Synthesis of Conformationally Locked L-Iduronic Acid Derivatives: Direct Evidence for a Critical Role of the Skew-Boat ${}^{2}S_{0}$ Conformer in the Activation of Antithrombin by Heparin

Sanjoy K. Das,^[a] Jean-Maurice Mallet,^[a] Jacques Esnault,^[a] Pierre-Alexandre Driguez,^[b] Philippe Duchaussoy,^[b] Philippe Sizun,^[c] Jean-Pascal Herault,^[b] Jean-Marc Herbert,^[b] Maurice Petitou,^{*[a, b]} and Pierre Sinaÿ^{*[a]}

Abstract: We have used organic synthesis to understand the role of Liduronic acid conformational flexibility in the activation of antithrombin by heparin. Among known synthetic analogues of the genuine pentasaccharidic sequence representing the antithrombin binding site of heparin, we have selected as a reference compound the methylated anti-factor Xa pentasaccharide 1. As in the genuine original fragment, the single L-iduronic acid moiety of this molecule exists in water solution as an equilibrium between three conformers ${}^{1}C_{4}$, ${}^{4}C_{1}$ and ${}^{2}S_{0}$. We have thus synthesized three analogues of 1, in which the L-iduronic acid unit is locked in one of these three fixed conformations. A covalent two atom bridge between carbon atoms two

and five of L-iduronic acid was first introduced to lock the pseudorotational itinerary of the pyranoid ring around the ${}^{2}S_{0}$ form. A key compound to achieve this connection was the D-glucose derivative **5** in which the H-5 hydrogen atom has been replaced by a vinyl group, which is a progenitor of the carboxylic acid. Selective manipulations of this molecule resulted in the ${}^{2}S_{0}$ -type pentasaccharide **23**. Starting from the D-glucose derivative **28**, a covalent two atom bridge was now built up between carbon atoms three and five to lock the L-

Keywords: antithrombin • carbohydrates • glycosylation • heparin • iduronic acid iduronic acid moiety around the ${}^{1}C_{4}$ chair form conformation, and the ${}^{1}C_{4}$ type pentasaccharide 43 was synthesized. Finally the L-iduronic acid containing disaccharide 58 which, due to the presence of the methoxymethyl substituent at position five adopts a 4C_1 conformation, was directly used to synthesize the ${}^{4}C_{1}$ -type pentasaccharide **61**. The locked pentasaccharide 23 showed about the same activity as the reference compound 1 in an antithrombin-mediated anti-Xa assay, whereas the two pentasaccharides 43 and 61 displayed very low activity. These results clearly establish the critical importance of the ${}^{2}S_{0}$ conformation of L-iduronic acid in the activation of antithrombin by heparin.

Introduction

Conformational flexibility is a distinct feature of L-iduronic acid,^[1] a characteristic monosaccharide component of three

- [a] Dr. M. Petitou, Prof. P. Sinaÿ, Dr. S. K. Das, Dr. J.-M. Mallet, Dr. J. Esnault Ecole Normale Supérieure Département de Chimie Associé au CNRS 24, rue Lhomond; 75231 Paris cedex 05 (France) Fax: (+33) 1 44 32 33 90 E-mail: maurice.petitou@sanofi-synthelabo.com pierre.sinay@ens.fr
- [b] Dr. M. Petitou, Dr. P.-A. Driguez, Dr. P. Duchaussoy, Dr. J.-P. Herault, Dr. J.-M. Herbert Département Cardiovasculaire/Thrombose Sanofi-Synthélabo 195, route d'Espagne, 31036 Toulouse cedex (France) Fax: (+33) 5 61 16 22 86
- [c] Dr. P. Sizun
 DARA; Sanofi-Synthélabo
 371 rue du Professeur Joseph Blayac
 34184 Montpellier cedex (France)

complex glycosaminoglycans (GAGs): heparin, heparan sulfate, and dermatan sulfate. These remarkable polymers are endowed with a fascinating array of biological functions^[2] which are still largely unexplained at the molecular level. It is thus tempting to speculate that the presence of flexible Liduronic acid in GAGs boosts their biological responses.

The conformational behavior of the iduronate ring, obviously of intrinsic importance, has been the matter of a long controversy^[3] that has stimulated numerous conflicting studies. On the one hand, from the first NMR investigations, it has been concluded that L-iduronic residues, whether sulfated, as in heparin,^[4] or unsulfated, as in dermatan sulfate,^[5] adopt the ¹C₄ conformation. On the other hand, diffraction analysis of crystalline fibers,^[6] and periodate oxidation studies^[7] of dermatan sulfate, suggested the presence of the ⁴C₁ conformation. It has been finally suggested that several conformers, coexisting in solution, could account for these opposing experimental observations.^[8] A further critical step was accomplished after the chemical synthesis of the pentasaccharide representing the antithrombin binding site of heparin,^[9] which contains a single (but critical^[10]) L-iduronic acid residue. Indeed ¹H NMR data on this synthetic compound was best explained by taking into account the participation of the very unusual ²S₀ skew-boat conformer in addition to the above reported ⁴C₁ and ¹C₄ to the conformational equilibrium of Liduronic acid.^[11] Force-field studies and energy computation further showed that the three conformers are almost equienergetic.^[12] As a matter of fact, the ²S₀ conformer is the major contributor to the conformational equilibrium of Liduronic in the above pentasaccharide,^[13] and numerous studies have since considered the presence of the three above conformers to describe this monosaccharide in glycosaminoglycans and related compounds.^[14]

The fact that the above synthetic pentasaccharide displays high affinity for antithrombin and activates its inhibitory action against blood coagulation factor Xa, was for us an incentive to investigate to what extent the unique conformational properties of L-iduronic acid translate in terms of biological properties. Indeed, concerning the present pentasaccharide and antithrombin, one could imagine that a precise conformation was required, either in the early recognition step, or to lock the protein in the active conformation reached after induced-fit.^[15] Alternatively, a conformational switch from one conformer to another one might be necessary to accomplish the transconformation known to occur during the activation of the protein.

To address these issues, we previously synthesized a pentasaccharide containing a 3-deoxy-L-iduronic acid unit.^[16] As expected, the conformational equilibrium was shifted towards ${}^{1}C_{4}$. This compound displayed reduced affinity for antithrombin, thus disqualifying this ${}^{1}C_{4}$ conformer. In contrast, based on ¹H NMR studies at various ionic strengths, others proposed that the ${}^{1}C_{4}$ conformation was adopted by the pentasaccharide sequence when bound to antithrombin.^[17]

To provide more direct evidence, we embarked on the synthesis of pentasaccharides containing L-iduronic acid units

Editorial Board Member:^[+] Pierre Sinay: was born in 1938 in France and graduated from Ecole Nationale Supérieure des Industries Chimiques, Nancy in 1961. In 1966 he received his PhD degree (with Serge David). After postdoctoral study with Roger Jeanloz at Havard University, Cambridge (USA), he became in 1969 an associate Professor then in 1972 a full Professor, at the Université d'Orléans, Orléans (France). In 1986, he moved to Paris

as a full Professor at Université Pierre et Marie Curie, heading a research group in the Chemistry Department at Ecole Normale Supérieure. Professor Sinay has been the co-author of more than 250 papers. His studies are dealing with the organic chemistry of carbohydrates. locked in ${}^{1}C_{4}$, ${}^{4}C_{1}$, or ${}^{2}S_{0}$ conformations.^[18] The results, presented here, about the ability of these compounds to activate antithrombin with respect to blood coagulation factor Xa inhibition, allow us to conclude that antithrombin-bound L-iduronic acid adopts the ${}^{2}S_{0}$ conformation and that a conformational change from ${}^{1}C_{4}$ to ${}^{2}S_{0}$ is not required during the activation process. Such an approach should be useful to explore the role of L-iduronic acid conformation in other biological systems where this monosaccharide is involved.

Results and Discussion

The known^[19] synthetic anti-factor Xa pentasaccharide **1** (Figure 1) was chosen as the reference compound. It strongly binds to antithrombin, and the presence in the final structure of methyl groups in place of hydroxyl groups, and of O-sulfonates in place of N-sulfonates, simplifies the synthetic route compared with that of the genuine heparin pentasaccharidic sequence.

Synthesis of pentasaccharide 23 (${}^{2}S_{0}$ conformer, Figure 1): A literature search taught us that methyl 2,6-anhydro-3,4-di-*O*-methyl- α -D-mannopyranoside prefers to exist as its ${}^{2}S_{0}$ con-

Abstract in French: Nous avons employé les méthodes de la synthèse organique afin de comprendre le rôle de la flexibilité conformationnelle de l'acide L-iduronique dans l'activation de l'antithrombine par l'héparine. Parmi les analogues synthétiques connus de la séquence pentasaccharidique d'origine représentant le site de liaison de l'héparine à l'antithrombine, nous avons choisi le pentasaccharide méthylé anti-Xa 1 comme composé de référence. Tout comme dans le cas du site actif de l'héparine, la seule unité acide L-iduronique de cette molécule existe en solution aqueuse sous la forme d'un équilibre conformationnel ${}^{1}C_{4} \rightleftharpoons {}^{4}C_{1} \rightleftharpoons {}^{2}S_{0}$. Nous avons donc synthétisé trois analogues de cette molécule de référence, dans lesquels l'unité acide L-iduronique est verrouillée sous une de ces trois conformations. L'introduction d'un pont covalent à deux atomes reliant les atomes de carbone deux et cinq de l'acide L-iduronique fige l'itinéraire pseudorotationnel du cycle pyrannique autour de la forme ${}^{2}S_{0}$. Un tel pont a été réalisé à partir de 5, un dérivé clé du D-glucose, dans lequel l'atome d'hydrogène H-5 a été remplacé par un groupe vinyle, précurseur de l'acide carboxylique. Des manipulations sélectives de cette molécule nous ont conduit au pentasaccharide 23 du type ${}^{2}S_{0}$. En partant du dérivé **28** du D-glucose, un pont covalent à deux atomes a maintenant été construit afin de figer l'unité acide L-iduronique sous la conformation chaise ${}^{1}C_{4}$, et le pentasaccharide 43 du type ${}^{1}C_{4}$ a été synthétisé. Finalement, le disaccharide 58, dans lequel l'unité acide L-iduronique adopte une conformation ${}^{4}C_{1}$, a été directement utilisé pour la synthèse du pentasacccharide 61 du type ${}^{4}C_{1}$. Le pentasaccharide 23 présente une activité anti-Xa voisine de celle du composé de référence 1, alors que les deux pentasaccharides 43 et 61 sont pratiquement inactifs. Ces résultats montrent clairement que la conformation ${}^{2}S_{0}$ de l'acide L-iduronique est critique pour l'activation de l'antithrombine par l'héparine.

^[+] Members of the Editorial Board will be introduced to readers with their first manuscript.

Figure 1. The known^[19] biologically active pentasaccharide **1** was selected as the reference compound. In the synthetic mimetic **23**, the L-iduronate ring has been locked in the ${}^{2}S_{0}$ conformation by connecting O-2 and C-5 through a methylene bridge. A similar connection between O-3 and C-5 leads to an iduronate ring locked in the ${}^{1}C_{4}$ conformation (pentasaccharide **43**). Compound **56** was synthesized to demonstrate that introducing an ethyl at C-5 of D-glucuronic acid does not affect the biological activity. The two disaccharide building blocks required for the synthesis of the pentasaccharide **61** derive from the same intermediate. In **61**, the iduronate ring adopts the ${}^{4}C_{1}$ conformation. The letter code **DEFGH** is routinely used to designate the five monosaccharide units of the antithrombin binding sequence in heparin.

former,^[20, 21] and it is on these grounds that we decided to introduce a two-atom bridge between C-2 and C-5 of the L-iduronic acid residue in **1** to freeze the L-iduronate ring in the ${}^{2}S_{0}$ conformation.

To this end, we first had to replace the hydrogen atom at C-5 of a *gluco* derivative by a substituent that should then be converted into a carboxylate group. It was expected that the reaction of vinyl magnesium bromide with the known^[22] 5-keto-glucofuranose **2**, controlled by chelation of the magnesium by the ring oxygen atom, would lead to such a derivative with high stereoselectivity.^[23]

Thus a solution in tetrahydrofuran of the crude ketone **2**, resulting from Swern oxidation of 6-*O-tert*-butyldimethylsilyl-1,2-*O*-isopropylidene-3-*O*-methyl- α -D-glucofuranose^[22] was treated with vinyl magnesium bromide to give alcohol **3** (see Scheme 1), isolated in 70% yield after column chromatog-

most obvious option was to temporary protect the 4',6'-diol system in **8**, introduce a leaving group at position 2' (mesylate **10**), and finally displace this group by attack by the O-6' alcoholate. This approach has already met with success,^[25] but in our case led to frustation. The only isolated product was the triol **8** resulting from the cleavage of the mesylate, a side product already observed by others.^[25] The monosaccharide derivative **12** (Scheme 2), characterized by its NMR^[26, 27] and mass spectra, was also isolated in very small amounts. It probably results from a Grob fragmentation of the diol **11**. Others^[28] have also experienced difficulties in a similar situation (displacement of a mesylate at position 2 of a monosaccharide by a thiolate at position 6).

The second option (Scheme 3), starting from 9, was to first invert the configuration at C-2', then to introduce a leaving group at C-5' that can be next displaced by nucleophilic attack

raphy. Acid hydrolysis using IR-120 H⁺ resin at 80 °C, followed by acetylation with acetic anhydride in pyridine, gave the tetracetate 5. The exclusive formation of the β -anomer is assigned to the destabilizing 1,3diaxial interaction between O-1 and the C-5 vinyl group in the α -anomer. The absolute configuration at C-5 in 5 was established at this stage through ROESY NMR experiments. Thus, the observed NOE effects between H-3 and the isolated vinylic proton on the one hand, and between H-4 and H-6a/H-6b on the other hand confirmed the assigned stereochemistry (see Scheme 1). The large coupling constants observed for the ring protons $(J_{1,2} = 8.4, J_{2,3} = 9.6,$ $J_{3,4} = 10.1$ Hz) clearly show that this pyranosidic compound adopts the ${}^{4}C_{1}$ conformation, and that only the 1,2-trans isomer was formed.

The β -acetate **5** was ideally suited for selective 1,2-*trans* glycosylation of the known^[24] alcohol **6**. Indeed they reacted together to yield the disaccharide **7** in 85% yield. As anticipated from the presence of a participating group at position 2 of the glycosyl donor, only the β -D-anomer **7** was obtained ($J_{1',2'} = 8.2$ Hz). The disaccharide **7** was finally deacetylated to yield the triol **8**.

The second part of the synthesis consisted in the formation of the O-2/C-5 bridge. The

Scheme 1. a) CH₂CHMgBr, THF, 0°C, 1 h, 70%; b) IR-120 H⁺ resin, H₂O, 80°C, 6 h; c) Ac₂O, pyridine, RT, 16 h, 75% (two steps); d) **6**, TMSOTf, CH₂Cl₂, -78°C, 2 h, 85%; e) MeONa, MeOH, 0°C then RT, 3 h; f) (CH₃O)₂C(CH₃)₂, *p*-TsOH, acetone, RT, 16 h, 70% (two steps).

Scheme 2. Basic treatment of the mesylate **11** gave the triol **8** and a small amount of **12**.

by O-2'. In this strategy it must be noted that the configuration inverting step could have been omitted starting from a compound having the D-manno instead of the D-gluco configuration. However, in this case the synthesis of the β -D-mannoside, a classical challenge in carbohydrate chemistry,^[29] might have been problematic or at least less straightforward. Swern oxidation of 9 followed by reduction of the crude ketone **13** by lithium triethylborohydride uneventfully gave the expected manno disaccharide **14** (70%). The latter was temporarily acetylated at position 2', then the isopropylidene group was hydrolysed to give compound **16** and a tosyl group

was selectively introduced at C-6' to give the tosylate 17. The shorter route, that is direct selective tosylation of the man*no*-triol (i.e., **16** where R = H) was impracticable due to the formation of a significant amount of the 2',6'-di-O-tosylated compound. Various classical conditions were first investigated (sodium hydride, potassium tert-butoxide either in dimethylformamide or dimethylsulfoxide) to achieve the intramolecular displacement of the 6'-tosylate. The best result was, however, obtained using sodium hydroxide in ethanol.[30] After heating at 70°C for 3 h, compound 18 could be isolated

in 70% yield after column chromatography. Ozonolysis, followed by oxidation by sodium chlorite, and finally benzylation by benzyl bromide in the presence of potassium hydrogen carbonate, gave the disaccharide **19**, ready for addition of the remaining part of the pentasaccharide molecule.

