Studies on anti-Candida agents with a pyrrole moiety. Synthesis and microbiological activity of some 3-aminomethyl-1,5-diaryl-2-methyl-pyrrole derivatives

F Cerreto ${ }^{1}$, A Villa ${ }^{2}$, A Retico 2, M Scalzo ${ }^{1 *}$
${ }^{1}$ Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università La Sapienza, place Aldo Moro 5, 00185 Rome; ${ }^{2}$ Istituto di Microbiologia, Facoltà di Farmacia, Università La Sapienza, Rome, Italy

(Received 27 November 1991; accepted 17 March 1992)

Abstract

Summary - The synthesis and anti-Candida activity of some 3-aminomethyl-1,5-diaryl-2-methyl-pyrrole derivatives are reported. Some derivatives show a rather strong anti-Candida activity. On the basis of experimental results, microbiological activity of 1,5diarylpyrroles appears to be mainly related to aminic nitrogen lone pair availability of C3 substituent of the pyrrole nucleus. The C5 and N1 substituents play an important role in modulating biological activity. Some structure-activity relationships are proposed.

pyrrole / anti-Candida agent / \boldsymbol{N}-methylpiperazine / pyrrolidine / dimethylamine / imidazole / structure-activity relationship

Introduction

In our previous papers [1-5], we investigated the antimicrobial activity against Candida strains of several [(1-alkyl), (1-aryl) and (1-arylalkyl)]-3-carboxamido2 -methyl-pyrrole derivatives $\mathbf{1}$. The evaluation of antimicrobial data of the proposed compounds allowed us to point out that only N-methylpiperazinamide 7c showed a remarkable activity. These results are in agreement with the antimycotic properties of some 1 substituted 4 -methylpiperazines, as reported by Chinn et al [6], and with the observation that the piperazine nucleus is included in several antifungal derivatives such as fluorene-9-carboxamides 2, ketoconazole 3, terconazole 4, itraconazole 5 and in some antibacterial quinolones 6 (fig 1).

Since we suppose the activity of our structures is mainly related to non-bonded electrons of nitrogen on C3 substituent, in the present paper we describe the synthesis and the anti-Candida activity of the compounds $20-29$, related to the previously reported 4-methyl-piperazinamides 7c [1-4], the compounds $\mathbf{3 0 - 3 9}$ and $40-45$ (fig 2), containing a basic nitrogen atom not included in a piperazine nucleus, and the compounds 58-63 and 64-65 (fig 2) with a less avail-

[^0]

3 Ketoconazole $\mathrm{R}=\mathrm{CO}-\mathrm{CH}_{3}$
4 Terconazole
5 . Itraconazole

6 Quinolones

Fig 1.

Fig 2.
able nitrogen lone pair. Since the activity of azole antifungal agents is strictly related to the non-bonded electrons of nitrogen atom on the azole ring, we propose also some C3 imidazolylmethyl derivatives 52-57 to investigate the effectiveness of this nucleus comparing their anti-Candida activity to that of the corresponding aliphatic amines $20-45$.

We chose the C54Cl-phenyl substitution and 4 Cl and $2,4 \mathrm{Cl}_{2}$ as N 1 phenyl substituents because this set of substituents appears to be the most sensitive to C3 substitutions in terms of biological activity, based on previous QSAR analysis [7]. As reference we synthesized similar compounds with unsubstituted N1 and C 5 phenyl rings.

In piperazinyl (20-29) and pyrrolidinyl (30-39) series, we also considered the $\mathrm{N} 14 \mathrm{NO}_{2}$ and 4 F phenyl to examine a wide set of substituents.
Finally, to define the structure-activity relationships of our molecules further we carried out the synthesis of a set of 1 -aryl-2,5-dimethyl-3-dimethylaminomethyl 69-71 or (4-methylpiperazin-1-ylmethyl)pyrroles 72-74 and assessed their biological activity in the same experimental system.

Chemistry

Synthetic pathways to obtain 3-aminomethyl-1,5-diaryl-2-methyl-pyrroles $20-45$ and 52-63 are reported in scheme 1.
Phenacylacetone 8 and 4-chlorophenacylacetone 9 have been used as starting material and prepared according to Buchanan [8] and Stetter [9]. 1,5-Diaryl-2-methyl pyrroles $10-19$, obtained in excellent yields by reacting a suitable arylamine with 8 or 9 , were successfully transformed into the related 3 -aminomethyl derivatives 20-45 by Mannich reactions.

Scheme 1.

3-Dimethylaminomethyl derivatives 40-45 were transformed into the corresponding ammonium salts 46-51 by reacting with methyliodide. 3-(1 H -imidazo-lyl-methyl) derivatives 52-57 and related 3-phenylaminomethyl pyrroles 58-63 werc obtained by reacting ammonium salts 46-51 with aniline or imidazole. 1-Aryl-2,5-dimethyl-pyrroles 66-68 (scheme 3), prepared from acetonylacetone and the appropriate aniline $[10,11]$ were easily converted into the related 3-(dimethylamino methyl) derivatives 69-71 [11, 12] or into the 3-(4-methylpiperazin-1-ylmethyl) derivatives 72-74 by a Mannich reaction.

