: 12 h; yellow solid; m.p. 148-150 °C; TLC, $R_f = 0.31$ (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 8.06 (d, 2H, J = 8.8 Hz), 7.68 (d, 2H, J = 8.8 Hz), 7.22-7.13 (m, 5H), 7.12-7.02 (m, 4H), 5.68-5.59 (m, 1H), 4.39-4.30 (m, 1H), 3.26-3.16 (m, 1H), 3.09-2.98 (m, 1H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 149.6, 145.6, 138.5, 137.7, 130.9, 130.1, 129.5, 128.7, 128.3, 126.9, 123.7, 55.5, 41.5, 21.0; HRMS (ESI) m/z calcd. for C₂₁H₂₄N₃O₄S₂ [M+NH₄]⁺: 446.1203, found: 446.1197.

N-(1-Phenyl-2-(p-tolylthio)ethyl)methanesulfonamide (4bb). Yield: 79.6 mg (83%); time: 8 h; yellow solid; m.p. 75-77 °C; TLC, $R_{\rm f}$ = 0.36 (PE:EtOAc = 8:2); ¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.27 (m, 7H), 7.13 (d, 2H, J = 8.0 Hz), 5.45 (s, 1H), 4.55-4.46 (m, 1H), 3.30-3.22 (m, 1H), 3.18-3.08 (m, 1H), 2.62 (s, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.8, 137.5, 131.3, 130.0,

128.9, 128.4, 126.9, 56.6, 42.1, 41.8, 21.0; HRMS (ESI) m/z calcd. for $C_{16}H_{23}N_2O_2S_2 \; [M+NH_4]^+:$ 339.1195, found: 339.1196.

Preparationof3-phenyl-4-tosyl-3,4-dihydro-2H-benzo[b][1,4]thiazine.To a solution of olefin (0.20 mmol, 1.0equiv) and 1-((2-bromophenyl)thio)pyrrolidine-2,5-dione (0.30mmol, 1.5 equiv) in toluene (0.5 mL) was added TfOH (0.04

mmol, 0.2 equiv) dropwise at room temperature. The reaction mixture was stirred at 60 °C for 2 h and a solution of Popper powder (0.22 mmol, 1.1 equiv) in DMF (1.0 mL) was then added. After stirring for another 12 h at 120 °C under argon, the resulting mixture was cooled to room temperature, washed with water, and extracted with ethyl acetate (3 × 10 mL), and dried over anhydrous Na₂SO₄. The organic solvent was removed under reduced pressure, and the crude product was purified by flash chromatography (Eluent: PE/EtOAc = 20:1).

3-Phenyl-4-tosyl-3,4-dihydro-2H-benzo[b][1,4]thiazine (11a). Yield: 54.6 mg (72%); time: 14 h; white solid; m.p. 119-121 °C; TLC, $R_f = 0.36$ (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (d, 1H, J = 8.0 Hz), 7.46-7.37 (m, 4H), 7.34-7.27 (m, 2H), 7.26-7.15 (m, 4H), 7.12-7.05 (m, 2H), 5.73 (t, 1H, J = 6.8 Hz), 3.26-3.18 (m, 1H), 3.03-2.95 (m, 1H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.7, 139.8, 136.1, 134.5, 132.2, 130.0, 129.4, 128.6, 128.2, 127.6, 127.4, 126.4, 126.3, 126.1, 60.8, 34.5, 21.6; HRMS (ESI) m/z calcd. for C₂₁H₂₃N₂O₂S₂ [M+NH₄]⁺: 399.1195, found: 399.1198.

3-(p-Tolyl)-4-tosyl-3,4-dihydro-2H-benzo[b][1,4]thiazine (11b).