The trisaccharide imidate $20^{[31]}$ reacted with the alcohol 19 to give the pentasaccharide 21 (67%, Scheme 4). The observed coupling constant for H-1" ($J_{1",2"} = 3.6$ Hz) clearly proved the α -anomeric configuration of the newly established interglycosidic bond. Pentasaccharide 21 was then submitted to catalytic hydrogenation followed by saponification, and ¹H NMR analysis was used at this stage to check the complete removal of all protective groups in alcohol 22. The hydroxyl groups thus liberated were sulfated in dimethylformamide at 55°C using triethylamine/sulfur trioxide complex. The structure and purity of the final pentasaccharide 23, isolated by gel permeation chromatography, were ascertained by ¹H NMR analysis and mass spectrometry.

¹H NMR spectroscopy was also used to investigate the conformation of the L-iduronate ring in pentasaccharide 23.

Comparison of the coupling constants $(J_{1,2} = 1.3, J_{2,3} = 1.4,$ $J_{3,4} = 2.7, \quad {}^4\!J_{2,4} = 0.5 \text{ Hz}) \text{ with}$ those reported by Köll et al. methyl 2,6-anhydro-Dfor mannopyranoside derivatives, which give a ${}^{2}S_{0}$ conformation^[32] $(J_{1,2} = 1.2 - 1.4, J_{2,3} = 1.2 - 2.4, J_{3,4} = 3.0 - 3.4, {}^{4}J_{2,4} =$ 0.7 Hz), confirm that our derivative adopts the same conformation. In another approach, using the methodology reported by Pérez et al.,[33] from the same observed coupling constants we could compute diheangles (05-C1-C2-C3 dral C1-C2-C3-C4 -62.2° , 55.6°,

Scheme 3. a) $(COCl)_2$, DMSO, CH_2Cl_2 , $-78^{\circ}C$, $45 \min; b$) $LiEt_3BH$, THF, $-78^{\circ}C$ then RT, 1 h, 70%, two steps; c) Ac₂O, pyridine, RT, 3 h; d) AcOH, 60°C, 2 h, 70%, two steps; e) TsCl, pyridine, RT, 3 h, 80%; f) NaOH, EtOH, 70°C, 3 h, 70%; g) O₃, CH_2Cl_2 , $-78^{\circ}C$, Me_2S ; then 2-methyl-2-butene, *t*BuOH, H_2O , NaH_2PO_4 , $NaClO_2$, RT, 16 h; then BnBr, Bu₄NI, KHCO₃, DMF, RT, 5 h, 80% three steps.

4824 —

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001 0947

0947-6539/01/0722-4824 \$ 17.50+.50/0

Scheme 4. a) 19, TBDMS-OTf, CH₂Cl₂, Et₂O, -20 °C, 30 min, 67%; b) H₂, Pd/C, AcOH, 40 °C, 12 h; then NaOH, H₂O, 55 °C, 3 h, 86 % (two steps); c) Et₃N · SO₃, DMF, 55 °C, 18.5 h, 85 %.

TBDMSO

C2-C3-C4-C5 7.3°) and compare them with angles computed for a true ${}^{2}S_{0}$ conformer (O5-C1-C2-C3 37.9°, C1-C2-C3-C4 -63° , C2-C3-C4-C5 21.7°). The good agreement also proves $J_{3,4} = 5.5$ Hz) are very close to the expected ones ($J_{1,2} \approx 1.8 -$ 2.0, $J_{2,3} \approx 2.6$, $J_{3,4} \approx 2.6 - 3.0$ Hz), and they are in excellent agreement with those already reported^[18] for another deriv-

that led from 18 to 19. Finally, coupling of the trisaccharide imidate 20 onto the alcohol 40 proceeded in 83% yield to give the pentasaccharide **41**. The α anomeric configuration of the new interglycosidic bond was proven by ¹H NMR spectroscopy $(J_{1'',2''} = 3.0 \text{ Hz})$. Finally deprotection and sulfation as previously described gave the desired pentasaccharide 43.

¹H NMR study demonstrates that the locked iduronic acid ring stands in the ${}^{1}C_{4}$ conformation. The coupling constants observed $(J_{1,2}=0, J_{2,3}=3.7,$

that in the pentasaccharide 23 the locked L-iduronate ring adopts a conformation close to ${}^{2}S_{0}$.

Synthesis of pentasaccharide 43 $({}^{1}C_{4}$ conformer, Figure 1): We also wished to obtain a true analogue of pentasaccharide 1 where the L-iduronic acid unit would give the ${}^{1}C_{4}$ conformation.^[34] The sequence of reactions that led to disaccharide 9 was repeated (Scheme 5) from compound 25, obtained by silylation of the known 3-O-allyl-1,2-O-isopropylidene-a-D-glucofuranose (24),^[35] to give disaccharide 31. The alcohol 31 was methylated to give the disaccharide 32 and the allyl protecting group was selectively removed following the classical isomerisation-hydrolysis pathway. The resulting disaccharide 33 was acetylated; acid hydrolysis of the isopropylidene group gave the 4,6-diol 35, which was selectively tosylated at position 6' to furnish the intermediate 36, ready for ring closure. The latter was achieved using the conditions previously described for the transformation $17 \rightarrow 18$ to give the locked 37 in excellent yield (85%). It was then converted into the desired Liduronic acid derivative 40 using similar conditions as those

Scheme 5. a) TBDMSCl, imidazole, CH₂Cl₂, RT, 4 h, 95%; b) (COCl)₂, DMSO, CH₂Cl₂, -78°C, 1 h; then CH₂CHMgBr, THF, 0°C, 1 h, 89% two steps; c) IR-120 H⁺ resin, H₂O, 80°C, 8 h; d) Ac₂O, pyridine, RT, 16 h, 52%, two steps; e) 6, TMSOTf, CH₂Cl₂, -78°C to RT, 3 h, 78%; f) MeONa, MeOH, 0°C then RT, 6 h; g) (CH₃O)₂C(CH₃)₂, *p*-TsOH, acetone, RT, 16 h, 74% (two steps); h) MeI, NaH, DMF, 0°C then RT, 4 h, 92%; i) tBuOK, DMSO, 80°C, 1 h; then HgO, HgCl₂, acetone, H₂O, RT, 1 h, 65%; j) Ac₂O, pyridine, CH₂Cl₂, RT, 3 h; k) AcOH, H₂O, 70 °C, 1 h, 71 % two steps; l) TsCl, CH₂Cl₂, RT, 6 h, 75 %; m) NaOH, EtOH, 70 °C, 2 h, 85 %; n) O₃, CH₂Cl₂, -78°C, Me₂S; o) 2-methyl-2-butene, tBuOH, H₂O, NaH₂PO₄, NaClO₂, RT, 5 h; p) BnBr, Bu₄NI, KHCO₃, DMF, RT, 5 h, 73 % three steps; q) **20**, TMSOTf, CH₂Cl₂, -20 °C, 1 h, 83 %; r) H₂, Pd/C, AcOH, 50 °C, 12 h; then NaOH, H₂O, MeOH, RT, 12 h, 88 % (two steps); s) Et₃N:SO₃, DMF, 55 °C, 20 h, 94 %.

FULL PAPER

ative of L-iduronic acid similarly locked in the ${}^{1}C_{4}$ conformation $(J_{1,2}=0, J_{3,4}=4.0 \text{ Hz})$. The long range couplings $({}^{4}J_{1,3}=0.5; {}^{4}J_{2,4}=0.5 \text{ Hz})$ confirm the chair conformation.

Converging synthesis of biologically active pentasaccharides: It is worth noting that the synthetic monosaccharide units that contain a tertiary carbon at position 5 are remarkably versatile intermediates that can be oxidized into uronic acid derivatives having either the D-gluco or the L-ido configurations. The former are obtained after oxidation of the primary alcohol function, while the second derive from ozonolysis of the double bond followed by oxidation of the resulting aldehyde (see previously described preparations of compounds 19 and 40). Since the biologically active pentasaccharides we are dealing with in this work contain both types of uronic acids, it was interesting to design a converging synthesis of these compounds where the versatility mentioned above is exploited. There is, however, a prerequisite: that the ethyl group present at C-5 of glucuronic acid does not impair the interaction between the pentasaccharide and antithrombin. To test this we decided to synthesize (Scheme 6) the pentasaccharide 56, prepared from the fully protected intermediate 54. The EF part of 54 (see Figure 1 for the code DEFGH) can be obtained from the disaccharide 9 which was methylated at 2' to give compound 44. Acid hydrolysis followed by selective hydrogenation of the double bond in the presence of PtO₂ in ethyl acetate yielded the diol 46 which

was selectively oxidized at C-6 using TEMPO/hypochlorite^[36] to give the corresponding glucuronic acid, isolated as its benzyl ester 47. Glycosylation of the alcohol 47 with the thioethyl glycoside 48,^[37] in the presence of N-iodosuccinimide and triflic acid, ^[38] delivered a 5:1 mixture of the α - and β linked trisaccharides in 87% yield, easily separated by column chromatography. The trisaccharide 49 was then submitted to a series of classical transformations.^[39]Acetolysis by a mixture acetic anhydride/acetic acid/sulfuric acid led to replacement of the anomeric methoxy group as well as the benzyl ethers at positions 3, 6, and 6" by acetyl groups. Trisaccharide 51 was then obtained after selective removal of the anomeric acetate using hydrazine acetate in N,N-dimethylformamide. Reaction of 51 with trichloroacetonitrile in the presence of DBU^[40] gave the imidate 52 which was immediately engaged in the glycosylation of the alcohol 53 to selectively provide the pentasaccharide 54. The α anomeric configuration of the new glycosidic bond was confirmed by ¹H NMR spectroscopy $(J_{1'',2''}=3.6 \text{ Hz})$. Hydrogenation of the benzyl groups was followed by saponification of the esters to give the intermediate polyol 55, and finally sulfation gave the desired pentasaccharide 56.

Synthesis of pentasaccharide 61 (${}^{4}C_{1}$ conformer, Figure 1): Finally, considering that the non-constrained monosaccharides units bearing a hydrocarbon chain instead of a hydrogen atom at C-5 adopted the ${}^{4}C_{1}$ conformation, we decided, on

Scheme 6. a) MeI, NaH, THF, 0 °C then RT, 1 h, 92 %; b) AcOH, H₂O, 70 °C, 3 h, 75 % (two steps); c) H₂, PtO₂, AcOEt, RT, 10 min, 100 %; d) NaCl, NaHCO₃, NaOCl, H₂O, TEMPO, CH₂Cl₂, KBr, Bu₄NCl, NaHCO₃, 0 °C, 30 min; then BnBr, Bu₄NCl, NaHCO₃, RT, 45 min, 75 % (two steps); e) **48**, NIS, TfOH, CH₂Cl₂, Et₂O, -40 °C, 30 min, 72 %; f) H₂SO₄, AcOH, Ac₂O, 0 °C, 2 h, 73 %; g) NH₂NH₂·HOAc, DMF, RT, 1 h, 90 %; h) DBU, CCl₃CN, CH₂Cl₂, RT, 30 min, 87 %; i) **53**, TMSOTf, CH₂Cl₂, -20 °C, 30 min, 76 %; j) H₂, Pd/C, AcOH, 50 °C, 12 h; then NaOH, H₂O, MeOH, RT, 12 h, 87 % (two steps); k) Et₃N·SO₃, DMF, 55 °C, 20.5 h, 90 %.

these premises, to explore the conformation of an iduronic acid moiety bearing a methoxymethyl substituent at C-5, with a view to synthesize a pentasaccharide in which the iduronate ring would adopt the ${}^{4}C_{1}$ conformation. The synthesis of such a derivative from 45 was straightforward (Scheme 7). Thus, selective methylation at position 6' of the disaccharide was first carried out with methyl iodide, using the stannyliprocedure^[41] dene (65%). Then, ozonolysis of the double bond, followed by oxidation of the aldehyde and finally esterification, gave disaccharide 58 (77% from 57). The pentasaccharide 59 was prepared by condensation of 58 with the imidate 52. ¹H NMR analysis proved the α anomeric configuration of the new glycosidic bond ($J_{1'',2''} = 3.8$ Hz). Hydrogenation followed by saponification gave in 87% yield the polyol 60, which was finally sulfated to provide 61 in 90% yield. ¹H NMR investigation of the uronic acid unit G in 61

Scheme 7. a) Bu_2SnO , toluene, reflux; then MeI, DMF, 50 °C, 6 h, 65 %; b) O_3 , CH_2Cl_2 , -78 °C, Me_2S ; then 2-methyl-2-butene, *t*BuOH, H_2O , NaH_2PO_4 , $NaClO_2$, RT, 16 h; then BnBr, Bu_4NI , $KHCO_3$, DMF, RT, 6 h, 77 % (three steps); c) **52**, TMSOTf, CH_2Cl_2 , -20 °C, 0.5 h, 71 %; d) H_2 , Pd/C, AcOH, 50 °C, 12 h; then NaOH, H_2O , MeOH, RT, 12 h, 87 % (two steps); e) $Et_3N \cdot SO_3$, DMF, 55 °C, 20.5 h, 90 %.

clearly demonstrated that it adopts a conformation very close to ${}^{4}C_{1}$ ($J_{1,2} = 7.6$, $J_{2,3} = 8.5$, $J_{3,4} = 9.5$ Hz).

L-Iduronic acid conformation and interaction with antithrom-

bin: The ultimate goal of the present synthetic work was to investigate the role of L-iduronic acid conformation in the interaction of these heparin mimetics with antithrombin. The biological activities of the four pentasaccharides described here (23, 43, 56, and 61) were determined and compared to the activity of the reference compound 1. The results (Table 1)

Table 1. Biological activity of the pentasaccharides discussed in the present study. Values are mean anti-factor Xa (n = 3).

Compound	anti Xa [Umg ⁻¹]
1	1208 ± 63
23	1073 ± 61
43	43 ± 3
56	1345 ± 65
61	115 ± 3

indicate that the the pentasaccharide 23 containing an iduronic acid moiety in the ${}^{2}S_{0}$ conformation is able to bind to antithrombin, and thereby to strongly reinforce its ability to inhibit the blood coagulation proteinase factor Xa. In contrast, pentasaccharides 43 and 61 which contain the unit G locked in the ${}^{1}C_{4}$ and ${}^{4}C_{1}$ conformation, respectively, only very slightly potentiate this inhibition. The high activity found for pentasaccharide 56 shows that the dramatically decreased activity of pentasaccharide 61 only results from a conformational feature of unit G, and not from converging introduction of an ethyl group on residue E. These results are in agreement with previous work showing that, in antithrombin binding pentasaccharides, a shift in the conformational equilibrium toward the ${}^{1}C_{4}$ conformation resulted in a reduced biological activity.^[16] They are also in agreement with those reported by Sakairi et al.^[18] using a pentasaccharide where the L-iduronic acid moiety had been similarly locked in the ${}^{1}C_{4}$ conformation. These authors were able to conclude that the ${}^{1}C_{4}$ conformation is not the active one, and that either the ${}^{2}S_{0}$ is essential or that the conformational flexibility of L-iduronic acid (switch from ${}^{1}C_{4}$ to ${}^{2}S_{0}$) is required during antithrombin activation. The present data rule out the second hypothesis, and unambiguously establish that L-iduronic acid adopts the ${}^{2}S_{0}$ conformation in antithrombin bound synthetic pentasaccharides. It is also highly probable that the single L-iduronic acid unit contained in the antithrombin binding site of heparin itself also adopts this conformation when heparin binds to the protein.