The amido derivatives 64-65 were synthesized as previously reported [1].

Microbiological assays

The minimum inhibitory concentration (MIC) for each strain of Candida or bacteria was determined using the method of progressive double dilutions in

(52-57)

Scheme 2.

Scheme 3.
solid media [13]. The mean MIC value was calculated according to [14] by using the following formula:

$$
n \bar{X}=\Sigma i(S i \cdot C i) / S t
$$

where $S i$ is the number of sensitive strains at the used concentration $C i$ and $S t$ is the whole number of sensitive strains.

The test substances were dissolved in DMSO ($5 \mathrm{mg} / \mathrm{ml}$) as mother solution; further dilution in the medium furnished the required concentration generally ranging from 0.1 to $400 \mu \mathrm{~g} / \mathrm{ml}$.

Anti-Candida tests

Derivatives 10-45 and 52-74 were tested for their in vitro anti-fungal activity against Candida albicans and Candida sp. Pyrrolnitrin and miconazole were used as positive controls. The cultures were obtained on Sabouraud (BBL) after 18 h incubation at $37^{\circ} \mathrm{C}$ and Sabouraud agar (BBL) was used to carry out the tests. Each plate was inoculated with 10^{3} Candida cells. The following species of fungi, isolated from various clinical specimens, were tested: 20 Candida albicans; 1 C stellatoidea; 1 C guillermondi; 1 C parapsilosis; 1 C krusei; 1 C tropicalis. Data were recorded after 36 h incubation at $37^{\circ} \mathrm{C}$.

Results

Anti-Candida activity

Compounds 10-19 are inactive against all tested Candida strains. Activities of compounds 10-45 are reported in tables I and III; activities of compounds 52-63, 64-65 and 69-74 are reported in tables II and IV.

To facilitate the biological activity comparison we report in table V the relative activity (Ar) of some imidazolylmethyl (A), dimethylaminomethyl (B), pyrrolidinylmethyl (C), 4-methylpiperazin-1-ylmethyl
(D) derivatives and the previously synthesized related C3 4-methylpiperazinamides (E) [1, 2, 4]. (Ar = $\mathrm{MIC}_{\text {cumpound }} / \mathrm{MIC}_{\text {pyriolition }}$ (MIC values expressed as mol/l).)

Discussion

As far as the activity against Candida albicans of the pyrroles $10-19,20-45,52-63$ and 69-74 is concerned (cf table I, II and V) several points are to be considered:

- The 1,5-diaryl-2-methyl-pyrroles 10-19, as well as the related esters and acids $7 \mathbf{a}, \mathbf{b}[1-3,4]$ are inactive;
- By comparing anti-Candida data concerning the piperazinyl and piperazinamido derivatives (cf table V), it appears that the higher lone pair availability of the 1 nitrogen atom of 4-methylpiperazine nucleus improves spectrum amplitude while causing a slight decrease of MIC values;
- The 4-methylpiperazinyl derivatives 20-29 show a slightly higher activity than that of the corresponding pyrrolidinyl derivatives $\mathbf{3 0 - 3 9}$;
- With respect to C 3 substituents, the dimethylaminomethyl derivatives $\mathbf{4 0 - 4 5}$ exhibit the best biological action among all tested compounds;
- With respect to the dimethylaminomethyl derivatives 40-45, the imidazolylmethyl ones, 52-57, show a slightly decreased activity;
- All phenylaminomethyl derivatives 58-63 and dimethylamides 64-65 are inactive;
- With respect to C 5 and N 1 substituents, C 54 Cl phenyl and N 14 Cl and/or $2,4 \mathrm{Cl}_{2}$ phenyl substituted derivatives show the highest microbiological activity. When the NO_{2} group is present on N 1 substituent, anti-Candida activity falls drastically;
- A chlorine atom on para position of C5 phenyl substituent strongly increases the biological activity as compared to C 5 unsubstituted phenyl derivatives;
- 2,5-dimethyl derivatives 69-74, except N1 2, $4 \mathrm{Cl}_{2}$ derivative 74 possessing a weak activity, are inactive;

From these considerations, it appears that antiCandida activity is not related to the piperazine nucleus but is associated with the presence of a nitrogen atom lone pair on C3 substituent. Indeed, the imidazolylmethyl 52-57 and dimethylaminomethyl 40-45 derivatives show a comparable activity and this is in agreement with the hypothesis proposed by Mailman et al, that antifungal activity is frequently related to potential ligands as a nitrogen atom with sp^{2} or sp^{3} non-bonded sterically accessible electrons [15]. The inactivity of compounds 64-65 and 58-63, presenting amidic tautomerism and a partial involvement of a lone pair of aminic nitrogen with π electrons of a benzene ring, also supports this hypothesis.