Yield: 44.2 mg (56%); time: 16 h; white solid; m.p. 138-140 °C;TLC, $R_f = 0.34$ (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, 1H, J = 8.0 Hz), 7.43 (d, 2H, J = 8.4 Hz), 7.28 (d, 2H, J = 8.0 Hz), 7.21-7.15 (m, 3H), 7.12-7.06 (m, 4H), 5.70 (t, 1H, J = 6.4 Hz), 3.24-3.16 (m, 1H), 3.04-2.95 (m, 1H), 2.40 (s, 3H), 2.29 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.7, 137.3, 136.7, 136.2, 134.4, 132.0, 129.9, 129.4, 129.3, 128.1, 127.4, 126.4, 126.3, 126.0, 60.2, 34.1, 21.6, 21.0; HRMS (ESI) m/z calcd. for C₂₂H₂₂NO₂S₂ [M+H]⁺: 396.1086, found: 396.1084.

3-(2-Chlorophenyl)-4-tosyl-3,4-dihydro-2H-

benzo[b][1,4]thiazine (11c). Yield: 59.6 mg (74%); time: 14 h; white solid; m.p. 169-171 °C; TLC, $R_f = 0.35$ (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.95 (d, 1H, J = 8.4 Hz), 7.53 (d, 1H, J = 7.6 Hz), 7.44-7.31 (m, 4H), 7.29-7.22 (m, 2H), 7.22-7.14 (m, 4H), 5.97-5.90 (m, 1H), 3.40-3.31 (m, 1H), 2.64-2.54 (m, 1H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.7, 139.5, 136.5, 135.11, 135.08, 131.3, 130.2, 129.6, 129.4, 129.3, 128.9, 127.6, 127.5, 127.2, 126.6, 62.8, 37.1, 21.6; HRMS (ESI) m/z calcd. for C₂₁H₂₂ClN₂O₂S₂ [M+NH₄]⁺: 433.0806, found: 433.0799.

3-(3-Bromophenyl)-4-tosyl-3,4-dihydro-2H-

benzo[b][1,4]thiazine (11d). Yield: 62.5 mg (71%); time: 12 h; white solid; m.p. 140-142 °C; TLC, $R_f = 0.34$ (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.85-7.81 (m, 1H), 7.54-7.50 (m, 1H), 7.43-7.31 (m, 4H), 7.26-7.15 (m, 4H), 7.14-7.07 (m, 2H), 5.69-5.62 (m, 1H), 3.23-3.13 (m, 1H), 2.96-2.86 (m, 1H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.9, 142.3, 135.7 134.3, 132.3, 130.8, 130.2, 130.0, 129.44, 129.43, 128.4, 127.4, 126.6, 126.4, 125.0, 122.7, 60.7, 34.7, 21.6; HRMS (ESI) m/z calcd. for C₂₁H₁₉BrNO₂S₂ [M+H]⁺: 460.0035, found: 460.0031.

6-Methyl-3-phenyl-4-tosyl-3,4-dihydro-2H-

benzo[b][1,4]thiazine (11e). Yield: 79 mg (91%); time: 14 h; white solid; m.p. 122-124 °C; TLC, $R_f = 0.32$ (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.65 (s, 1H), 7.46-7.37 (m, 4H), 7.31 (t, 2H, *J* = 7.6 Hz), 7.26-7.21 (m, 1H), 7.18 (d, 2H, *J* = 8.4 Hz), 7.02-6.97 (m, 1H), 6.95-6.90 (m, 1H), 5.72-5.65 (m, 1H), 3.24-3.14 (m, 1H), 2.98-2.86 (m, 1H), 2.40 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.6, 140.2, 136.3, 136.0, 134.5, 130.5, 129.3,

Published on 26 June 2017. Downloaded by Cornell University Library on 28/06/2017 02:25:46.

Journal Name

129.1, 128.6, 128.0, 127.6, 127.42, 127.38, 126.3, 61.6, 35.3, 21.6, 21.2; HRMS (ESI) m/z calcd. for $C_{22}H_{22}NO_2S_2$ [M+H]⁺: 396.1086, found: 396.1087.