The synthesis of such conformationally locked monosaccharide units should prove to be very useful in the study of other biological effects where carbohydrate conformation might play a predominant role.

Experimental Section

General procedures: All compounds were homogeneous by TLC analysis and had spectral properties consistent with their assigned structures. Melting points were determined in capillary tubes in a Mettler or a Büchi 510 apparatus, and are uncorrected. Optical rotations were measured with a Perkin-Elmer Model 241 digital polarimeter at 22±3°C. Compound purity was checked by TLC on aluminum supported silica gel 60 F₂₅₄ (E. Merck) with detection by charring with a 5% ethanolic sulfuric acid solution. Unless otherwise stated, column chromatography were performed on silica gel 60, 40-63 (flash) or 63-200 um (E. Merck). ¹H NMR spectra were recorded with Bruker AC200, AM250, AC300, AM400 or AM500 instruments. Before analysis in D2O, samples were passed through a Chelex (Bio-Rad) ion exchange column. Chemical shifts are relative to external TMS (CDCl₃) or to external TSP (D₂O). MS analyses were performed on a Nermag R 10-10 or a ZAB-2E instrument (Fisons). Elemental analyses were performed by Service d'Analyse de Université Pierre et Marie Curie or using a Fisons elemental analyzer.

Human factor Xa (71 nkat per vial), antithrombin, and S-2222 substrate (Bz-Ile-Glu-Gly-Arg-pNA) were from Chromogenix (Mölndal, Sweden). The anti-factor Xa activity was determined, in buffer, by an amidolytic method adapted from Teien and Lie.^[42] For an accurate comparison, compound concentrations were determined by ¹H NMR with reference to an internal standard.

6-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3-O-methyl-5-C-vinylα-D-glucofuranose (3): A solution of oxalyl chloride (3.2 mL, 36.8 mmol) and DMSO (5.2 mL, 73.4 mmol) in dry dichloromethane (40 mL) was stirred at -78°C for 30 min. 6-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3-O-methyl-a-D-glucofuranose (6.4 g, 18.4 mmol) was then added and stirring was prolonged for 1 h. Triethylamine (15.3 mL, 110 mmol) was then added, and after 30 min the reaction mixture was diluted with dichloromethane, washed with water, dried (MgSO₄), and concentrated to give compound 2 which was used directly for the next reaction. A 1M solution of vinyl magnesium bromide in THF (28 mL, 28 mmol) was added to a cooled (0°C) solution of the crude ketone 2 in dry THF (100 mL). After 1 h the reaction mixture was quenched with aq. NH₄Cl, the organic layer was dried (MgSO₄), concentrated, and the residue was purified by column chromatography (ethyl acetate/cyclohexane 1:9) to give compound **3** (4.8 g, 70%) as a syrup. $[\alpha]_D = -40$ (c = 1.3 in chloroform); ¹H NMR (250 MHz, CDCl₃): δ = 5.95 (m, 1 H, H-7), 5.89 (d, $J_{1,2}$ = 3.8 Hz, 1 H, H-1),

4821-4834

5.40 (dd, $J_{8a,8b} = 1.8$, $J_{7,8a} = 17.3$ Hz, 1 H, H-8a), 5.14 (dd, $J_{7,8b} = 10.8$ Hz, 1 H, H-8b), 4.50 (d, 1 H, H-2), 4.20 (d, $J_{3,4} = 3.1$ Hz, 1 H, H-4), 3.85 (d, 1 H, H-3), 3.81 (brs, 1 H, OH), 3.60, 3.50 (2 d, $J_{6a,6b} = 9.6$ Hz, 2 H, H-6a, H-6b), 3.38 (s, 3 H, OMe), 1.42, 1.22 (2 s, 6 H, 2 Me), 0.85 (s, 9 H, *t*Bu), 0.00 (s, 6 H, 2 Me); elemental analysis calcd (%) for $C_{18}H_{34}O_6Si: C$ 57.72, H 9.15; found: C 57.77, H 9.23.

1.2.4.6-Tetra-O-acetyl-3-O-methyl-5-C-vinyl-\beta-D-glucopyranose (5): IR-120 H⁺ resin (1 g) was added to a solution of ketone **3** (3.5 g, 9.4 mmol) in water (50 mL). After 6 h of heating at 80 °C, the resin was filtered off and, after concentration, acetic anhydride (12 mL) and pyridine (13 mL) were added. After 16 h of stirring, methanol was added and, after concentration, the residue was dissolved in dichloromethane, washed with water, dried (MgSO₄), and concentrated. Column chromatography (ethyl acetate/cyclohexane 3:2) gave compound **5** (2.7 g, 75%) as a solid. M.p. 50°C; $[\alpha]_D = -84$ (c = 1.6 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 5.70$ (m, 3H, olefinic, H-1), 5.45 (dd, $J_{12} = 8.4$, $J_{23} = 9.6$ Hz, 1H, H-2), 3.95, 3.52 (2d, $J_{6a,6b} = 12.5$ Hz, 2H, H-6a, H-6b), 3.30 (t, 1H, H-3), 3.24 (s, 3H, OMe), 1.90 (4s, 12H, 4OAc); CI-MS: 389 $[M+H]^+$, 406 $[M+NH_4]^+$; elemental analysis calcd (%) for C₁₇H₂₄O₁₀: C 52.47, H 6.19; found: C 52.51, H 6.19.

Methyl 2,3,6-tri-O-benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-methyl-5-C-vinyl- β -**D-glucopyranosyl)**- α -**D-glucopyranoside** (7): A mixture of 5 (1.6 g, 4.1 mmol) and methyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (6; 2.1 g, 4.5 mmol) in dry dichloromethane (50 mL) containing molecular sieves (4.0 g) was stirred at room temperature for 1 h. After cooling to -78 °C, TMSOTf (0.95 mL, 5.2 mmol) was added and the temperature was allowed to slowly raise to room temperature. After 2 h, the reaction was quenched with triethylamine. After filtration (Celite), the solution was washed with water, dried (MgSO₄), concentrated, and the residue was purified by column chromatography (ethyl acetate/cyclohexane 4:1) to give disaccharide 7 (2.77 g, 85%) as a solid. M.p. 47 °C; $[\alpha]_D = -36$ (c = 0.5 in chloroform); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.40$ (m, 15 H, aromatic), 6.00 (dd, $J_{7,8'a} = 10.7, J_{7,8'b} = 17.8 \text{ Hz}, 1 \text{ H}, \text{H-7'}), 5.75 \text{ (dd, } J_{8'a,8'b} < 1 \text{ Hz}, 1 \text{ H}, \text{H-8'a}),$ 5.45 (dd, 1 H, H-8'b), 5.40 (d, J_{3',4'} = 10.5 Hz, 1 H, H-4'), 5.30, 4.90 (2 d, 2 H, CH₂Ph), 5.09 (dd, $J_{1',2'} = 8.2$, $J_{2',3'} = 9.4$ Hz, 1 H, H-2'), 4.85, 4.70 (2 d, 2 H, CH₂Ph), 4.80 (d, 1 H, H-1'), 4.80, 4.58 (2 d, 2 H, CH₂Ph), 4.70 (d, J₁₂= 3.7 Hz, 1 H, H-1), 4.20 (d, J_{6'a.6'b} = 12.3 Hz, 1 H, H-6'a), 3.90 - 3.40 (m, 8 H, H-2, 3, 4, 5, 6a, 6b, 3', 6'b), 3.50 (s, 6H, 2OMe), 2.20, 2.10, 2.00 (3s, 9H, 3OAc); elemental analysis calcd (%) for C43H52O14: C 65.14, H 6.61; found: C 65.09, H 6.70.

Methyl 2,3,6-O-tri-O-benzyl-4-O-(4,6-O-isopropylidene-3-O-methyl-5-Cvinyl- β -D-glucopyranosyl)- α -D-glucopyranoside (9): A catalytic amount of sodium was added at 0 °C to a solution of disaccharide 7 (2.7 g, 3.4 mmol) in methanol (40 mL). After 3 h of stirring at room temperature, the mixture was acidified with acetic acid, and the solvents were evaporated. The residue (crude disaccharide 8) was dissolved in dry acetone (40 mL) and 2,2-dimethoxypropane (2 mL), then a catalytic amount of p-toluenesulfonic acid was added, and the reaction mixture was stirred at room temperature overnight. After concentration, the residue was partitioned between water and chloroform. The organic layer was dried (MgSO₄), concentrated and column chromatography (ethyl acetate/cyclohexane 1:1) of the residue gave disaccharide 9 as a solid (1.7 g, 70 %). M.p. 55 °C; $[\alpha]_D =$ +13 (c = 0.8 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 7.5$ (m, 15 H, aromatic), 6.10 (dd, $J_{7',8'a} = 18.1$, $J_{7',8'b} = 11.3$ Hz, 1 H, H-7'), 5.6 (dd, $J_{8'a,8'b} =$ 2.0 Hz, 1 H, H-8'a), 5.25 (dd, 1 H, H-8'b), 4.90 (d, $J_{1^\prime,2^\prime}\!=\!7.6$ Hz, 1 H, H-1'), 4.65 (d, *J*_{1,2} = 3.5 Hz, 1 H, H-1), 5.10 – 4.64 (m, 6 H, 3 C*H*₂Ph), 4.08 – 3.28 (m, 11 H, H-2, 3, 4, 5, 6a, 6b, 2', 3', 4', 6'a, 6'b), 3.65, 3.44 (2s, 6H, 2OMe), 2.75 $(d, J_{OH2} = 2.7 \text{ Hz}, 1 \text{ H}, \text{OH}), 1.58, 1.68 (2 \text{ s}, 6 \text{ H}, 2 \text{ Me}); \text{CI-MS}: 707 [M+H]^+,$ 724 $[M+NH_4]^+$; elemental analysis calcd (%) for $C_{40}H_{50}O_{11}$: C 67.97, H 7.13; found: C 67.87, H 7.16.

Methyl 2,3,6-tri-O-benzyl-4-O-(4,6-O-isopropylidene-3-O-methyl-5-C-vinyl- β -D-mannopyranosyl)- α -D-glucopyranoside (14): A mixture of oxalyl chloride (0.35 mL, 4.0 mmol) and dry DMSO (0.57 mL, 8.0 mmol) in dichloromethane (10 mL) was stirred at -78 °C for 30 min. Compound 9 (1.4 g, 2.0 mmol) in dry dichloromethane (10 mL) was then added to the solution and stirred for 45 min. Dry triethylamine (1.7 mL, 12.0 mmol) was added, the solution was diluted with dichloromethane, and washed with water. The organic layer was dried (MgSO₄), concentrated, and the residue 13 was directly used for the next reaction. Ketone **13** was dissolved in dry THF (15 mL) and 1M lithium triethylborohydride in THF (4 mL, 4.0 mmol) was added at -78 °C. After 1 h stirring at room temperature, 5% sodium hydroxide (2 mL) and hydrogen peroxide (1 mL) were added, the solvent was evaporated and the residue partitioned between water and ethyl acetate. The organic layer was dried (MgSO₄), concentrated, and column chromatography (ethyl acetate/cyclohexane 2:1) gave pure disaccharide **14** (1.0 g, 70%). $[a]_D = -11$ (c = 0.5 in chloroform); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.40-7.10$ (m, 15 H, aromatic), 6.05 (dd, $J_{7.8'a} = 11.2$, $J_{7.8'b} = 18.0$ Hz, 1 H, H-7'), 5.42 (d, 1 H, H-8'a), 5.20 (d, 1 H, H-8'b), 4.92, 4.80 (2d, J = 11.1 Hz, 2H, CH_2 Ph), 4.60 (2d, J = 12.1 Hz, 2H, CH_2 Ph), 4.60, 4.40 (2d, J = 12.1 Hz, 2H, CH_2 Ph), 4.52 (d, $J_{1.2} = 3.5$ Hz, 1 H, H-1), 4.10 (d, $J_{3',4'} = 10.2$ Hz, 1 H, H-4'), 3.90–3.40 (m, 8H, H-2, 4, 5, 6a, 6b, 2', 6'a, 6'b), 3.30 (s, 6H, 2 OMe), 3.25 (tr, $J_{2.3} = J_{3,4} = 10.0$ Hz, 1 H, H-3), 3.05 (dd, $J_{2',3'} = 3.4$ Hz, 1 H, H-3'), 2.53 (brs, 1 H, OH), 1.40, 1.35 (2s, 6H, 2 CH₃); CI-MS: 707 [M+H]+, 724 [M+NH4]+.

Methyl 2.3,6-tri-O-benzyl-4-O-(2-O-acetyl-3-O-methyl-5-C-vinyl- β -Dmannopyranosyl)-a-D-glucopyranoside (16): Acetic anhydride (0.3 mL) was added to a solution of disaccharide 14 (940 mg, 1.3 mmol) in pyridine (3 mL). After 3 h of stirring at room temperature, concentration under reduced pressure gave crude disaccharide 15 that was dissolved in 80% acetic acid (5 mL). After 2 h at 60 $^\circ\mathrm{C},$ evaporation to dryness gave a residue that was purified by column chromatography (ethyl acetate/cyclohexane 4:1) to give diol **16** as a solid (660 mg, 70%). M.p. 53 °C; $[\alpha]_{\rm D} = -10$ (c = 0.8in chloroform); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.30$ (m, 15 H, aromatic), 5.85 (dd, $J_{7'8'a} = 11.1$, $J_{7'8'b} = 17.9$ Hz, 1 H, H-7'), 5.45 (dd, $J_{8'a,8'b} = 1.5$ Hz, 1 H, H-8'a), 5.20 (dd, 1 H, H-8'b), 5.19 (d, J_{2',3'} = 3.1 Hz, 1 H, H-2'), 4.99, 4.75 (2 d, J = 11.5 Hz, 2H, CH₂Ph), 4.79 (s, 1H, H-1'), 4.75, 4.60 (2d, J = 11.5 Hz, 2H, CH₂Ph), 4.60, 4.40 (2 d, J = 11.9 Hz, 2 H, CH₂Ph), 4.55 (d, J₁₂ = 3.5 Hz, 1 H, H-1), 3.95 (d, J_{3',4'} = 10.2 Hz, 1 H, H-4'), 3.82 - 3.00 (m, 7 H, H-2, 3, 4, 5, 6a, 6b, 6'b), 3.30, 3.23 (2s, 6H, 2OMe), 3.15 (t, $J_{2,3} = J_{3,4} = 10.0$ Hz, 1H, H-3), 2.92 (dd, 1 H, H-3'), 2.00 (s, 3 H, OAc); CI-MS: 709 [M+H]⁺, 726 [M+H₄]⁺.