Table I. Antimycotic activity of compounds $10-45$ against 20 strains of Candida albicans at pH 7.2 .

Compound	R^{\prime}	$R^{\prime \prime}$	$R \%$	Candida albicans			
				$\begin{gathered} n X \\ (\mu g / m l) \end{gathered}$	Range ($\mu \mathrm{g} / \mathrm{ml}$)	St dev	$\begin{gathered} n X \\ (m m o l / l) \end{gathered}$
10-19			100	>200	$200->200$		
20	4 Cl	Cl	0	57.3	$6.25-200$	22.3	0.1384
21	2, $4 \mathrm{Cl}_{2}$	Cl	0	50.1	6.25-100	7.4	0.1118
22	H^{2}	Cl	0	64.4	12.5-100	31.4	0.1699
23	4 F	Cl	0	45.3	0.4-100	35.7	0.1141
24	$4 \mathrm{NO}_{2}$	Cl	54	100	50-400	54.7	0.2358
25	4 Cl	H	0	159.5	25-200	73.4	0.4208
26	$2,4 \mathrm{Cl}_{2}$	H	0	43.5	3.12-100	29.6	0.1050
27	$4 \mathrm{NO}_{2}$	H	0	255	25-400	129	0.6556
28	4 F	H	0	168	12.5-400	142	0.4634
29	H	H	0	200	200	0	0.5797
30	4 Cl	Cl	0	59.8	3.12-100	45.3	0.1555
31	2, $4 \mathrm{Cl}_{2}$	Cl	0	70.2	12.5-200	56.5	0.1675
32	H	Cl	0	61.7	3.12-100	27.7	0.1764
33	4F	Cl	0	107.2	6.25-200	82.9	0.2913
34	$4 \mathrm{NO}_{2}$	Cl	0	100.9	25-200	83.2	0.2554
35	$4 \mathrm{Cl}^{2}$	H	0	104.8	12.5-200	82.8	0.2994
36	2, $4 \mathrm{Cl}_{2}$	H	0	50	25-100	25	0.1299
37	H^{2}	H	0	126.9	50-200	63.3	0.4016
38	4F	H	0	113.4	25-200	67	0.3395
39	$4 \mathrm{NO}_{2}$	H	0	219	50-400	138.6	0.6072
40	4 Cl	Cl	0	27.8	12.5-100	24.0	0.0776
41	$2,4 \mathrm{Cl}_{2}$	Cl	0	61.0	6.25-100	45.1	0.1552
42	H	Cl	0	38.4	25-50	12.9	0.1185
43	4 Cl	H	0	51.9	0.4-100	40.1	0.1602
44	$2,4 \mathrm{Cl}_{2}$	H	0	16.3	12.5-25	6.0	0.0455
45	H	H	0	69.8	25-100	30.1	0.2415
Pyrrolnitrin			0	20.7	3.12-25	7.3	0.0805
Miconazole			0	5.87	0.2-6.25	7.6	0.0142

Table II. Antimycotic activity of compounds 52-65 and 69-74 against 20 strains of Candida albicans at pH 7.2.

Compound	R^{\prime}	$R^{\prime \prime}$	$R \%$	Candida albicans Range			St dev

[^1]Table III. Antimycotic activity of compounds $10-45$ against five strains of Candida sp at pH 7.2. (MIC expressed in $\mu \mathrm{g} / \mathrm{ml}$).

Compound	R^{\prime}	$R^{\prime \prime}$	α^{a}	β^{6}	Γ°	$\delta^{\text {d }}$	ε^{e}
10-19			>200	>200	> 200	>200	> 200
20	4 Cl	Cl	25	50	50	50	1.25
21	2, 4 Cl_{2}	Cl	3.12	25	25	6.25	1.56
22	H	Cl	25	100	100	50	3.12
23	4F	Cl	12.5	50	100	100	0.8
24	$4 \mathrm{NO}_{2}$	Cl	50	>400	100	>400	25
25	$4 \mathrm{Cl}^{2}$	H	200	200	200	200	6.25
26	2, $4 \mathrm{Cl}_{2}$	H	25	50	100	100	0.4
27	$4 \mathrm{NO}_{2}$	H	200	200	200	400	100
28	4 F	H	100	200	200	400	125
29	H	H	200	200	200	400	100
30	4 Cl	Cl	12.5	100	50	100	25
31	2, $4 \mathrm{Cl}_{2}$	Cl	12.5	200	100	200	25
32	H	Cl	50	400	400	400	0.8
33	4 F	Cl	25	200	25	200	25
34	$4 \mathrm{NO}_{2}$	Cl	25	200	50	100	3.12
35	$4 \mathrm{Cl}^{2}$	H	50	200	200	200	12.5
36	2, $4 \mathrm{Cl}_{2}$	H	25	100	100	200	25
37	H	H	50	200	200	400	50
38	4 F	H	50	200	50	400	100
39	$4 \mathrm{NO}_{2}$	H	50	400	400	400	0.8
40	4 Cl	Cl	6.25	25	50	25	12.5
41	2, $4 \mathrm{Cl}_{2}$	Cl	12.5	100	100	100	6.25
42	H	Cl	25	50	50	50	25
43	4 Cl	H	25	100	100	100	25
44	2, $4 \mathrm{Cl}_{2}$	H	6.25	25	12.5	25	12.5
45	H	H	25	25	100	100	100
Pyrrolnitrin			25	12.5	25	25	1.56
Miconazole			6.25	3.12	12.5	3.12	<0.4