4-(Methylsulfonyl)-3-phenyl-3,4-dihydro-2H-

benzo[b][1,4]thiazine (11f). Yield: 42.0 mg (69%); time: 22 h; white solid; m.p. 99-101 °C; TLC, $R_{\rm f}$ = 0.34 (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (dd, 1H, *J* = 8.0, 1.2 Hz), 7.37-7.27 (m, 5H), 7.26-7.21 (m, 2H), 7.20-7.15 (m, 1H), 5.76-5.69 (m, 1H), 3.55-3.46 (m, 1H), 3.13-3.04 (m, 1H), 2.89 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 140.3, 135.4, 133.0, 129.8, 129.2, 128.7, 127.8, 127.2, 126.8, 126.1, 63.0, 38.3, 37.4; HRMS (ESI) m/z calcd. for C₁₅H₁₆NO₂S₂ [M+H]⁺: 306.0617, found: 306.0607.

10-Tosyl-2,3,4,4a,10,10a-hexahydro-1H-phenothiazine (**11g**). Yield: 44.7mg (65%); time: 20 h; white solid, mp 116-118 °C; TLC, $R_f = 0.34$ (PE:EtOAc = 20:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.74 (d, 1H, J = 8.0 Hz), 7.25-7.18 (m, 3H), 7.13-7.05 (m, 4H), 3.92-3.80 (m, 1H), 2.62-2.53 (m, 1H), 2.49-2.40 (m, 1H), 2.35 (s, 3H), 2.10-1.99 (m, 1H), 1.88-1.72 (m, 2H), 1.60-1.35 (m, 3H), 1.30-1.15 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.3, 136.0, 135.5, 134.6, 130.3, 129.4, 128.9, 127.4, 126.6, 126.2, 70.2, 51.8, 36.3, 31.7, 25.6, 24.8, 21.5; HRMS (ESI) m/z calcd. for C₁₉H₂₂NO₂S₂ [M+H]⁺: 360.1086, found: 360.1079.

Preparation of 1-phenyl-2-(*p*-tolylthio)ethanamine (13).^{1c} To a stirred mixture of 4y (64.6 mg, 0.15 mmol), K₂CO₃ (84 mg, 0.6 mmol) and DMSO (0.1 mL) in CH₃CN (3.0 mL) was added PhSH (0.1 mL). Upon stirring at 50 °C for 6 h, the resulting mixture was concentrated to remove CH₃CN, washed with saturated aq. NH₄Cl and brine, extracted with CH₂Cl₂ (3 × 10 mL), and dried over anhydrous Na₂SO₄. After the organic solvent was removed under reduced pressure, the crude product was purified by flash chromatography (Eluent: PE/EtOAc = 7:3) to give **13**. Yield: 36.2 mg (99%); time: 6 h; colorless oil; TLC, *R*_f = 0.28 (PE:EtOAc = 7:3); ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.25 (m, 6H), 7.24 (m, 1H), 7.11 (d, 2H, *J* = 8.0 Hz), 4.04 (dd, 1H, *J* = 9.6, 3.6 Hz), 3.28-3.21 (m, 1H,), 3.01-2.90 (m, 1H), 2.31 (s, 3H), 1.88 (brs, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 144.2, 136.5, 131.8, 130.5, 129.8, 128.5, 127.4, 126.4, 54.5, 44.5, 21.0.

Preparation of 3-phenyl-3,4-dihydro-2H-benzo[b][1,4]thiazine (14).¹⁶ To a solution of sodium (32.2 mg, 1.4 mmol) in dry THF (2.0 mL) was added naphthalene (167.0 mg, 1.30 mmol) in dry THF (2.0 mL) and stirred at room temperature for 4 h. 11a (76.0 mg, 0.20 mmol) in dry THF (2.0 mL) was subjected to the above mentioned solution of sodium naphthalide at -78 °C. After complete disappearance of starting materials (monitored by TLC), the reaction was quenched with saturated aq. NH₄Cl and extracted with ethyl acetate $(3 \times 10 \text{ mL})$. After thhe combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure, the crude product was purified by flash chromatography (Eluent: PE/EtOAc = 50:1). Yield: 38.6 mg (85%); time: 2 h; colorless oil; TLC, R_f = 0.40 (PE:EtOAc = 50:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.44-7.31 (m, 5H), 7.08 (dd, 1H, J = 7.6, 1.2 Hz), 6.98-6.91 (m, 1H), 6.72-6.63 (m, 1H), 6.54 (d, 1H, J = 8.0 Hz), 4.68 (dd, 1H, J = 8.8, 2.8 Hz), 4.16 (s, 1H), 3.24-3.12 (m, 1H), 3.06-2.98 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 142.8, 142.2, 128.9, 128.2, 127.4, 126.7, 125.6, 118.3, 115.4, 115.3, 56.1, 33.1.