Methyl 2,3,6-tri-O-benzyl-4-O-(2-O-acetyl-3-O-methyl-6-O-tosyl-5-C-vinyl-β-D-mannopyranosyl)-α-D-glucopyranoside (17): Tosyl chloride (240 mg, 1.3 mmol) was added to a solution of diol 16 (600 mg, 0.9 mmol) in pyridine (3 mL). After 3 h of stirring, evaporation to dryness gave a residue that was dissolved in chloroform and washed with water. The organic layer was dried (MgSO₄), and after concentration in vacuo, the residue was purified by a silica gel column chromatography (ethyl acetate/ cyclohexane 1:1) to give disaccharide 17 (297 mg, 80 %) as a syrup. $[\alpha]_{\rm D} =$ -26 (c = 0.8 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 7.70 - 7.10$ (m, 19H, aromatic), 5.79 (dd, $J_{7',8'a} = 10.9$, $J_{7',8'b} = 17.9$ Hz, 1H, H-7'), 5.50 $(dd, J_{8'a8b} = 1.3 Hz, 1H, H-8'a), 5.22 (dd, 1H, H-8'b), 5.13 (dd, J_{1'2'} = 1.1, 1)$ $J_{2',3'} = 3.0$ Hz, 1 H, H-2'), 5.01, 4.65 (2 d, J = 11.9 Hz, 2 H, CH_2 Ph), 4.73 (d, 1H, H-1'), 4.68, 4.62 (2d, J=11.9 Hz, 2H, CH₂Ph), 4.59, 4.40 (2d, J= 12.2 Hz, 2H, CH₂Ph), 4.49 (d, $J_{1,2} = 3.4$ Hz, 1H, H-1), 4.07 (dd, $J_{3',4'} = 10.2$, $J_{4',OH} = 3.6$ Hz, 1 H, H-4'), 4.04 (d, $J_{6'a,6'b} = 11.0$ Hz, 1 H, H-6'a), 3.77 - 3.39 (m, 7H, H-2, 3, 4, 5, 6a, 6b, 6'b), 3.27, 3.20 (2s, 6H, 2OMe), 2.89 (dd, 1H, H-3'), 2.54 (d, 1 H, OH), 2.32 (s, 3 H, Me), 2.10 (s, 3 H, OAc).

Methyl 2,3,6-tri-O-benzyl-4-O-(2,6-anhydro-3-O-methyl-5-C-vinyl-β-D**mannopyranosyl**)- α -**D**-glucopyranoside (18): A 0.1M ethanolic sodium hydroxide solution (5 mL) was added to a solution of tosylate 17 (550 mg, 0.6 mmol) in ethanol (3 mL) and the mixture was heated at 70 °C for 3 h. After neutralisation with Amberlite IR-120 H⁺ resin, concentration and column chromatography (ethyl acetate/cyclohexane 1:1) gave disaccharide **18** (292 mg, 70 %) as a syrup. $[\alpha]_{\rm D} = +13$ (c = 0.5 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 7.40 - 7.00$ (m, 15 H, aromatic), 5.47 (dd, $J_{7',8'a} = 10.4$ Hz, 1H, H-7'), 5.33 (dd, $J_{8'a,8'b} = 2.0$ Hz, 1H, H-8'a), 5.20 (dd, 1H, H-8'b), 5.05 (brs, 1H, H-1'), 4.89 (AB system, 2H, CH₂Ph), 4.70, 4.55 (2d, J=12.2 Hz, 2H, CH₂Ph), 4.55, 4.42 (2d, J= 12.1 Hz, 2H, CH₂Ph), 4.55 (d, J_{1,2} = 3.8 Hz, 1H, H-1), 4.00 (m, 1H, H-3, virtual coupling), 3.81, 3.60 (2 d, J_{6'a.6'b} = 9.9 Hz, 2 H, H-6'a, H-6'b), 3.74 (m, 4H, H-2', 4, 6a, 6b), 3.60 (m, 2H, H-4', 5), 3.47 (dd, J₂₃ = 9.6 Hz, 1H, H-2), 3.30, 3.25 (2 s, 6 H, 2 OMe), 2.97 (t, $J_{2',3'} = J_{3',4'} = 1$ Hz, 1 H, H-3'); CI-MS: 666 $[M+NH_4]^+$

Methyl 2,3,6-tri-O-benzyl-4-O-(2,6-anhydro-5-C-benzyloxycarbonyl-3-Omethyl-β-D-mannopyranosyl)-α-D-glucopyranoside (19): Ozone was bubbled into a stirred, cooled (-78 °C), solution of disaccharide 18 (260 mg, 0.4 mmol) in dichloromethane (20 mL) until the color turned to pale blue. Dimethylsulfide was added and, after washing with water, the organic layer was dried (MgSO₄), and concentrated. The residue was dissolved in *tert*butanol (16 mL), and 2-methyl-2-butene (5 mL) then water (16 mL) were added, followed by NaH₂PO₄ (700 mg) and NaClO₂ (700 mg). The suspension was vigorously stirred at room temperature overnight and partitioned between water and ethyl acetate. The organic layer was dried (MgSO₄), and concentrated. The residue was dissolved in dry DMF (25 mL), then tetrabutylammonium iodide (0.7 g, 2.0 mmol), potassium hydrogencarbonate (0.25 g, 2.5 mmol) and benzyl bromide (0.250 mL, 2.1 mmol) were introduced. After 5 h, the product was extracted with diethyl ether. The organic layer was washed with water, dried (MgSO₄), concentrated, and the residue was purified by silica gel column chromatography (ethyl acetate/cyclohexane 2:1) to yield the benzyl ester derivative **19** as a syrup (236 mg, 80 %). $[\alpha]_D = +34$ (c = 0.93 in dichloromethane); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.40 - 7.10$ (m, 20 H, aromatic), 5.10 (brs, 1H, H-1'), 5.05 (ABq, 2H, CH₂Ph), 4.90 (s, 2H, CH₂Ph), 4.70, 4.60 (2d, J = 12.1 Hz, 2H, CH₂Ph), 4.60 (d, $J_{1,2} = 3.5$ Hz, 1H, H-1), 4.60, 4.40 (2d, J = 12.1 Hz, 2H, CH₂Ph), 4.05, 3.90 (2d, $J_{6/a.6'b} = 9.8$ Hz, 2H, H-6'a,6'b), 4.05-3.90 (m, 2H, H-3, 4'), 3.8-3.5 (m, 4H, H-4, 5, 6a, 6b), 3.65 (s, 1 H, H-2'), 3.45 (dd, J₁₂ = 3.5, J₂₃ = 9.5 Hz, 1 H, H-2), 3.35, 3.30 (2 s, 6 H, 2OMe), 2.92 (br s, 1 H, H-3'), 2.30 (br s, 1 H, OH); ESI-MS positive mode: m/z: 779 $[M+Na]^+$, 795 $[M+K]^+$; elemental analysis calcd (%) for C43H48O12: C 68.24, H 6.39; found: C 68.35, H 6.80.

Pentasaccharide 21: A solution of tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMS-OTf) in dichloromethane (0.156 M, 100 µL) was added, at -20°C to a stirred mixture of imidate 20 (81 mg, 78.2 µmol), alcohol 19 (65 mg, 86 µmol), and finely grounded 4 Å molecular sieves (70 mg) in dichloromethane/diethyl ether 1:2 (2.4 mL). After 30 min of stirring, the reaction was complete (TLC: toluene/ethyl acetate 7:3), and solid NaHCO₃ was added until neutral pH. After filtration and concentration, the residue was first purified using a Sephadex LH 20 gel column (dichloromethane/ethanol 1:1), and then over silica gel (ethyl acetate/ cyclohexane 1:1) to yield pentasaccharide **21** (86 mg, 67%). $[\alpha]_D = +66$ (c = 1.0 in dichloromethane); ¹H NMR (500 MHz, CDCl₃): δ = 5.50 (d, $J_{1,2} = 3.7$ Hz, 1 H, H-1 Glc^V), 5.41 (dd, 1 H, H-3 Glc^{III}), 5.18 (brs, $J_{1,2} \approx 1$ Hz, 1 H, H-1 Man^{II}), 4.98 (d, $J_{1,2}$ = 3.6 Hz, 1 H, H-1 Glc^{III}), 4.58 (d, $J_{1,2}$ = 3.6 Hz, 1H, H-1 Glc^I), 4.58 (dd, 1H, H-6a Glc^{III}), 4.28 (dd, 1H, H-6a Glc^V), 4.22 (dd, 1 H, H-6b Glc^V), 4.19 (dd, 1 H, H-6b Glc^{III}), 4.14 (d, $J_{1,2} \approx 9$ Hz, 1 H, H-1 GlcUAIV), 4.12 (d, 1 H, H-4 ManII), 4.10 (d, 1 H, H-6a ManII), 4.01 (dd, 1 H, H-3 Glc1), 3.98 (d, 1H, H-6b Man11), 3.94 (ddd, 1H, H-5 Glc111), 3.92 (dd, 1H, H-4 GlcUA^{IV}), 3.83 (m, 3H, H-2 GlcUA^{IV}, H-5 Glc^{IV}, H-6a Glc^I), 3.80 (ddd, 1 H, H-5 GlcI), 3.78 (dd, 1 H, H-4 GlcI), 3.63 (dd, 1 H, H-4 GlcIII), 3.61 (dd, 1H, H-6b Glc^I), 3.51 (dd, 1H, H-2 Glc^I), 3.45 (dd, 1H, H-2 Glc^{III}), 3.43 (ddd, 1 H, H-5 Glc^V), 3.37 (dd, 1 H, H-3 Glc^V), 3.31 (dd, 1 H, H-3 GlcUA^{IV}), $3.12 (dd, 1 H, H-3 Man^{II}), 3.11 (dd, 1 H, H-2 Glc^{V}), 3.03 (dd, 1 H, H-4 Glc^{V}),$ 2.93 (dd, 1 H, H-2 GlcUA^{IV}); ESI-MS, positive mode: monoisotopic mass: 1632.65; calcd: 1633.75; found: 1633.77 \pm 0.10; elemental analysis calcd (%) for $C_{86}H_{104}O_{31}$: C 63.23, H 6.42; found: C 63.01, H 6.69.

Pentasaccharide 22: A solution of pentasaccharide **21** (49 mg, 30.0 µmol) in AcOH (3 mL) was stirred under H₂ (35 bar) at 40 °C for 12 h in the presence of 5% Pd/C (73 mg). The mixture was then filtered (Celite), concentrated, and codistilled with water (4 × 5 mL). The residue was dissolved in aq. 1M NaOH (3 mL), and heated at 55 °C for 3 h. The solution was cooled then loaded on top of a Sephadex G25F column (170 mL) equilibrated in water. The fractions containing the compound were collected, passed through a Dowex H⁺ resin column, and concentrated to give pentasaccharide **22** (25 mg, 86% from pentasaccharide **21**). $[a]_D = +105$ (c = 1.0 in water); ESI-MS, negative mode: monoisotopic mass: 966.34; calcd: 966.89; found: 966.5.

²S₀ Pentasaccharide 23: A solution of pentasaccharide 22 (20 mg, 20.7 μmol) and Et₃N · SO₃ (164 mg, 0.90 mmol) in DMF (2 mL) was heated at 55 °C with protection from light for 18 h. After cooling to room temperature, the solution was diluted with aq. 0.2 M NaCl, and layered on top of a Sephadex G25F gel column (170 mL) equilibrated in aq. 0.2 M NaCl. The fractions containing the pentasaccharide were pooled and the compound was desalted using a Sephadex G25F gel column (170 mL) equilibrated in water. After freeze-drying, compound 23 (30.5 mg, 85 %) was obtained. [α]_D = +49 (*c* = 0.63 in water); ¹H NMR (500 MHz, D₂O): δ = 5.51 (d, $J_{1,2}$ = 3.8 Hz, 1H, H-1 Glc^{III}), 5.50 (brs, $J_{1,2}$ = 1.3, $J_{1,6b}$ = 0.5 Hz, 1H, H-1 Glc^{III}), 5.47 (d, $J_{3,4}$ = 9.7 Hz, 1H, H-3 Glc^{III}), 4.41 (dd, $J_{2,3}$ = 1.4, $J_{2,4}$ = 0.5 Hz, 2H, H-2 Man^{II}, H-6a Glc^{III}), 4.40 (dd, $J_{6a,6b}$ = 11.3 Hz, 1H, H-6b Glc^I), 4.36 (dd, 2H, $J_{2,3}$ = 9.7 Hz,

 $\begin{array}{l} \text{H-2 Glc}^{\text{III}}, J_{2,3} \!=\! 9.5 \,\text{Hz}, \text{H-2 Glc}^{\text{I}}), 4.29 \,(\text{dd}, J_{6a,6b} \!=\! 11.3 \,\text{Hz}, 2\,\text{H}, \text{H-6a Glc}^{\text{V}}, \\ \text{H-6b Glc}^{\text{III}}), 4.24 \,(\text{d}, 1\,\text{H}, \text{H-6a Man}^{\text{II}}), 4.20 \,(\text{ddd}, J_{5,6a} \!=\! 3.8, J_{5,6b} \!=\! 2.2 \,\text{Hz}, \\ 1\,\text{H}, \text{H-5 Glc}^{\text{I}}), 4.17 \,(\text{d}, 1\,\text{H}, \text{H-4 Man}^{\text{II}}), 4.12 \,(\text{dd}, J_{6a,6b} \!=\! 11.2 \,\text{Hz}, 1\,\text{H}, \text{H-6b} \\ \text{Glc}^{\text{V}}), 4.09 \,(\text{d}, J_{6a,6b} \!=\! 10.2 \,\text{Hz}, 1\,\text{H}, \text{H-6b Man}^{\text{II}}), 4.08 \,(\text{ddd}, J_{5,6a} \!=\! 1.8, J_{5,6b} \!=\! 2.0 \,\text{Hz}, \\ 1\,\text{H}, \text{H-5 Glc}^{\text{III}}), 4.01 \,(\text{dd}, 2\,\text{H}, J_{4,5} \!=\! 9.7 \,\text{Hz}, \text{H-4 Glc}^{\text{III}} , J_{4,5} \!=\! 10.0 \,\text{Hz}, \\ \text{H-4 Glc}), 3.90 \,(\text{dd}, J_{4,5} \!=\! 9.6 \,\text{Hz}, 1\,\text{H}, \text{H-4 GlcUA}^{\text{IV}}), 3.88 \,(\text{dt}, J_{5,6a} \!=\! 1.6, \\ J_{5,6b} \!=\! 1.6 \,\text{Hz}, 1\,\text{H}, \text{H-5 Glc}^{\text{IV}}), 3.74 \,(\text{dd}, J_{3,4} \!=\! 2.7 \,\text{Hz}, 1\,\text{H}, \text{H-3 Man}^{\text{III}}), 3.72 \,(\text{d}, 1\,\text{H}, \text{H-5 Glc}^{\text{IV}}), 3.55 \,(\text{dd}, J_{3,4} \!=\! 9.5 \,\text{Hz}, 1\,\text{H}, \text{H-3 Glc}^{\text{V}}), 3.53 \,(\text{dd}, J_{3,4} \!=\! 9.1 \,\text{Hz}, 1\,\text{H}, \,\text{H-3 Glc}^{\text{V}}), 3.51 \,(\text{dd}, J_{2,3} \!=\! 9.9 \,\text{Hz}, 1\,\text{H}, \text{H-3 Glc}^{\text{V}}), 3.31 \,(\text{dd}, J_{2,3} \!=\! 9.4 \,\text{Hz}, 1\,\text{H}, \text{H-2 Glc}^{\text{IV}}); \\ \text{ESI-MS}, \text{negative mode: monoisotopic mass: } 1727.19; \text{ calcd: } 1725.89; \\ \text{found: } 1725.46 \pm 0.19. \\ \end{array}$

3-O-Allyl-6-*O-tert***-butyldimethylsilyl-1,2-***O***-isopropylidene**-*a***-D-glucofur-anose (24)**: 3-*O*-Allyl-1,2-*O*-isopropylidene-*a*-D-glucofuranose (7.5 g, 28.8 mmol) was dissolved in dry dichloromethane (100 mL), then TBDMSC1 (4.75 g, 31.7 mmol) and imidazole (3.9 g, 57.7 mmol) were added. The reaction mixture was stirred at RT for 4 h, then diluted with dichloromethane, washed with water, the organic layer was dried (MgSO₄), concentrated and the residue purified by column chromatography (ethyl acetate/cyclohexane 1:9) to give the desired product **24** (10.3 g, 95%) as a syrup. [*a*]_D = -31 (*c* = 1 in chloroform); ¹H NMR (200 MHz, CDCl₃): δ = 5.80 (d, $J_{1,2}$ = 3.6 Hz, 1H, H-1), 5.80 (m, 1H, CH allylic), 4.45 (d, 1H, H-2), 4.0 (d, $J_{3,6h}$ = 3.6, $J_{6a,6b}$ = 10.1 Hz, 1H, H-6b), 3.65 (dd, $J_{5,6a}$ = 5.0 Hz, 1H, H-4), 9.75 (dd, $J_{5,6h}$ = 5.0 Hz, 1H, OH), 1.40, 1.20 (2s, 6H, 2Me), 0.80 (s, 9H, *t*Bu), 0.0 (s, 6H, 2Me).