${ }^{\mathrm{a}} \alpha=1 C$ stellatoidea; ${ }^{\mathrm{b}} \beta=1 C$ Tropicalis; ${ }^{\mathrm{c}} \Gamma=1 C$ guillermondi; ${ }^{\mathrm{d}} \boldsymbol{\delta}=1 C$ parapsilosis; ${ }^{\mathrm{e}} \boldsymbol{\varepsilon}=1 C$ krusei

Table IV. Antimycotic activity of compounds 52-65 and 69-74 against five strains of Candida sp at pH 7.2. (MIC expressed in $\mu \mathrm{g} / \mathrm{ml}$).

Compound	R^{\prime}	$R^{\prime \prime}$	$\alpha^{\text {a }}$	$\beta^{\text {b }}$	$\Gamma^{\text {c }}$	$8^{\text {d }}$	ε^{e}
52	4 Cl	Cl	12.5	50	25	200	6.25
53	2, $4 \mathrm{Cl}_{2}$	Cl	12.5	12.5	25	100	6.25
54	H	Cl	12.5	50	100	200	0.8
55	4 Cl	H	25	100	200	200	50
56	2, $4 \mathrm{Cl}_{2}$	H	6.25	25	25	25	6.25
57	H^{2}	H	12.5	50	50	100	6.25
58-63			>200	>200	>200	>200	>200
64-65			>200	>200	>200	>200	>200
69	H	$\mathrm{b}^{\text {f }}$	>200	100	100	>200	100
70	4 Cl	b	> 200	200	>200	100	25
71	2, $4 \mathrm{Cl}_{2}$	b	>200	200	>200	100	50
72	H	b	50	>200	>200	>200	50
73	4 Cl	b	100	200	100	>200	50
74	2, $4 \mathrm{Cl}_{2}$	b	50	>200	50	>200	12.5
Pyrrolnitrin			12.5	25	25	25	6.25
Miconazole			3.12	3.12	6.25	12.5	3.12

[^2]Table V. Comparative activity of some C3 substituted 1,5-diarylpyrroles against Candida albicans.

	R^{\prime}	$R^{\prime \prime}$	C3 Substituents									
			$A^{\text {c }}$		$B^{\text {d }}$		$C^{\text {c }}$		$D^{\text {f }}$		E^{8}	
			$R \%^{\text {a }}$	$A r^{\text {b }}$	$R \%$	Ar	$R \%$	Ar	$R \%$	Ar	R\%	Ar
a	4 Cl	Cl	0	1.1	0	0.9	0	1.9	0	1.7	0	1.1
b	2, $4 \mathrm{Cl}_{2}$	Cl	0	1.6	0	1.9	0	2.1	0	1.4	0	1.3
c	H	Cl	0	1.8	0	1.5	0	2.2	0	2.1	36	8.4
d	4 Cl	H	0	3.0	0	2.0	0	3.7	0	5.2	8	5.5
e	2, $4 \mathrm{Cl}_{2}$	H	0	1.2	0	0.6	0	1.6	0	1.3	4	1.8
f	H	H	0	7.7	0	3.0	0	5.0	0	7.2	-	-

${ }^{\mathrm{a}} \mathrm{R} \%=$ percentage of resistant strains; ${ }^{\mathrm{b}} \mathrm{Ar}=\mathrm{MIC}_{\text {compound }} \mathrm{MIC}_{\text {pymolnitin }}$ (MIC values expressed as mol/l); ${ }^{\mathrm{c}} \mathrm{A}=$ imidazolylmethyl; ${ }^{\mathrm{d}} \mathrm{B}=$ dimethylaminomethyl; ${ }^{\mathrm{e}} \mathrm{C}=$ pyrrolidinylmethyl; ${ }^{\mathrm{f}} \mathrm{D}=4$-methylpiperazinylmethyl; $\mathrm{gE}=4$-methylpiperazinamide

The diminished activity of pyrrolidinyl derivatives is probably also related to steric hindrance of the cyclic alkylic chain. On the contrary the N-methylpiperazinyl derivatives 20-29 show a comparable activity with the dimethylaminomethyl ones $40-45$, presumably because the lone pair of the 4 -nitrogen atom of the piperazinyl group is very accessible. Moreover, the availability of this lone pair is a reasonable explanation of the piperazinamido derivatives activity compared to inactivity of compounds 64-65.