Acknowledgements

View Article Online DOI: 10.1039/C7OB01225J

This work was supported by the Natural Science Foundation of Shanxi Province (No. 2015021037), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (No. 2015133) and the China Scholarship Council (CSC) (No. 201608140185). We thank Dr. Wei Cao (Shanxi University) for determination of all the X-ray crystal structures.

Notes and references

- (a) N. A. McGrath, M. Brichacek, and J. T. Njardarson, J. Chem. Educ., 2010, 87, 1348; (b) V. Cecchetti, V. Calderone, O. Tabarrini, S. Sabatini, E. Filipponi, L. Testai, R. Spogli, E. Martinotti, and A. Fravolini, J. Med. Chem., 2003, 46, 3670; (c) Y. Wei, L.-Q. Lu, T.-R. Li, B. Feng, Q. Wang, W.-J. Xiao, and H. Alper, Angew. Chem. Int. Ed., 2016, 55, 2200.
- (a) S. E. Denmark, and H. M. Chi, J. Am. Chem. Soc., 2014, 136, 8915; (b) S. E. Denmark, E. Hartmann, D. J. P. Kornfilt, H. Wang, Nat. Chem., 2014, 6, 1056; (c) L. Li, Z. Li, D. Huang, H. Wang, Y. Shi, RSC Adv., 2013, 3, 4523.
- 3 P. Mizar, R. Niebuhr, M. Hutchings, and U. Farooq, T. Wirth, *Chem. Eur. J.*, 2016, **22**, 1614.
- 4 For other examples about the intermolecular difunctionalization of olefins, see: (a) F. Wang, D. Wang, X. Wan, L. Wu, P. Chen, and G. Liu, J. Am. Chem. Soc., 2016, 138, 15547; (b) S. M. Banik, J. W. Medley, and E. N. Jacobsen, J. Am. Chem. Soc., 2016, 138, 5000; (c) J. L. Kennemur, G. D. Kortman, and K. L. Hull, J. Am. Chem. Soc., 2016, 138, 11914.
- 5 (a) M. Tiecco, M. Tingoli, L. Testaferri, and R. Balducci, *J. Org. Chem.*, 1992, **57**, 4025; (b) V. Lucchini, G. Modena, and L. Pasquato, *J. Chem. Soc., Chem. Commun.*, 1994, 1565.
- 6 (a) Y. Zheng, Y. He, G. Rong, X. Zhang, Y. Weng, K. Dong, X. Xu, and J. Mao, Org. Lett., 2015, 17, 5444; (b) H. Cui, X. Liu, W. Wei, D. Yang, C. He, T. Zhang, and H. Wang, J. Org. Chem., 2016, 81, 2252; (c) D. Wang, Z. Yan, Q. Xie, R. Zhang, S. Lin, and Y. Wang, Org. Biomol. Chem., 2017, 15, 1998.
- 7 (a) D. Li, T. Mao, J. Huang, and Zhu, Q. *Chem. Commun.*, 2017,
 53, 3450; (b) G. Zheng, J. Zhao, Z. Li, Q. Zhang, J. Sun, H. Sun, and Q. Zhang, *Chem. Eur. J.*, 2016, 22, 3513.
- For selected examples, see: (a) P. Saravanan, and P. Anbarasan, Org. Lett., 2014, 16, 848; (b) T. Hostier, V. Ferey, G. Ricci, D. G. Pardo, and J. Cossy, Org. Lett., 2015, 17, 3898; (c) T. Hostier, V. Ferey, G. Ricci, D. G. Pardo, and J. Cossy, Chem. Commun., 2015, 51, 13898.
- 9 (a) W.-C. Gao, T. Liu, B. Zhang, X. Li, W.-L. Wei, Q. Liu, J. Tian, and H.-H. Chang, *J. Org. Chem.* 2016, **81**, 11297; (b) W.-C. Gao, F. Hu, J. Tian, X. Li, W.-L. Wei, and H.-H. Chang, *Chem. Commun.* 2016, **52**, 13097; (c) W.-C. Gao, F. Hu, Y.-M. Huo, H.-H. Chang, X. Li, and W.-L. Wei, *Org. Lett.* 2015, **17**, 3914; (d) W.-C. Gao, J.-J. Zhao, F. Hu, H.-H. Chang, X. Li, and W.-L. Wei, *RSC Adv.*, 2015, **5**, 25222; (e) W.-C. Gao, J.-J. Zhao, H.-H. Chang, X. Li, Q. Liu, and W.-L. Wei, *RSC Adv.*, 2014, **4**, 49329.
- (a) H. Tian, J. Yu, H. Yang, C. Zhu, and H. Fu, Adv. Synth. Catal., 2016, **358**, 1794; (b) J. Yu, M. Jiang, Z. Song, T. He, H. Yang, and H. Fu, Adv. Synth. Catal., 2016, **358**, 2806.
- (a) R.-H. Fan, and X.-L. Hou, J. Org. Chem., 2003, 68, 726; (b) J. Wu, X. Sun, and W. Sun, Org. Biomol. Chem., 2006, 4, 4231; (c) Q. Yang, Z. Yin, M. Yang, and Y. Peng, Chin. J. Chem., 2011, 29, 79; (d) M. K. Ghorai, M. Sayyad, Y. Nanaji, S. Jana, Chem. Asian J., 2015, 10, 1480; (e) F. Zeng, and H. Alper, Org. Lett., 2010, 12, 5567; (f) D. J. C. Prasad, and G. Sekar, Org. Biomol. Chem., 2009, 7, 5091.
- (a) A. Macchiarulo, G. Costantino, D. Fringuelli, A. Vecchiarelli, F. Chiaffella, and R. Fringuelli, *Bioorg. Med. Chem.*, 2002, **10**, 3415; (b) F. Corelli, F. Manetti, A. Tafi, G. Campiani, V. Nacci,