3-O-Allyl-6-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-5-C-vinyl-a-Dglucofuranose (26): Oxalyl chloride (4.6 mL, 53.5 mmol) and DMSO (7.6 mL, 107 mmol) were added in dry dichloromethane (40 mL) at $-78\,^\circ\text{C}$ and stirred for 30 min. A solution of compound 24 (10.0 g, 26.7 mmol) in dichloromethane (50 mL) was slowly added and stirred for 1 h. Triethylamine (22.3 mL, 160.4 mmol) was added and after 30 min of stirring, the reaction mixture was diluted with dichloromethane, washed with water, dried (MgSO₄), and concentrated to give the ketone which was used as such for the next reaction. The crude ketone 25 was dissolved in dry THF (80 mL), and a 1_M solution of vinylmagnesium bromide (40.3 mL, 40.3 mmol) in THF was added at 0 °C. After 1 h the reaction mixture was quenched with sat. NH₄Cl and extracted with ethyl acetate. The organic layer was dried (MgSO₄), concentrated and the residue was purified by silica gel column chromatography (ethyl acetate/cyclohexane 2:8) to give compound **26** (9.9 g, 89%) as a syrup. $[\alpha]_{D} = -28$ (c = 1 in chloroform); ¹H NMR (200 MHz, CDCl₃): $\delta = 6.00$ (m, 1 H, H-7), 5.90 (d, $J_{12} = 3.93$ Hz, 1 H, H-1), 5.80 (m, 1 H, -CH allylic), 5.40 (dd, $J_{8a,8b} = 1.8$, $J_{7,8b} = 17.4$ Hz, 1 H, H-8b), 5.30-5.20 (m, 2H, CH₂ allylic), 5.14 (dd, J_{78a} = 10.7 Hz, 1H, H-8a), 4.50 (d, 1 H, H-2), 4.20 (d, J_{3,4} = 3.04 Hz, 1 H, H-4), 3.90 – 4.10 (m, 2 H, CH₂ allylic), 4.0 (d, 1H, H-3), 3.81 (brs, 1H, OH), 3.50 (2d, J_{6a,6b} = 9.6 Hz, 2H, H-6a, H-6b), 1.42, 1.22 (2s, 6H, 2Me), 0.85 (s, 9H, tBu), 0.00 (s, 6H, 2Me); elemental analysis calcd (%) for C₂₀H₃₄O₆Si: C 59.97, H 9.05; found: C 60.00, H 9.05.

1,2,4,6-Tetra-O-acetyl-3-O-allyl-5-C-vinyl-β-D-glucopyranose (28): A mixture of compound 26 (8.0 g, 20 mmol) and IR-120 H⁺ resin (2.5 g) in water (200 mL) was heated at 80 °C. After 8 h of stirring, the resin was filtered off and the filtrate concentrated to give the crude product 27. The latter was acetylated using acetic anhydride (40 mL) and pyridine (80 mL). After 12 h of stirring, the excess of acetic anhydride was quenched by methanol and solvents were concentrated to yield the crude residue which was partitioned between ethyl acetate and water. The organic layer was dried (MgSO₄), concentrated, and the residue purified by column chromatography (ethyl acetate/cyclohexane 1:1) to furnish compound 28 (4.3 g, 52 %) as a syrup. $[\alpha]_{\rm D} = -43$ (c = 1 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 5.90 -$ 5.61 (m, 3H, H-7, allylic proton), 5.80 (d, J₁₂ = 8.4 Hz, 1H, H-1), 5.58 (dd, 9.8 Hz, 1 H, H-2), 5.10 (m, 1 H, allylic), 4.50 (d, J_{6a,6b} = 12.5 Hz, 1 H, H-6b), 4.0 (dd, J=1.4 Hz, 4.4 Hz, 1 H, allylic CH₂), 3.62 (d, 1 H, H-6a), 3.50 (t, $J_{3,4} = J_{2,3} = 9.8$ Hz, 1 H, H-3), 2.70 (4s, 12H, 4OAc); elemental analysis calcd (%) for C19H26O10: C 55.06, H 6.32; found: C 55.13, H 6.33.

Methyl 2,3,6-tri-O-benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-5-C-vinyl- β -D-glucopyranosyl)- α -D-glucopyranoside (29): A solution of compound 28 (3.2 g, 8.0 mmol) and alcohol 6 (4.45 g, 9.6 mmol) in dichloromethane (75 mL) was stirred at RT in the presence of powdered molecular sieves (8.0 g) for 1 h. Then TMSOTF (1.75 mL, 9.6 mmol) was added at -78° C

and slowly allowed to reach room temperature under stirring. After 3 h, the reaction mixture was quenched with triethylamine, filtered (Celite), and the filtrate was washed with water. The organic layer was dried (MgSO₄), concentrated, and the residue was purified by column chromatography (ethyl acetate/cyclohexane 3:7) to furnish compound 29 (5.1 g, 78%) as a white solid. M.p. $124 \,^\circ C$; $[\alpha]_D = -45$ (c = 1.1 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.90$ (dd, $J_{7',8'b} = 11.0$, $J_{7',8'a} = 17.8$ Hz, 1 H, H-7'), 5.80 (m, 1 H, allylic), 5.70 (dd, $J_{8'a.8'b} = 0.6$ Hz, 1 H, H-8'b), 5.37 (d, $J_{3'.4'} = 9.6$ Hz, 1H, H-4'), 5.35 (dd, 1H, H-8'a), 5.20 (m, 2H, allylic), 5.02 (dd, J_{1',2'} = 8.2, J_{2',3'} = 9.5 Hz, 1 H, H-2'), 4.86 (d, 1 H, H-1'), 5.21, 4.72 (2 d, J = 12.6 Hz, 2 H, CH_2Ph), 4.72, 4.61 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, 2H, CH_2Ph), 4.71, 4.49 (2d, J = 12.4 Hz, T = 12.4 Hz 12.0 Hz, 2H, CH₂Ph), 4.60 (d, $J_{1,2} = 4.1$ Hz, 1H, H-1), 4.1 (d, $J_{6'a,6'b} =$ 12.3 Hz, 1 H, H-6'b), 4.05 (m, 2 H, allylic CH₂), 3.87 (t, $J_{2,3} = J_{3,4} = 9.0$ Hz, 1 H, H-3), 3.82 (t, 1 H, H-4), 3.75 (dd, $J_{6a,6b} = 11.7$, $J_{5,6b} = 3.7$ Hz, 1 H, H-6b), 3.60 (ddd, $J_{5.6a} = 1.7$, $J_{4.5} = 9.0$ Hz, 1 H, H-5), 3.56 (dd, 1 H, H-6a), 3.52 (dd, 1H, H-2), 3.46 (d, 1H, H-6'a), 3.45 (t, 1H, H-3'), 3.40 (s, 3H, OMe), 2.10, 2.0, 1.90 (3s, 9H, 3OAc); elemental analysis calcd (%) for $C_{45}H_{54}O_{14}\text{: }C$ 66.00, H 6.67; found: C 66.03, H 6.59.

Methyl 2,3,6-O-tri-O-benzyl-4-O-(3-O-allyl-4,6-O-isopropylidene-5-C-vinyl-β-D-glucopyranosyl)-α-D-glucopyranoside (31): Catalytic amount sodium was added at 0°C to a solution of compound 29 (5.0 g, 6.11 mmol) in methanol (100 mL). After 6 h of stirring at RT, the solvent was concentrated. The residue (crude disaccharide 30) was dissolved in dry acetone (100 mL), and 2,2'-dimethoxypropane (6 mL) then p-TsOH (catalytic) was added. The reaction mixture was allowed to stir at RT overnight. The solvent was evaporated and the residue was partitioned between water and chloroform. The organic layer was dried (MgSO₄), concentrated and the residue was purified by column chromatography (ethyl acetate/cyclohexane 3:7) to furnish disaccharide **31** (3.3 g, 74%) as a syrup. $[\alpha]_{D} = -16$ (c=1 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.02$ (dd, $J_{7.8'a} =$ 11.3, $J_{7,8b} = 18.0$ Hz, 1H, H-7'), 5.95 (m, 1H, allylic), 5.50 (dd, $J_{8'a,8'b} =$ 1.3 Hz, 1H, H-8'b), 5.20-5.35 (m, 2H, allylic), 5.19 (dd, 1H, H-8'a), 5.05, 4.91 (2d, J=11.3 Hz, 2H, CH₂Ph), 4.87 (d, J_{1',2'}=7.4 Hz, 1H, H-1'), 4.82, 4.65 (2d, J = 12.2 Hz, 2H, CH₂Ph), 4.60 (ABq, 2H, CH₂Ph), 4.40-4.20 (m, 2 H, allylic), 4.02 (dd, $J_{6a,6b} = 11.0$, $J_{5,6b} = 3.0$ Hz, 1 H, H-6b), 3.89 - 3.99 (m, 2 H, H-3, H-4), 3.78 (ddd, $J_{5,6a}$ = 2.0 Hz, 1 H, H-5), 3.72 (d, $J_{3',4'}$ = 9.8 Hz, 1 H, H-4′), 3.67 (dd, 1 H, H-6a), 3.57 (d, $J_{6'a,6'b} = 10.1$ Hz, 1 H, H-6′b), 3.56 (dd, $J_{1,2} = 3.2, J_{2,3} = 10.1$ Hz, 1H, H-2), 3.46 (m, 2H, H-2', H-3'), 3.37 (s, 3H, OMe), 3.35 (d, 1H, H-6'a); elemental analysis calcd (%) for C₄₂H₅₂O₁₁: C 68.83, H. 7.15; found: C 68.90, H 7.11.

Methyl 2,3,6-tri-O-benzyl-4-O-(3-O-allyl-4,6-O-isopropylidene-2-O-methyl-5-C-vinyl-β-D-glucopyranosyl)-α-D-glucopyranoside (32): NaH (0.26 g, 5.4 mmol, 60% dispersion in paraffin oil), and methyl iodide (0.42 mL, 6.75 mmol) were added to a solution of disaccharide 31 (3.3 g, 4.5 mmol) in DMF (50 mL) at 0 °C. The reaction mixture was stirred at room temperature for 4 h. Excess of NaH was quenched with methanol, solvents were evaporated, and the crude residue was partitioned between ethyl acetate and water. The organic layer was separated, dried (MgSO₄), and concentrated. Purification by column chromatography (ethyl acetate/ cyclohexane 3:2) furnished disaccharide 32 (3.1 g, 92%) as a syrup. $[\alpha]_{D} = +5$ (c = 1.5 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.05$ (dd, $J_{7',8'a} = 11.3$, $J_{7',8'b} = 18.0$ Hz, 1 H, H-7'), 5.52 (dd, $J_{8'a,8'b} = 0.9$ Hz, 1 H, H-8'b), 5.15 (dd, 1H, H-8'a), 5.05, 4.86 (2d, J = 11.1 Hz, 2H, CH₂Ph), 4.82 (d, J_{1'.2'} = 8.2 Hz, 1 H, H-1'), 4.85, 4.62 (2 d, J = 12.2 Hz, 2 H, CH₂Ph), 4.65 (d, $J_{1,2} = 3.8$ Hz, 1 H, H-1), 4.56 (ABq, 2 H, CH_2 Ph), 3.97 – 3.85 (m, 3 H, H-6b,4,3), 3.72 (ddd, $J_{4,5} = 8.9$, $J_{5,6b} = 1.7$, $J_{5,6a} = 3.1$ Hz, 1 H, H-5), 3.69 (dd, $J_{6a,6b}\,{=}\,12.0$ Hz, 1 H, H-6a), 3.60 (dd, $J_{2,3}\,{=}\,8.9$ Hz, 1 H, H-2), 3.62 (d, 1 H, H-4'), 3.60 (s, 3 H, OMe), 3.52 (d, $J_{6'a,6'b} = 10.2$ Hz, 1 H, H-6'a), 3.42 (s, 3 H, OMe), 3.40 (d, 1 H, H-6'b), 3.05 (d, 1 H, H-2'); elemental analysis calcd (%) for C43H54O11: C 69.15, H 7.29; found: C 69.26, H 7.22.

Methyl 2,3,6-tri-O-benzyl-4-O-(4,6-O-isopropylidene-2-O-methyl-5-C-vinyl- β -D-glucopyranosyl)- α -D-glucopyranoside (33): A mixture of compound 32 (3.0 g, 4.01 mmol) and *t*BuOK (3.6 g, 32.1 mmol) in DMSO (30 mL) was heated at 80 °C for 1 h. After cooling to 0 °C, sat. aq. NH₄Cl was added and the reaction mixture was stirred for 15 min, and extracted repeatedly with dichloromethane. The organic layer was dried (MgSO₄) and concentrated to obtain the crude prop-1'-enyl ether, which was used as such for the next reaction. To a mixture of this compound, HgO (1.74 g, 8.03 mmol), acetone (50 mL), and water (8 mL), was added dropwise a solution of HgCl₂ (1.09 g, 4.01 mmol) in acetone (5 mL). The reaction mixture was stirred at RT for 1 h, then filtered (Celite), and concentrated. The residue was dissolved in dichloromethane and washed successively with aq. KI, water, and brine. The organic layer was dried (MgSO₄), concentrated, and the residue was purified by column chromatography (ethyl acetate/cyclohexane 2:3) to provide disaccharide **33** as a syrup (1.83 g, 65%). $[a]_{\rm D} = -2$ (c = 1.6 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.05$ (dd, $J_{7,8a} = 11.3$, $J_{7,8b} = 18.0$ Hz, 1H, H-7′), 5.52 (dd, $J_{8a,8b} = 0.9$ Hz, 1H, H-8′b), 5.15 (dd, 1H, H-8′a), 5.05, 4.86 (2d, J = 11.1 Hz, 2H, CH₂Ph), 4.82 (d, $J_{1,2'} = 8.2$ Hz, 1H, H-1′), 4.85 (AGR (2d, J = 12.2 Hz, 2H, CH₂Ph), 4.65 (d, $J_{1,2} = 3.8$ Hz, 1H, H-1′), 4.65 (ABq, 2H, CH₂Ph), 3.97 – 3.85 (m, 3H, H-6b,4,3), 3.72 (ddd, $J_{4,5} = 8.9$, $J_{5,6b} = 1.7$, $J_{5,6a} = 3.1$ Hz, 1H, H-5′), 3.70 (t, $J_{2'3'} = J_{3',4'} = 10.2$ Hz, 1H, H-3′), 3.69 (d, $J_{6a,6b} = 12.0$ Hz, 1H, H-6′a), 3.06 (dd, $J_{4,3} = 8.9$ Hz, 1H, H-6′a), 3.40 (d, 1H, H-6′a), 3.05 (dd, 1H, H-2′); elemental analysis calcd (%) for C₄₀H₅₁O₁₁: C 67.87, H 7.26; found: C 67.75, H 7.30.