Finally, the absence of activity of the 1 -aryl- 2,5 -dimethyl-3-dimethylaminomethyl 69-71 or (4-methyl-piperazin-1-yl-methyl)-pyrroles 72-74, supports the hypothesis that the C5 position of the pyrrole nucleus needs an aromatic substitution to be active. On the basis of the present results we can conclude that antiCandida activity of our compounds is strictly connected to N1 and C5 aryl substitution with the concomitant presence of a nitrogen atom with an available non-hindered lone pair on the C 3 pyrrole position.

Experimental protocols

Chemistry

Melting points, taken on a Kofler apparatus, are uncorrected. Infrared spectra (nujol mulls) were run on a Perkin-Elmer spectrophotometer 297. The NMR spectra were recorded on a Varian EM 390 (90 MHz) spectrometer, using deuterochloroform as the solvent and TMS as the internal standard. All compounds were analysed for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and, when present, Cl and F. The analysed values were within ± 0.4 of the calculated values. Elemental analyses were performed by A Pietrogrande, Padova, Italy. Merck aluminium oxide (II-III, according to Brockmann) was used for chromatographic purification. Chemical and physical data of compounds $10-74$ are reported in table VI.

1,5-Diaryl-2-methyl pyrroles 10-19

A solution of appropriate arylacylacetone (5.7 mmol) 8,9 and a suitable aniline (5.9 mmol) with a catalytic amount of aniline hydrobromide (0.1 g) in 50 ml of dry ethanol was heated to reflux for 3 h (5 h using 2,4 dichloroaniline). The solvent was
evaporated under reduced pressure and the residuc was purified using a $\mathrm{Al}_{2} \mathrm{O}_{3}$ /cyclohexane chromatographic column. The first fractions were discarded and the central ones were evaporated to afford a pure solid. NMR $\mathrm{CDCl}_{3}: \delta 1.9-2.1$ (s, $3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ pyrrole)); $\delta 6.15-6.20\left(\mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}_{3}\right.\right.$ pyrrole)); 6.30-6.35 (d, 1H, $J=3 \mathrm{cps}\left(\mathrm{H}_{4}\right.$ pyrrole) $)$.

1,5-Diaryl-2-methyl-3-(4-methylpiperazin-1-ylmethyl)pyrroles

 20-29A mixture of $0.21 \mathrm{ml}(3.3 \mathrm{mmol})$ of $\mathrm{HCHO} 40 \%$ water solution and 0.4 ml (3.3 mmol) of N-methylpiperazine in 2 ml of glacial acetic acid was slowly added dropwise to a solution of suitable pyrrole 10-19 (3.3 mmol) in glacial acetic acid and left overnight at room temperature. The solution was poured onto crushed ice and made alkaline (pH 12) with sodium hydroxide. The reaction product was extracted with chloroform and the organic layer was washed with water and dried over sodium sulfate. The residue from evaporation of the solvent was purified with $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{CHCl}_{3}$ chromatography. The first fractions were discarded and the central ones were evaporated to afford a pure solid. NMR $\mathrm{CDCl}_{3}: \delta 2.1$ (s, $3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ pyrrole)); $\delta 2.25$ (s, $3 \mathrm{H}\left(\mathrm{N}^{2} \mathrm{CH}_{3}\right)$); $\delta 2.35-2.6$ (m, 8 H (piperazine methylene protons)); $\delta 3.4-3.45$ (s, 2H (pyrrole CH_{2} piperazine)); 6.35-6.40 (s, $1 \mathrm{H}\left(H_{4}\right.$ pyrrole)).

1,5-Diaryl-2-methyl-3-(pyrrolidin-1-ylmethyl)pyrroles 30-39

 These compounds were synthesized as previously reported for 20-29. NMR $\mathrm{CDCl}_{3}: \delta 1.7-1.85$ and $2.4-2.55(\mathrm{~m}, 8 \mathrm{H}$ (pyrrolidine protons)); $\delta 1.95-2.05\left(\mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.\right.$ pyrrole)); $\delta 3.4-3.5$ (s, $2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$-pyrrolidinc)); $\delta 6.4-6.5$ (s, $1 \mathrm{H}\left(\mathrm{H}_{4}\right.$ pyrrole)).
1,5-Diaryl-3-(dimethylaminomethyl)-2-methyl-pyrroles 40-45