Organic & Biomolecular Chemistry Accepted Manuscript

Journal Name

View Article Online DOI: 10.1039/C7OB01225J

ARTICLE

- and M. Botta, *J. Med. Chem.*, 1997, **40**, 125; (c) V. Calderone, A. Martelli, G. Manfroni, L. Testai, S. Sabatini, O. Spogli, and V. Cecchetti, *J. Med. Chem.*, 2008, **51**, 5085; (d) S. Darvesh, K. V. Darvesh, R. S. McDonald, D. Mataija, R. Walsh, S. Mothana, O. Lockridge, and E. Martin, *J. Med. Chem.*, 2008, **51**, 4200.
- V. A. Smit, N. S. Zefirov, I. V. Bodrikov, M. Z. Krimer, Acc. Chem. Res., 1979, 12, 282.
- 14 Regiochemistry was determined by electronic factors (Markovnikov selectivity), as amination mainly occurs at the benzylic carbon of aryl alkenes and branched carbon of aliphatic alkenes.
- 15 A. Toshimitsu, H. Abe, C. Hirosawa, and K. Tamao, J. *Chem. Soc. Perkin Trans.* 1, 1994, 3465.
- 16 D.-A. Gruzdev, E.-N. Chulakov, L.-S. Sadretdinova, M. Kodess, G.-L. Levit, V.-P. Krasnov, *Tetrahedron: Asymmetry*, 2015, 26, 186.

An acid-catalyzed intermolecular sulfenoamination of alkenes is developed with sulfonylamides as *N*-source, enabling the synthesis of β -sulfonylamino sulfides and dihydrobenzothiazines.