Methyl 2,3,6-tri-O-benzyl-4-O-(3-O-acetyl-2-O-methyl-5-C-vinyl-\beta-D-glucopyranosyl)-a-D-glucopyranoside (35): Acetic anhydride (0.7 mL) and pyridine (1.6 mL) were added to a solution of compound 33 (1.4 g, 1.98 mmol) in dichloromethane (20 mL). The reaction mixture was stirred at RT for 3 h. Excess of the reagent was quenched with MeOH and concentration furnished the crude disaccharide 34 which was used as such for the next reaction. A solution of compound 34 in a mixture of 60 % acetic acid in water (20 mL) was added and heated at 70 °C for 1 h. Concentration and co-concentration with toluene gave a crude product that was purified by column chromatography (ethyl acetate/cyclohexane 7:3) to furnish disaccharide **35** (1.0 g, 71 %) as a solid. M.p. $123 \,^{\circ}$ C; $[\alpha]_{D} = -12 (c = 1.53 \text{ in})$ chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.87$ (dd, $J_{7',8'a} = 11.2$, $J_{7',8'b} = 11.2$ 17.0 Hz, 1H, H-7'), 5.45 (dd, $J_{8'a,8'b} = 1.1$ Hz, 1H, H-8'b), 5.12 (dd, 1H, H-8'a), 5.05, 4.92 (2 d, J = 12.0 Hz, 2 H, CH_2 Ph), 4.93 (t, $J_{2',3'} = 10.1$ Hz, 1 H, H-3'), 4.85, 4.70 (2 d, J = 12.2 Hz, 2 H, CH₂Ph), 4.80 (d, J_{1',2'} = 7.9 Hz, 1 H, H-1'), 4.65 (d, J_{1,2} = 3.7 Hz, H1 H, -1), 4.57 (ABq, 2 H, CH₂Ph), 3.92-3.85 (m, 4H, H-4', 6b, 4, 3), 3.72 (ddd, $J_{5,6a} = 1.7$, $J_{5,6b} = 3.7$, $J_{4,5} = 8.9$ Hz, 1H, H-5), 3.67 (dd, $J_{6a,6b} = 10.8$ Hz, 1 H, H-6b), 3.60 (dd, $J_{2,3} = 9.5$ Hz, 1 H, H-2), 3.50, 3.40 (2s, 6H, 2OMe), 3.37 (m, 1H, H-6'b), 3.15 (d, J=11.8 Hz, 1H, H-6'a), 3.05 (dd, 1 H, H-2'), 2.20 (s, 3 H, OAc); elemental analysis calcd (%) for C₃₀H₄₈O₁₂: C 66.09, H 6.83: found: C 66.02, H 6.84.

Methyl 2,3,6-tri-O-benzyl-4-O-(3-O-acetyl-2-O-methyl-6-O-tosyl-5-C-vinyl-β-D-glucopyranosyl)-α-D-glucopyranoside (36): Tosyl chloride (0.145 g, 0.745 mmol) and triethylamine (0.2 mL) were added to a solution of compound 35 (0.48 g, 0.68 mmol) in dichloromethane (10 mL), and the reaction mixture was stirred at RT for 6 h. The organic layer was then washed with water, dried (MgSO₄), and concentrated. The residue was purified by column chromatography (ethyl acetate/cyclohexane 3:7) to furnish disaccharide **36** (0.438 g, 75%) as a syrup. $[\alpha]_D = -10$ (c = 0.85 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.90$ (dd, $J_{7',8'a} = 11.1, J_{7',8'b} =$ 17.9 Hz, 1 H, H-7'), 5.52 (dd, $J_{8'a,8'b} = 0.6$ Hz, 1 H, H-8'b), 5.12 (dd, 1 H, H-8'a), 5.01 (t, $J_{2',3'} = J_{3',4'} = 9.9$ Hz, 1 H, H-3'), 5.20, 4.80 (2 d, J = 11.8 Hz, 2 H, CH₂Ph), 4.75 (d, $J_{1',2'} = 8.1$ Hz, 1 H, H-1'), 4.75, 4.60 (2 d, J = 12.0 Hz, 2H, CH₂Ph), 4.52 (ABq, 2H, CH₂Ph), 4.09 (d, J_{6'a.6'b} = 11.4 Hz, 1H, H-6'b), 4.02 (dd, $J_{4',OH} = 5.5$ Hz, 1 H, H-4'), 3.93 (dd, $J_{6a,6b} = 10.7$, $J_{5,6b} = 2.7$ Hz, 1 H, H-6b), 3.87 (t, J_{3,4} = 9.7 Hz, 1 H, H-3), 3.82 (t, 1 H, H-4), 3.69 (ddd, J_{5,6a} = 1.7, J_{4.5} = 8.8 Hz, 1 H, H-5), 3.65 (dd, 1 H, H-6a), 3.53 (dd, 1 H, H-2), 3.52 (d, 1 H, H-6'a), 3.47, 3.39 (2s, 6H, 2OMe), 3.15 (dd, 1H, H-2'), 3.05 (d, 1H, OH).

Methyl 2,3,6-tri-O-benzyl-4-O-(3-O-5-C-methylidene-2-O-methyl-5-C-vinyl-a-L-idopyranosyl)-a-D-glucopyranoside (37): A 0.1N ethanolic sodium hydroxide solution (10 mL) of compound 36 (0.4 g, 0.464 mmol) was heated at 70-80 °C for 2 h. The reaction mixture was neutralized with IR H⁺ resin and filtered. The filtrate was concentrated and purified by column chromatography (ethyl acetate/cyclohexane 8:2) to furnish disaccharide **37** (0.255 g, 85%) as a syrup. $[\alpha]_{\rm D} = +6$ (c = 1 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.70$ (dd, $J_{7'8b} = 10.8$, $J_{7'8b} = 17.2$ Hz, 1 H, H-7'), 5.50 $(dd, J_{8'a,8'b} = 1.5 Hz, 1 H, H-8'b), 5.40 (s, 1 H, H-1'), 5.27 (dd, 1 H, H-8'a),$ 5.02, 4.92 (2 d, J = 10.7 Hz, 2 H, CH₂Ph), 4.80, 4.65 (2 d, J = 12.1 Hz, 2 H, CH_2 Ph), 4.67, 4.55 (2 d, J = 11.9 Hz, 2 H, CH_2 Ph), 4.65 (d, $J_{1,2} = 3.5$ Hz, 1 H, H-1), 4.45 (d, $J_{6'a,6'b} = 9.7$ Hz, 1H, H-6'b), 4.29 (t, $J_{2',3'} = J_{3',4'} = 4.9$ Hz, 1H, H-3'), 4.07 (t, $J_{2,3} = J_{3,4} = 9.8$ Hz, 1H, H-3), 4.02 (t, 1H, H-4'), 3.92 (dd, $J_{6a,6b} = 10.7, J_{5,6b} = 2.8$ Hz, 1 H, H-6b), 3.85 (t, 1 H, H-4), 3.75 (ddd, $J_{4,5} = 9.8$, $J_{5.6a} = 1.8$ Hz, 1H, H-5), 3.72 (d, 1H, H-6'a), 3.69 (dd, 1H, H-6a), 3.6 (dd, 1H, H-2), 3.58 (d, 1H, H-2'), 3.40 (s, 3H, OMe), 3.30 (s, 3H, OMe); CI-MS: m/z:666 [M+NH₃]+.

4830 —

Methyl 2,3,6-tri-O-benzyl-4-O-(benzyl 2-O-methyl-3-O-5-C-methylidenea-L-idopyranosyluronate)-a-D-glucopyranoside (40): A solution of compound 37 (0.2 g, 0.308 mmol) in dichloromethane (30 mL) was stirred at – 78 °C, then ozone was bubbled until the solution turned pale blue. Excess of ozone was quenched with dimethylsulphide and was kept at RT for 1 h. The reaction mixture was partitioned between dichloromethane and water. The organic layer was dried (MgSO₄), and concentrated to furnish the crude aldehyde 38 which was used as such for the next reaction. The latter was dissolved in a mixture of 2-methyl-2-butene/water/tert-butanol (1:2:2, 25 mL), then sodium dihydrogenphosphate (500 mg) and sodium chlorite (500 mg) were added, and the mixture was stirred at RT for 5 h. After dilution with ethyl acetate, the organic layer was washed with water, dried $(MgSO_4)$ and concentrated to obtain the crude acid (39). The latter was dissolved in DMF (10 mL) and potassium hydrogen carbonate (0.2 g) then benzyl bromide (0.2 mL) were added, and the reaction mixture was allowed to stir at room temperature for 5 h. After dilution with diethyl ether, the organic layer was washed (water), dried (MgSO₄), and concentrated to obtain a residue which was purified by column chromatography (ethyl acetate/cyclohexane 3:2) to furnish compound 40 (0.17 g, 73%) as a syrup. $[\alpha]_{\rm D} = +18 \ (c = 0.75 \ \text{in chloroform}); {}^{1}\text{H NMR} \ (200 \ \text{MHz}, \text{CDCl}_{3}): \delta = 5.40$ (s, 1 H, H-1'), 5.15 (s, 2 H, CH₂Ph), 4.90, 4.50 (2 d, J = 10.6 Hz, 2 H, CH₂Ph), 4.78, 4.63 (2d, J=12.1 Hz, 2H, CH₂Ph), 4.65 (d, J₁₂=3.7 Hz, 1H, H-1), 4.69, 4.55 (2 d, J = 12.0 Hz, 2 H, CH_2Ph), 4.60 (d, $J_{6'a,6'b} = 9.4$ Hz, 1 H, H-6'b), 4.49 (dd, $J_{OH,4'} = 10.5$, $J_{3',4'} = 5.5$ Hz, 1 H, H-4'), 4.29 (t, $J_{2',3'} = J_{3',4'} = 4.5$ Hz, 1 H, H-3′), 4.10 (d, 1 H, H-6′a), 4.05 (t, $J_{3,4}\!=\!J_{2,3}\!=\!9.2$ Hz, 1 H, H-3), 4.01 (d, 1 H, OH), 3.85 (t, $J_{4,5} = 9.2$ Hz, 1 H, H-4), 3.85 (dd, $J_{6a,6b} = 10.8$, $J_{5,6b} = 10.8$ $3.0 \text{ Hz}, 1 \text{ H}, \text{ H-6b}), 3.75 \text{ (ddd, } J_{5,6a} = 1.9 \text{ Hz}, 1 \text{ H}, \text{ H-5}), 3.65 \text{ (dd, } 1 \text{ H}, \text{ H-6b})$ H-6a), 3.62 (dd, 1H, H-2), 3.51 (d, 1H, H-2'), 3.40 (s, 3H, OMe), 3.20 (s, 3H, OMe); elemental analysis calcd (%) for C₄₃H₄₈O₁₂: C 68.24, H 6.39; found: C 68.29, H 6.79.

Pentasaccharide 41: A mixture of imidate 20 (81 mg, 81 µmol), compound 40 (61 mg, 80 µmol), powdered molecular sieves (150 mg) in anhydrous dichloromethane (5 mL) was stirred at -20 °C for 30 min. Then TMSOTf (3 µL) was added and stirring was continued for 1 h. The reaction mixture was quenched with triethylamine, stirred 30 min, and filtered (Celite). The filtrate was partitioned between water and dichloromethane. The organic layer was dried (MgSO₄) and concentrated to furnish a residue that was purified by column chromatography (ethyl acetate/cyclohexane 7:3) to furnish pentasaccharide **41** (107 mg, 83 %) as a syrup. $[\alpha]_D = +80$ (c = 1 in dichloromethane); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.50$ (d, $J_{1,2} = 3.7$ Hz, 1 H, H-1 Glc^V), 5.42 (dd, 1 H, H-3 Glc^{III}), 5.29 (d, $J_{1,2} \approx 1$ Hz, 1 H, H-1 IdoUA^{II}), 4.92 (d, $J_{12} = 3.0$ Hz, 1 H, H-1 Glc^{III}), 4.57 (d, $J_{12} = 3.6$ Hz, 1 H, H-1 GlcI), 4.54 (dd, 1H, H-6a GlcIII), 4.41 (d, 1H, H-4 IdoUAII), 4.36 (dd, 1 H, H-3 IdoUA^{II}), 4.27 (dd, 1 H, H-6a Glc^V), 4.13 (d, $J_{12} \approx 8$ Hz, 1 H, H-1 GlcUA^{IV}), 4.21 (dd, 1 H, H-6b Glc^V), 4.19 (dd, 1 H, H-6b Glc^{III}), 4.10 (d, 1 H, H-6a IdoUA^{II}), 4.03 (ddd, 1 H, H-5 Glc^{III}), 3.92 (dd, 1 H, H-3 Glc^I), 3.91 (dd, 1H, H-4 GlcUA^{IV}), 3.82 (d, 1H, H-5 Glc^{IV}), 3.79 (d, 1H, H-6b IdoUA^{II}), 3.78 (ddd, 1 H, H-5 Glc^I), 3.73 (dd, 1 H, H-4 Glc^I), 3.62 (dd, 1 H, H-4 Glc^{III}), 3.60 (m, 2H, H-6a, H-6b Glc1), 3.47 (dd, 1H, H-2 Glc1), 3.43 (ddd, 1H, H-5 GlcV), 3.42 (dd, 1H, H-2 GlcIII), 3.36 (dd, 1H, H-2 GlcUAIV), 3.34 (dd, 1H, H-3 Glc^V), 3.30 (dd, 1 H, H-3 GlcUA^{IV}), 3.10 (dd, 1 H, H-2 Glc^V), 3.03 (dd, 1H, H-4 Glc^V), 2.92 (dd, 1H, H-2 GlcUA^{IV}); FAB-MS, positive mode: m/z: thioglycerol+NaCl: 1655.8 [M+Na]+; m/z: thioglycerol+KF: 1671.6 $[M+K]^+$; elemental analysis calcd (%) for $C_{86}H_{104}O_{31}$: C 63.23, H 6.42; found: C 63.19, H 6.63.

Pentasaccharide 42: A solution of pentasaccharide **41** (50 mg, 30.6 µmol) in acetic acid (2 mL) was stirred under H₂ in the presence of 5% Pd/C (100 mg, 20 bar) for 12 h at 50 °C. The mixture was then filtered (Celite), concentrated, and codistilled with water (5×2 mL). The residue was dissolved in methanol (1.38 mL), and aq. 5 N NaOH (1.10 mL) was added (final concentration: 1 m). After 12 h of stirring, the solution was loaded on top of a Sephadex G25F column (190 mL) equilibrated with water. The fractions containing the compound were collected, passed through a Dowex H⁺ resin column, and concentrated to give pentasaccharide **42** (26 mg, 88 % from **41**). FAB-MS: positive mode: m/z: thioglycerol+NaCl: 989 [M+Na]⁺.