 These compounds were synthesized as previously reported for 20-29. NMR $\mathrm{CDCl}_{3}: \delta 1.95-2.05$ (s, $3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ pyrrole)); $\boldsymbol{\delta} 2.25$ (s, $6 \mathrm{H}\left(\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right)$); $\delta \quad 3.3-3.4$ (s, $\left.2 \mathrm{H}\left(\mathrm{CH}_{2}-\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right)\right) ; \delta$ 6.35-6.45 (s, $1 \mathrm{H}\left(\mathrm{H}_{4}\right.$ pyrrole)).
1,5-Diaryl-2-methyl-3-(trimethyl ammonium methyl)pyrrole iodides 46-51
 1.8 g of methyl iodide (12.8 mmol) was added dropwise to a solution of appropriate 1,5-diaryl-3-(dimethylamino-methyl)-2-methyl-pyrrole $\mathbf{4 0 - 4 5}$ (12.1 mmol) in 15 ml of dry ethanol. The resulting precipitate ($30-40 \%$ yield) was filtered off and washed with the minimum amount of dry ethanol and with diethyl ether. These compounds were employed without further purification.

Table VI. Chemical and physical data of compounds 10-74.

Compd	R^{\prime}	$R^{\prime \prime}$	$Y \%$	$m p^{\circ} \mathrm{C}$	Formula
10	4 Cl	Cl	58	123-5	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NCl}_{2}$
11	2, 4Cl ${ }_{2}$	Cl	60	131-3	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NCl}_{3}$
12	H	Cl	62	126-9	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NCl}$
13	4F	Cl	80	125-7	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NClF}$
14	$4 \mathrm{NO}_{2}$	Cl	42	142-6	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$
15	4 Cl	H	72	130-1	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NCl}$
16	2, $4 \mathrm{Cl}_{2}$	H	51	135-7	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NCl}_{2}$
17	H	H	47	123-5	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}$
18	4F	H	63	130-2	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NF}$
19	$4 \mathrm{NO}_{2}$	H	36	133-5	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
20	4 Cl	Cl	61	197-8	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{Cl}_{2}$
21	2, $4 \mathrm{Cl}_{2}$	Cl	56	130-2	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{Cl}_{3}$
22	H	Cl	61	192-4	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{Cl}$
23	4F	Cl	43	163-5	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{ClF}$
24	$4 \mathrm{NO}_{2}$	Cl	34	205-7	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Cl}$
25	4 Cl	H	58	164-5	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{Cl}$
26	2, $4 \mathrm{Cl}_{2}$	H	32	95-8	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{Cl}_{2}$
27	H	H	40	107-9	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3}$
28	4F	H	44	140-2	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{~F}$
29	$4 \mathrm{NO}_{2}$	H	55	178-9	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$
30	4 Cl	Cl	40	135-8	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Cl}_{2}$
31	2, $4 \mathrm{Cl}_{2}$	Cl	44	115-9	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}_{3}$
32	H	Cl	43	158-9	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}$
33	4F	Cl	35	137-9	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ClF}$
34	$4 \mathrm{NO}_{2}$	Cl	48	154-9	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$
35	4 Cl	H	35	131-3	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}$
36	2, $4 \mathrm{Cl}_{2}$	II	30	103-6	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Cl}_{2}$
37	H	H	55	73-4	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2}$
38	4 F	H	70	96-9	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~F}$
39	$4 \mathrm{NO}_{2}$	H	53	196-9	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$
40	4 Cl	Cl	73	131-3	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Cl}_{2}$
$41^{\text {a }}$	2, $4 \mathrm{Cl}_{2}$	Cl	80	252-3	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Cl}_{4}$
42	H	Cl	77	141-2	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}$
43	4 Cl	H	70	116-7	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}_{1}$
44	2, $4 \mathrm{Cl}_{2}$	H	47	116-8	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Cl}_{2}$
45	H	H	80	88-9	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2}$
46	4 Cl	Cl	h		
47	2, $4 \mathrm{Cl}_{2}$	Cl	h		
48	H	Cl	h		
49	4 Cl	H	h		
50	2, 4Cl ${ }_{2}$	H	h		
51	H	H	h		