¹C₄ Pentasaccharide 43: A solution of pentasaccharide 42 (26 mg, 26.8 µmol) and Et₃N·SO₃ (170 mg, 0.94 mmol) in DMF (2.8 mL) was heated at 55 °C with protection from light for 20 h. After cooling to room temperature, the solution was diluted with aq. 0.2 M NaCl, and layered on top of a Sephadex G25F gel column (190 mL) equilibrated in aq. 0.2 M

NaCl. The fractions containing the pentasaccharide were pooled together and the compound was desalted using a Sephadex G25F gel column (190 mL) equilibrated in water. After freeze-drying, compound 43 (43.7 mg, 94%) was obtained. $[\alpha]_D = +61$ (c = 1 in water); ¹H NMR $(500 \text{ MHz}, D_2 \text{O}): \delta = 5.46 \text{ (d}, J_{1,2} = 3.8 \text{ Hz}, 1 \text{ H}, \text{H-1 Glc}^{V}), 5.39 \text{ (br s}, J_{1,2} = 0,$ $J_{1,3} = 0.5, J_{1,6b} = 0.5$ Hz, 1H, H-1 IdoUA^{II}), 5.33 (d, $J_{1,2} = 3.6$ Hz, 1H, H-1 Glc^{III}), 5.16 (d, J₁₂ = 3.6 Hz, 1 H, H-1 Glc^I), 4.79 (dd, J_{3.4} = 9.1 Hz, 1 H, H-3 Glc^I), 4.66 (dd, $J_{3,4} = 5.5$, ${}^{4}J_{3,6b} = 0 \approx 0.5$ Hz, 1 H, H-3 IdoUA^{II}), 4.65 (d, $J_{1,2} = 0$ 7.8 Hz, 1 H, H-1 GlcUA^{IV}), 4.62 (dd, $J_{3,4} = 9.6$ Hz, 1 H, H-3 Glc^{III}), 4.57 (d, 1H, H-4 IdoUA^{II}), 4.48 (d, 1H, H-6a IdoUA^{II}), 4.45 (dd, 1H, H-6a Glc^I), 4.40 (dd, 1 H, H-6a Glc^{III}), 4.36 (dd, $J_{2,3} = 9.2$ Hz, 1 H, H-2 Glc^I), 4.34 (dd, $J_{6a,6b} = 10.8$ Hz, 1 H, H-6b Glc^I), 4.30 (dd, $J_{6a,6b} = 11.3$ Hz, 1 H, H-6b Glc^{III}), 4.28 (dd, 1 H, H-6a Glc^V), 4.27 (dd, $J_{2,3} = 10.1$ Hz, 1 H, H-2 Glc^{III}), 4.14 (d, $J_{6a,6b} = 10.0$ Hz, 1 H, H-6b IdoUA^{II}), 4.11 (dd, $J_{6a,6b} = 11.2$ Hz, 1 H, H-6b Glc^V), 4.10 (ddd, $J_{56a} = 3.7$, $J_{56b} = 2.2$ Hz, 1 H, H-5 Glc^I), 4.07 (ddd, $J_{56a} =$ 1.8, $J_{5.6b} = 1.2$ Hz, 1 H, H-5 Glc^{III}), 3.98 (dd, $J_{4.5} = 9.8$ Hz, 1 H, H-4 Glc^{III}), 3.88 (dd, $J_{4,5} = 9.7$ Hz, 1 H, H-4 GlcUA^{IV}), 3.87 (dt, $J_{5,6a} = 1.8$, $J_{5,6b} = 1.8$ Hz, 1 H, H-5 Glc^V; dd, $J_{4,5} = 9.7$ Hz, 1 H, H-4 Glc^I), 3.71 (d, 1 H, H-5 Glc^{IV}), 3.67 (dd, $J_{2,3} = 3.7$, $J_{2,4} = 0.5$ Hz, 1 H, H-2 IdoUA^{II}), 3.54 (dd, $J_{3,4} = 9.7$ Hz, 1 H, H-3 Glc^V), 3.51 (dd, $J_{3,4} = 9.1$ Hz, 1H, H-3 GlcUA^{IV}), 3.33 (dd, $J_{4,5} =$ 10.1 Hz, 1 H, H-4 Glc^V), 3.30 (dd, $J_{2,3} = 10.0$ Hz, 1 H, H-2 Glc^V), 3.25 (dd, $J_{2,3} = 9.4$ Hz, 1 H, H-2 GlcUA^{IV}). ESI-MS: negative mode: monoisotopic mass: 1724: calcd: 1725.17: found: 1725.13.

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-methyl-5-C-vinyl-β-D-glucopyranosyl)-a-D-glucopyranoside (45): Methyl iodide (0.28 mL, 4.5 mmol) and NaH (60% dispersion in oil, 0.18 g, 4.5 mmol) were added at 0°C to a solution of compound 9 (1.6 g, 2.3 mmol) in dry THF (20 mL), and the reaction mixture was stirred at room temperature for 1 h. After addition of MeOH, the solvents were removed and the residue was partitioned between water and ethyl acetate. The organic layer was dried (MgSO₄) and concentrated to give crude disaccharide 44 that was used without purification. Acetic acid (80% in water; 5 mL) was added, and the solution was heated at 70 °C for 3 h. After evaporation the residue was purified by column chromatography (ethyl acetate/cyclohexane 4:1) to give disaccharide 45 (1.16 g, 75%) as a solid. M.p. 40°C; $[\alpha]_D = -17$ (c = 1.3 in chloroform); ¹H NMR (200 MHz, CDCl₃): $\delta = 7.40 - 7.10$ (m, 15 H, aromatic), 5.85 (dd, $J_{8a,8b} < 1$ Hz, 1 H, H-8b Glc^{II}), 5.80 (dd, $J_{7,8a} = 11.1$, $J_{7,8b} = 11.1$ 19.9 Hz, 1H, H-7 Glc^{II}), 5.05 (dd, 1H, H-8a Glc^{II}), 4.95, 4.80 (2d, J= 11.7 Hz, 2H, CH₂Ph), 4.73, 4.60 (2d, J=11.7 Hz, 2H, CH₂Ph), 4.61 (d, $J_{12} = 9.2$ Hz, 1H, H-1 Glc^{II}), 4.55 (d, $J_{12} = 3.7$ Hz, 1H, H-1 Glc^I), 4.50 (s, 2H, CH₂Ph), 3.90-3.45 (m, 7H, H-2 Glc^I, H-3 Glc^I, H-4 Glc^I, H-5 Glc^I, $H\text{-}6a\ Glc^{I},\ H\text{-}6b\ Glc^{I},\ H\text{-}4\ Glc^{II}),\ 3.50,\ 3.42,\ 3.30\ (3\,s,\ 12\,H,\ 3\,OMe),\ 3.28\ (d,$ $J_{6a,6b} = 11.8$ Hz, 1 H, H-6b Glc^{II}), 3.05 (d, 1 H, H-6a Glc^I), 3.00 (t, $J_{2,3} = J_{3,4} =$ 9.5 Hz, 1 H, H-3 Glc^{II}), 2.85 (t, 1 H, H-2 Glc^{II}); CI-MS: *m*/*z*: 688 [*M*+NH₄]⁺; elemental analysis calcd (%) for $C_{38}H_{48}O_{11}$: C 67.04, H 7.11; found: C 67.13, H 7.08

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-methyl-5-C-ethyl-β-D-glucopyranosyl)-*α*-**D-glucopyranoside (46)**: A solution of disaccharide **45** (700 mg, 1.03 mmol) in ethyl acetate (50 mL) was stirred for 10 min under hydrogen atmosphere (1.4 bar) in the presence of PtO₂, filtered through Celite, and concentrated to give compound **46** (700 mg, quantitative). $[a]_{\rm D} = -2$ (c = 1.4 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 7.62 - 7.40$ (m, 15 H, aromatic), 5.20 (d, J = 11.7 Hz, 1H, CH₂Ph), 5.01 (d, J = 11.7 Hz, 1H, CH₂Ph), 5.00 (d, J = 12 Hz, 1H, CH₂Ph), 4.87 - 4.78 (m, $J_{1,2} = 3.6$ Hz, 4H, H-1 Glc¹, CH₂Ph), 4.18 (dd, $J_{5.6a} = 2.8$, $J_{6a,6b} = 10.8$ Hz, 1H, H-6a Glc¹), 4.43 (d, J = 12 Hz, 1H, CH₂Ph), 3.93 - 3.45 (m, 7H), 3.83 , 3.71, 3.58 (3s, 3H, 3 OMe), 3.32 (dd, $J_{3,4} = J_{2,3} = 9$ Hz, 1H, H-3 Glc¹), 1.64 (m, 2H, CH₂CH₃), 0.95 (t, 3H, CH₂CH₃); CI-MS: 683 [M+H]⁺, 700 [M+NH₄]⁺; elemental analysis calcd (%) for C₃₈H₅₀O₁₁: C 66.84, H 7.38; found: C 66.74, H 7.43.

Methyl 2,3,6-tri-O-benzyl-4-O-(benzyl 2,3-di-O-methyl-5-C-ethyl- β -D-glucopyranuronate)- α -D-glucopyranoside (47): A mixture of sat. aq. NaCl (1.38 mL), sat. aq. NaHCO₃ (0.72 mL) and aq. NaOCl (1.3M, 1.72 mL) was added dropwise, at 0 °C, to a mixture of compound 46 (480 mg, 0.70 mmol), dichloromethane (2 mL), 2,2,6,5-tetramethylpiperidinoxy radical (1.5 mg, 0.1 equiv), KBr (7.3 mg), Bu₄NCl (9.6 mg), and sat. aq. NaHCO₃ (1.3 mL). The resulting mixture was stirred for 30 min at 0 °C. Bu₄NCl (96 mg), NaHCO₃ (57 mg) and benzyl bromide (0.8 mL) were then introduced and stirring was continued at RT for 45 min. After dilution with water and dichloromethane the organic layer was dried (MgSO₄) and concentrated.

Column chromatography of the residue (hexane/ethyl acetate 65:35) gave disaccharide **47** (415 mg, 75%). $[a]_{\rm D} = -7$ (c = 0.7 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40 - 7.20$ (m, 20 H, aromatic), 5.19 (d, J = 11.7 Hz, 1 H, CH₂Ph), 4.93 (s, 2 H, CH₂Ph), 4.79 (d, J = 12 Hz, 1 H, CH₂Ph), 4.75 (d, J = 11.8 Hz, 1 H, CH₂Ph), 4.68 – 4.61 (m, 4 H, H-1 Glc¹, H-1 GlcUA^{II}, CH₂Ph), 4.55 (d, J = 12 Hz, 1 H, CH₂Ph), 4.03 (dd, $J_{5,6a} = 2.8$, $J_{6a,6b} = 10.9$ Hz, 1 H, H-6a Glc¹), 3.95 (dd, $J_{4,5} = J_{3,4} = 9.0$ Hz, 1 H, H-4 Glc¹), 3.91 (dd, $J_{2,3} = 9.0$ Hz, 1 H, H-3 Glc¹), 3.82 (dd, $J_{4,0H} = 2.2, J_{3,4} = 9.3$ Hz, 1 H, H-4 GlcUA^{II}), 3.74 (ddd, $J_{5,6b} = 1.7$ Hz, 1 H, H-5 Glc¹), 3.66 (s, 3 H, OMe), 3.65 (dd, 1 H, H-6b Glc¹), 3.56 (dd, $J_{1,2} = 3.7$ Hz, 1 H, H-2 Glc¹), 3.53 (s, 3 H, OMe), 3.20 (dd, $J_{2,3} = J_{3,4} = 8.9$ Hz, 1 H, H-3 GlcUA^{II}), 3.04 (dd, $J_{1,2} = 7.5$ Hz, 1 H, H-2 GlcUA^{II}), 2.99 (d, J = 1 Hz, OH), 2.02 (dq, J = 7.2, J = 15.3 Hz, 1 H, CH₂), 1.57 (dq, 1 H, CH₂), 0.80 (t, 3 H, Me); CI-MS: 804 [M+NH₄]⁺; elemental analysis calcd (%) for C₄₅H₅₄O₁₂: C 68.68, H 6.91; found: C 68.67, H 6.99.

Methyl (6-O-benzyl-2,3,4-tri-O-methyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-(benzyl 5-C-ethyl-2,3-di-O-methyl- β -D-glucopyranuronate)-(1 \rightarrow 4)-2,3,6-tri-Obenzyl α-D-glucopyranoside (49): A mixture of ethyl 6-O-benzyl-2,3,4-tri-O-methyl-1-thio-β-D-glucopyranoside (48; 292 mg, 0.82 mmol), disaccharide 47 (323 mg, 0.41 mmol), and finely grounded 4 Å molecular sieves (700 mg) in dichloromethane/diethyl ether (3:2, 10 mL) was stirred under argon for 30 min at room temperature. N-iodosuccinimide (424 mg, 1.89 mmol) was added and, after cooling to $-40\,^\circ\text{C}$, trifluoromethanesulfonic acid (25 µL, 0.28 mmol) was introduced. After stirring for 30 min, the reaction was complete (TLC: toluene/diethyl ether 1:1). After neutralization by addition of triethylamine, the mixture was filtered (Celite), the solution was diluted with dichloromethane, washed with aq. Na₂S₂O₃, water, dried (MgSO₄) and concentrated. Column chromatography (ethyl acetate/hexane 3:7) gave trisaccharide 49 (319 mg, 72 %) and the β anomer (67 mg, 15 %). **49**: $[\alpha]_{\rm D} = +33$ (c = 1.0 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40 - 7.20$ (m, 25 H, aromatic), 5.27 (d, $J_{1,2} = 3.7$ Hz, 1 H, H-1 Glc^{III}), 5.15 (d, J = 11.8 Hz, 1 H, CH₂Ph), 4.97 (d, J = 12.5 Hz, 1 H, CH₂Ph), 4.64-4.57 (m, 6H, CH₂Ph, H-1 Glc^I, H-1 GlcUA^{II}), 4.46 (d, J=12.4 Hz, 1H, CH₂Ph), 4.44 (d, J = 12.2 Hz, 1H, CH₂Ph), 4.05 (d, J = 8.2 Hz, 1H, H-4 GlcUA^{II}), 4.00 (dd, $J_{6a,6b} = 11.1$, $J_{5,6a} = 3.3$ Hz, 1 H, H-6a Glc^I), 3.92 - 3.84 (m, 2H, H-3,4 Glc¹), 3.75-3.32 (m, 10H), 3.64, 3.59, 3.53, 3.52, 3.48, 3.39 (6s, 18H, 6MeO), 3.16 (dd, $J_{2,3} = 9.7$ Hz, 1H, H-2 Glc^{III}), 3.11 (dd, $J_{1,2} = -1.0$ $J_{2,3} = 8$ Hz, 1 H, H-2 GlcUA^{II}), 2.12 (dq, J = 7.2, J = 15.3 Hz, 1 H, CH₂CH₃), 1.62 (dq, 1H, CH₂CH₃), 0.95 (t, 3H, CH₂CH₃); CI-MS: 1098 [M+NH₄]⁺; elemental analysis calcd (%) for C₆₁H₇₆O₁₇: C 67.78, H 7.08; found: C 67.80, H 7.15.

 $(6\text{-}O\text{-}Acetyl\text{-}2,3,4\text{-}tri\text{-}O\text{-}methyl\text{-}\alpha\text{-}D\text{-}glucopyranosyl)\text{-}(1 \rightarrow 4)\text{-}(benzyl 5\text{-}C\text{-}ethyl\text{-}2,3\text{-}di\text{-}O\text{-}methyl\text{-}\beta\text{-}D\text{-}glucopyranosyluronate})\text{-}(1 \rightarrow 4)\text{-}1,3,6\text{-}tri\text{-}O\text{-}$

acetyl-2-O-benzyl- α , β -D-glucopyranose (50): A 5% solution of sulfuric acid in acetic acid (0.272 mL) was added at 0°C to a solution of trisaccharide 49 (494 mg, 0.453 mmol) in acetic anhydride (40 mL). After stirring for 2 h at $0\,^\circ C$ the mixture was poured dropwise into an aq. saturated solution of NaHCO3. The product was extracted with dichloromethane, washed with water, dried (MgSO₄) and concentrated. Column chromatography (hexane/acetone 7:3) gave trisaccharide 50 (α/β 6:1; 322 mg, 73%). $[\alpha]_D = +33$ (c = 1.0 in chloroform); 50 α : ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40 - 7.25$ (m, 10 H, aromatic), 6.33 (d, $J_{1,2} =$ 3.7 Hz, 1 H, H-1 Glc^I), 5.46 (dd, $J_{2,3} = J_{3,4} = 9.7$ Hz, 1 H, H-3 Glc^I), 5.26 (d, 12.5 Hz, 1 H, CH₂Ph), 4.65 (d, J = 12.3 Hz, 1 H, CH₂Ph), 4.54 (dd, J_{6a.6b} = 12.2, $J_{5,6a} = 2.7$ Hz, 1 H, H-6a Glc^I), 4.52 (d, J = 12.5 Hz, 1 H, CH_2 Ph), 4.48 $(d, J_{3,4} = 8.0 \text{ Hz}, 1 \text{ H}, \text{H-4 GlcUA}^{\text{II}}), 4.33 (dd, J_{5,6b} = 4.1 \text{ Hz}, 1 \text{ H}, \text{H-6b Glc}^{\text{I}}),$ 4.29 - 4.26 (m, 2 H, H-6a, 6b Glc^{III}), 4.05 (d, $J_{1,2} = 7.5$ Hz, 1 H, H-1 GlcUA^{II}), 4.02 (m, 1 H, H-5 Glc^I), 3.75-3.38 (m, 5 H), 3.63, 3.54, 3.51, 3.49 (4s, 15 H, 5MeO), 3.15-3.05 (m, 3H), 2.18, 2.11, 2.10, 1.91 (4s, 12H, 4Ac), 2.10 (m, 1H, CH₂CH₃), 1.82 (m, 1H, CH₂CH₃), 1.02 (t, 3H, CH₂CH₃); selected data for **50** β : $\delta = 5.65$ (d, $J_{1,2} = 8.0$ Hz, 1 H, H-1 b Glc^I); CI-MS: 982 [M+NH₄]⁺; elemental analysis calcd (%) for C₄₇H₆₄O₂₁: C 58.49, H 6.68; found: C 58.58, H 6.68