Table VI. Continued

Compd	R^{\prime}	$R^{\prime \prime}$	$Y \%$	$m p^{\circ} \mathrm{C}$	Formula
52	4 Cl	Cl	45	107-9	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{Cl}_{2}$
53	2, $4 \mathrm{Cl}_{2}$	Cl	45	144-5	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{Cl}_{3}$
54	H	Cl	50	132-3	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}$
55	4 Cl	H	65	132-3	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}$
$56^{\text {a }}$	2, $4 \mathrm{Cl}_{2}$	H	40	178-9	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}_{3}$
57	H	H	40	113-5	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}$
58	4 Cl	Cl	25	143-4	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Cl}_{2}$
59	2, 4 Cl_{2}	Cl	30	75-6	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{Cl}_{3}$
60	H	Cl	20	120-2	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Cl}$
61	4 Cl	H	22	126-8	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Cl}$
62	2, $4 \mathrm{Cl}_{2}$	H	20	148-9	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Cl}_{2}$
63	H	H	35	152-3	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3}$
64	4 Cl	Cl	65	208-9	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OCl}_{2}$
65	4 Cl	Cl	72	185-7	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OCl}_{2}$
66	H	i	e		$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}$
67	4 Cl	i	f		$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NCl}$
68	2, 4 Cl_{2}	i		b	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NCl}_{2}$
69	H	i	g		$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$
70	4 Cl	i	f		$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{Cl}$
71	2, $4 \mathrm{Cl}_{2}$	i		c	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Cl}_{2}$
72	H	i		70-2	$\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~N}_{3}$
73	4 Cl	i		94-5	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{Cl}$
74	2, $4 \mathrm{Cl}_{2}$	i		d	$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{Cl}_{2}$

${ }^{\text {a Analyzed }}$ as hydrochloride; ${ }^{\mathrm{b}} \mathrm{bp} 97-9^{\circ} \mathrm{C} / 0.08 \mathrm{mmHg}$; ${ }^{\text {c bp }} 123^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$; ${ }^{\text {dbp }} 153^{\circ} \mathrm{C} / 0.09 \mathrm{mmHg}$; esee [9]; fsee [10]; ${ }^{\text {see }}$ [11]; huncharacterized compounds; ${ }^{i} \mathrm{C} 5$ substituent $=\mathrm{CH}_{3}$

1,5-Diaryl-2-methyl-3-(phenylaminomethyl)pyrroles 58-63
A solution of appropriate $\mathbf{4 6}-51(1.4 \mathrm{mmol})$ and of aniline $(7.35 \mathrm{mmol})$ in DMSO was stirred and heated at $100^{\circ} \mathrm{C}$ for 4 h . Water was added to the reaction mixture and the product taken out in ethyl acetate. Organic layer, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure, gave a residue which was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3} /$ benzene. The first fractions were discarded and the central ones were evaporated to afford a solid. NMR $\mathrm{CDCl}_{3}: \delta 2.05$ (s, $3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ pyrrole)); $\delta 4.20$ (s, $2 \mathrm{H}\left(\mathrm{ClI}_{2}-\mathrm{NH}-\mathrm{Ar}\right)$); $\delta 6.50\left(\mathrm{~s}, 1 \mathrm{H}\left(\mathrm{H}_{4}\right.\right.$ pyrrole $)$); IR $3400 \mathrm{~cm}^{-1}$ (NH).

1,5-Diaryl-3-(imidazol-1-ylmethyl)-2-methyl-pyrroles 52-57 A solution of appropriate $\mathbf{4 6 - 5 1}(1.4 \mathrm{mmol})$ and imidazole (7.35 mmol) in DMSO was stirred and heated at $100^{\circ} \mathrm{C}$ for 4 h . Water was added to the reaction mixture and the product taken out in ethyl acetate. Organic layer dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ evaporated under reduced pressure, gave a residue which was chromato-
graphed on $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{CHCl}_{3}$. The first fractions were discarded and the central ones were evaporated to afford a solid. NMR $\mathrm{CDCl}_{3}: \delta 2.0\left(\mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.\right.$ pyrrole)); $\delta 4.85-4.95\left(\mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}-\right.\right.$ Im)); $\delta 6.25-6.30$ (s, $1 \mathrm{H}\left(H_{4}\right.$ pyrrole) $)$.

1-(2,4-dichlorophenyl)-2,5-dimethyl-pyrrole 68

Acetonylacetone (1 mmol), 2,4-dichloroaniline (1 mmol) and 1 ml of acetic acid in 50 ml of benzene and 5 ml of dry ethanol was heated at reflux for 5 h and the water formed during the reaction was eliminated by a Dean-Stark apparatus. Organic layer was washed with water and dried over sodium sulfate. Benzene was evaporated under reduced pressure and residuepurified using $\mathrm{Al}_{2} \mathrm{O}_{3} /$ cyclohexane chromatography. NMR $\mathrm{CDCl}_{3}: \delta 1.95\left(\mathrm{~s}, 6 \mathrm{H}\left(\mathrm{CH}_{3}\right.\right.$ pyrrole $)$) $\delta 5.9\left(\mathrm{~s}, 2 \mathrm{H}\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right.\right.$ pyrrole)); $\delta 7.15-7.6$ (m, 3H(Ar protons)).

1-(2,4-dichlorophenyl)-2,5-dimethyl-3-(dimethylaminomethyl)pyrrole 71
0.21 ml (3.3 mmol) of $\mathrm{HCHO} 40 \%$ water solution and 0.70 ml (3.3 mmol) of dimethylamine 40% in 2 ml of glacial acetic acid were added dropwise to a solution of pyrrole $68(3.3 \mathrm{mmol})$ in glacial acetic acid. The mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h . The solution was poured onto crushed ice and made alkaline (pH 12) with sodium hydroxide. The reaction product was extracted with chloroform and the organic layer was washed with water and dried over sodium sulfate. The residue from evaporation of the solvent was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{CHCl}_{3}$. The first fractions were discarded and the central ones were evaporated to afford a solid. NMR $\mathrm{CDCl}_{3}: \delta 1.95$ (s, $6 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ pyrrole)); $\delta 2.30\left(\mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right)\right) ; \delta 3.40(\mathrm{~s}$, $\left.2 \mathrm{H}\left(\mathrm{CH}_{2}-\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right)\right) ; \delta 6.0\left(\mathrm{~s}, 1 \mathrm{H}\left(\mathrm{H}_{4}\right.\right.$ pyrrole)); 7.2-7.7 (m, 3 H (Ar protons)).

[^3]
Acknowledgments

The present work is part of the 'Istituto Pasteur-Cenci Bolognetti' scientific research program. We are indebted to Dr M Biava for skilful cooperation and technical support.

References

1 Scalzo M, Porretta GC, Chimenti F, Casanova MC, Panico S, Simonetti N (1988) Farmaco Ed Sci 43, 665676
2 Scalzo M, Porretta GC, Chimenti F, Bolasco A, Casanova MC, Simonetti N, Villa A (1988) Farmaco Ed Sci 43, 677-691
3 Scalzo M, Biava M, Cerreto F, Porretta GC, Panico S, Simonetti N (1988) Eur J Med Chem 23, 587-591
4 Porretta GC, Cerreto F, Fioravanti R, Biava M, Scalzo M, Simonetti N, D'Auria FD (1989) Farmaco Ed Sci 46, 6576
5 Scalzo M, Biava M, Villa A, Cerreto F (1992) Farmaco Ed Sci, (in press)
6 Chinn HI, Mitchell RB, Arnold AC (1953) J Invest Dermatol 20, 177
7 Scalzo M, Biava M, Porretta GC, Cerreto F (1991) In: QSAR: Rational Approaches to the Design of Bioactive Compounds (Silipo C, Vittoria A, eds) Elsevier Science Publishers BV, Amsterdam
8 Buchanan JG St C, Davis BR (1967) J Chem Soc (c) 1340
9 Stetter H, Screckenberg M (1977) US 4014889
10 Hazlewood SJ, Hughes GK, Lions F (1938) CA 32, 1696
11 Gilbert C, Dehoux E, Kestens J, Roba J, Lambelin G (1976) Eur J Med Chem 11, 173

12 Werner H, Settine RL (1959) J Org Chem 24, 201
13 Shadomy S, Espinel A (1980) In: Manual of Clinical Microbiology, 3rd edn, Am Soc Microbiol, Washington DC, 647
14 Porretta GC, Biava M, Cerreto F, Scalzo M, Panico S, Simonetti N, Villa A (1988) Eur J Med Chem 23, 311-317
15 Mailman RB, Kulkarni AP, Baker RC, Hodgson E (1974) Drug Metab Disposition: Biol Fate Chem, 2, 301 (cf CA

[^0]: *Correspondence and reprints

[^1]: ${ }^{\text {ab }}$, $\mathbf{C} 5$ substituent $=\mathrm{CH}_{3}$

[^2]: ${ }^{\mathrm{a}} \alpha=1 C$ stellatoidea; ${ }^{\mathrm{b}} \beta=1 C$ tropicalis; ${ }^{\mathrm{c}} \Gamma=1 C$ guillermondi; $\mathrm{d} \delta=1 C$ parapsilosis; ${ }^{\mathrm{e}} \varepsilon=1 C$ krusei; ${ }^{\mathrm{f}} \mathrm{b}, \mathrm{C} 5$ substituent $=$ CH_{3}

[^3]: 1-Aryl-2,5-dimethyl-3(4-methylpiperazin-lylmethyl)pyrroles 72-74
 These compounds were obtained as previously described for compound 71. NMR $\mathrm{CDCl}_{3}: \delta 1.8-1.9$ (s, $6 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ pyrrole)); δ $2.25-2.30\left(\mathrm{~s}, 3 \mathrm{H}\left(\mathrm{N}-\mathrm{CH}_{3}\right) ; \delta 2.3-2.5(\mathrm{~m}, 8 \mathrm{H}\right.$ (piperazine protons); $\delta 3.35$ (s, $2 \mathrm{H}\left(\mathrm{CH}_{2}\right.$-piperazine); $\delta 5.9-6.0$ (s, $1 \mathrm{H}\left(\mathrm{H}_{4}\right.$ pyrrole)).