(6-O-Acetyl-2,3,4-tri-O-methyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-(benzyl 5-Cethyl-2,3-di-O-methyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-3,6-di-O-acetyl-2-O-benzyl- α , β -D-glucopyranose (51): Hydrazine acetate (73 mg, 0.8 mmol) was added to a solution of compound 50 (300 mg, 0.310 mmol) in DMF (22 mL). After stirring for 1 h at room temperature ethyl acetate was added. The solution was washed with water, dried (MgSO₄) and concentrated. Column chromatography (hexane/acetone 65:35) gave trisaccharide **51** (256 mg, 90%). $[a]_{\rm D} = +33$ (c = 1.0 in chloroform); ¹H NMR (400 MHz, CDCl₃): $\delta = 5.45$ (dd, $J_{2,3} = J_{3,4} = 9.4$ Hz, H-3 α Glc¹), 5.21 (dd, $J_{2,3} = J_{3,4} = 9.4$ Hz, H-3 β Glc¹), 5.28 – 5.22 (m, CH₂Ph, H-1 α Glc¹, H-1 Glc^{III}), 5.05 (d, J = 12.5 Hz, CH₂Ph), 5.03 (d, J = 12.4 Hz, CH₂Ph), 4.87 (d, J = 11.8 Hz, CH₂Ph), 4.81 (dd, $J_{1,2} = 7.5$, $J_{1,OH} = 4.4$ Hz, H-1 β Glc¹), 4.70, 4.60, 4.33, 4.24 (4dd, H-6a α/β , H-6b α/β Glc¹), 4.50, 4.47 (2d, $J_{3,4} = 8.0$ Hz, H-4 GlcUA^{II}), 4.18 (ddd, H-5 β Glc¹), 4.07, 4.05 (2d, $J_{1,2} = 7.5$ Hz, H-1 GlcUA^{II}), 3.86 (brd, OH β Glc¹), 3.62, 3.53, 3.50, 3.49, 3.48, 3.46 (6s, 18 H, 6MeO), 2.11, 2.09, 2.08, 1.90, 1.85 (5s, AcO a and b), 1.04–0.95 (m, CH₂CH₃); elemental analysis calcd (%) for C₄₅H₆₂O₂₀: C 58.56, H 6.77; found: C 58.55, H 6.79.

(6-*O*-Acetyl-2,3,4-tri-*O*-methyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-(benzyl 5-*C*-ethyl-2,3-di-*O*-methyl- β -D-glucopyranosyluronate)-(1 \rightarrow 4)-1-trichloroace-timidoyl-3,6-di-*O*-acetyl-2-*O*-benzyl- α , β -D-glucopyranose (52): A mixture of compound 51 (75 mg, 0.091 mmol), trichloroacetonitrile (0.456 mL, 4.55 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (10 µL, 0.07 mmol) in dichloromethane (5 mL) was stirred at room temperature for 30 min. After concentration, column chromatography (hexane/acetone 65:35) gave compound 52 (76 mg, 87%). This compound was directly used in the next reaction.

Pentasaccharide 54: To a mixture of imidate 52 (75 mg, 0.07 mmol). disaccharide 53 (90 mg, 0.105 mmol), and finely grounded 4 Å molecular sieves (200 mg) in dichloromethane (2.5 mL) was added, at -20°C, a dichloromethane solution of trimethylsilyl trifluoromethanesulfonate (0.05 M, 0.4 mL). After 30 min under stirring, triethylamine was introduced until neutralisation. After filtration and concentration, the residue was purified first using a Sephadex LH 20 gel column (dichloromethane/ ethanol 1:1), then over silica gel (hexane/acetone 75:20, then 70:30) to yield pentasaccharide 54 (90 mg, 76%). $[\alpha]_D = +53$ (c = 1 in dichloromethane); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.37$ (dd, 1 H, H-3 Glc^{III}), 5.30 (d, $J_{1,2} =$ 6.9 Hz, 1H, H-1 IdoUA^{II}), 5.20 (d, $J_{1,2} = 3.6$ Hz, 1H, H-1 Glc^V), 5.19 (d, $J_{1,2} = 3.6$ Hz, 1 H, H-1 Glc^{III}), 4.56 (d, $J_{1,2} = 3.7$ Hz, 1 H, H-1 Glc^I), 4.46 (dd, 1 H, H-6a Glc^{III}), 4.43 (dd, 1 H, H-4 IdoUA^{II}), 4.30 (d, $J_{1,2} = 8.0$ Hz, 1 H, H-1 GlcUA^{IV}), 4.25 (m, 2H, H-6a Glc^V, H-6b Glc^{III}), 4.22 (dd, 1H, H-6b Glc^V), 3.99 (m, 2H, H-4 GlcUA^{IV}, H-5 Glc^{III}), 3.86 (dd, 1H, H-2 Glc^I), 3.82 (dd, 1H, H-4 Glc^I), 3.81 (dd, 1H, H-3 Glc^I), 3.75 (dd, 1H, H-6a Glc^I), 3.69 (m, 2H, H-5, H-6b GlcI), 3.66 (dd, 1H, H-3 IdoUAII), 3.59 (ddd, 1H, H-5 GlcV), 3.54 (dd, 1 H, H-4 Glc^{III}), 3.44 (dd, 1 H, H-2 Glc^{III}), 3.35 (dd, 1 H, H-3 Glc^V), 3.32 (dd, 1H, H-3 GlcUA^{IV}), 3.06 (m, 2H, H-2, H-4 Glc^V), 2.92 (dd, 1H, H-2 IdoUA^{II}), 2.88 (dd, 1H, H-2 GlcUA^{IV}); FAB-MS, positive mode: monoisotopic mass: 1662.70; calcd: 1663.82; found: 1662.9; rlemental analysis calcd (%) for $C_{88}H_{110}O_{31}\!\!:C$ 63.52, H 6.66; found: C 64.41, H 7.02.

Pentasaccharide 55: A solution of pentasaccharide **54** (42 mg, 0.025 mmol) in acetic acid (2 mL) was stirred under H₂ in the presence of 5% Pd/C (84 mg, 20 bar) for 12 h at 50 °C. The mixture was then filtered (Celite), concentrated, and codistilled with water (5×5 mL). The residue was dissolved in methanol (0.9 mL) and aq. NaOH was added (final concentration: 1M). After 12 h of stirring, the solution was loaded on top of a Sephadex G25F column (170 mL) equilibrated with water. The fractions containing the compound were collected, passed through a Dowex H⁺ resin column, and concentrated to give pentasaccharide **55** (22.0 mg, 87% from pentasaccharide **54**).

²S₀ Pentasaccharide 56: A solution of pentasaccharide 55 (22.0 mg, 22.0 µmol) and Et₃N·SO₃ (139.6 mg, 0.77 mmol) in DMF (2.0 mL) was heated at 55 °C with protection from light for 20 h. After cooling to room temperature, the solution was diluted with aq. 0.2 M NaCl, and layered on top of a Sephadex G25F gel column (650 mL) equilibrated in aq. 0.2м NaCl. The fractions containing the pentasaccharide were pooled together and the compound was desalted using a Sephadex G25F gel column (650 mL) equilibrated in water. After freeze-drying, pentasaccharide 56 (35.0 mg, 90%) was obtained: $[\alpha]_D = +43$ (c = 1 in water); ¹H NMR (500 MHz, D₂O): $\delta = 5.42$ (d, $J_{1,2} = 3.8$ Hz, 1H, H-1 Glc^V), 5.40 (d, $J_{1,2} =$ 3.7 Hz, 1 H, H-1 Glc^{III}), 5.14 (d, $J_{1,2}$ = 3.7 Hz, 1 H, H-1 Glc^I), 5.06 (d, $J_{1,2}$ = 2.8 Hz, 1 H, H-1 IdoUA^{II}), 4.76 (d, 1 H, H-5 IdoUA^{II}), 4.67 (d, J_{1,2} = 8.1 Hz, 1 H, H-1 GlcUA^{IV}), 4.66 (dd, $J_{3,4} = 9.7$ Hz, 1 H, H-3 Glc^I), 4.58 (dd, $J_{5,6b} = 0.00$ 2.1 Hz, 1 H, H-6a Glc^{III}), 4.51 (dd, $J_{3,4} = 9.4$ Hz, 1 H, H-3 Glc^{III}), 4.35 (dd, $J_{2,3} = 9.8$ Hz, 1 H, H-2 Glc^I), 4.38 (dd, $J_{5,6b} = 4.9$ Hz, 1 H, H-6a Glc^I), 4.29 (dd, $J_{2,3} = 10.0$ Hz, 1H, H-2 Glc^{III}), 4.27 (dd, $J_{6a,6b} = 11.2$ Hz, 1H, H-6b Glc^{III}), 4.26 (m, $J_{5,6b} = 1.9$ Hz, H-6a Glc^V, $J_{6a,6b} = 11.4$ Hz, 2H, H-6b Glc^I), 4.20 (ddd, $J_{5,6a} = 1.4$ Hz, 1 H, H-5 Glc^{III}), 4.19 (dd, $J_{4,5} = 2.6$ Hz, 1 H, H-4 IdoUA^{II}), 4.13 (dd, $J_{6a,6b} = 11.2$ Hz, 1H, H-6b Glc^V), 4.09 (ddd, $J_{5,6a} =$

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,6-tri-O-methyl-5-C-vinyl-β-D-glucopyranosyl)-a-D-glucopyranoside (57): Dibutyltin oxide (0.44 g, 1.76 mmol) was added to a solution of disaccharide 45 (1.0 g, 1.47 mmol) in toluene (15 mL). After heating under reflux conditions with azeotropic removal of water for 3 h, toluene was removed and the residue was taken in dry DMF (10 mL). Methyl iodide (0.11 mL, 1.76 mmol) was added to the solution and after stirring at 50 $^{\circ}$ C for 6 h, the reaction mixture was partitioned between water and diethyl ether. The organic layer was dried (MgSO₄), concentrated, and the residue was purified by column chromatography (ethyl acetate/cyclohexane 1:1) to give disaccharide $\mathbf{57}~(0.663~\text{g}, 65~\%)$ as a syrup. $[\alpha]_{\rm D} = -13$ (c = 0.6 in chloroform); ¹H NMR (250 MHz, CDCl₃): $\delta = 7.25$ (m, 15 H, aromatic), 5.93 (dd, $J_{7,8b} = 17.9$, $J_{7,8b} = 11.1$ Hz, 1 H, H-7 Glc^{II}), 5.45 $(dd, J_{8a,8b} < 1 Hz, 1 H, H-8b Glc^{II}), 5.10 (dd, 1 H, H-8a Glc^{II}), 5.07, 4.70 (2 d, 1 H, H-8b Glc^{II}), 5.07, 4.70 (2 d, 1 H, H-8b Glc^{II}), 5.07, 4.70 (2 d, 1 H, H-8b Glc^{II}))$ J = 11.6 Hz, 2H, CH₂Ph), 4.70, 4.56 (2d, J = 11.6 Hz, 2H, CH₂Ph), 4.58 (d, $J_{1,2} = 7.2$ Hz, 1 H, H-1 Glc^{II}), 4.55 (d, $J_{1,2} = 3.9$ Hz, 1 H, H-1 Glc^I), 4.48 (s, 2 H, CH_2Ph), 3.85 (dd, $J_{5.6b} = 7.8$, $J_{6a.6b} = 10.9$ Hz, 1 H, H-6b Glc^I), 3.80 – 3.60 (m, 4 H, H-3 Glc^I, H-4 Glc^I, H-5 Glc^I, H-6a Glc^I), 3.62 (d, $J_{3,4} = 9.5$ Hz, 1 H, H-4 Glc^{II}), 3.58 (s, 3H, OMe), 3.45, 3.30, 3.08 (3s, 9H, 3OMe), 3.48 (dd, J_{2,3} = 9.2 Hz, 1 H, H-2 Glc^I), 3.12-2.91 (m, 4 H, H-2 Glc^{II}, H-3 Glc^{II}, H-6a Glc^{II}, H-6b Glc^{II}); CI-MS: 712 [*M*+NH₄⁺].

Methyl 2,3,6-tri-O-benzyl-4-O-(benzyl 2,3-di-O-methyl-5-C-methoxymethyl-a-L-idopyranosyluronate)-a-D-glucopyranoside (58): Ozone was bubbled into a cooled $(-78 \,^{\circ}\text{C})$ and stirred solution of disaccharide 57 (0.60 g, 0.87 mmol) in dichloromethane (12 mL) until the solution turned pale blue (about 1 min). Dimethylsulfide was then introduced, the reaction mixture was washed with water, and the organic layer was dried (\mbox{MgSO}_4) and concentrated. tert-Butanol (36 mL), 2-methyl-2-butene (14 mL) and water (36 mL) were added to the crude aldehyde thus obtained, followed by NaH₂PO₄ (1.5 g) and NaClO₂ (1.5 g). After vigorous stirring for one night at room temperature the mixture was partitioned between water and ethyl acetate, the organic layer was dried (MgSO₄), concentrated, and the crude acid was used as such in the next step. It was dissolved in dry DMF (60 mL), and tetrabutylammonium iodide (1.7 g, 4.58 mmol), potassium bicarbonate (0.5 g, 5.44 mmol) and benzyl bromide (0.54 mL, 4.58 mmol) were added. After stirring at room temperature for 6 h, the product was extracted with diethyl ether, dried (MgSO₄), concentrated, and purified by column chromatography (ethyl acetate/cyclohexane 2:1). The ester 58 was thus obtained (0.534 g, 77%) as a syrup. $[\alpha]_{\rm D} = -17$ (c = 0.3 in chloroform); ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (m, 20 H, aromatic), 5.08, 4.81 (2 d, J = 12.3 Hz, 2H, CH₂Ph), 5.02, 4.77 (2d, J = 11.6 Hz, 2H, CH₂Ph), 4.77, 4.63 $(2 d, J = 11.6 Hz, 2H, CH_2Ph), 4.71 (d, J_{1,2} = 8.1 Hz, 1H, H-1 IdoUA^{II}), 4.64$ $(d, J_{12} = 3.2 \text{ Hz}, 1 \text{ H}, \text{ H-1 Glc}^{I}), 4.61, 4.57 (2 d, J = 11.8 \text{ Hz}, 2 \text{ H}, CH_2\text{Ph}),$ 3.90-3.70 (m, 6H, H-3 Glc^I, H-4 Glc^I, H-5 Glc^I, H-6a Glc^I, H-6b Glc^I, H-4 IdoUAII), 3.68, 3.54, 3.42, 3.10 (4s, 12H, 4OMe), 3.50-3.40 (m, 4H, H-2 Glc^I, H-3 IdoUA^{II}, H-6a IdoUA^{II}, H-6b IdoUA^{II}), 3.00 (t, *J*_{2,3} = 8.1 Hz, 1 H, H-2 IdoUA^{II}); CI-MS: 820 [M+NH₄]+.

Pentasaccharide 59: A solution of trimethylsilyl trifluoromethanesulfonate (0.05 M, 0.65 mL) in dichloromethane (0.65 mL) was added at $-20 \degree \text{C}$ to a mixture of imidate 52 (120 mg, 0.112 mmol), disaccharide 58 (140 mg, 0.168 mmol), and finely grounded 4 Å molecular sieves (300 mg) in dichloromethane (5 mL). After 30 min under stirring, triethylamine was added until neutralisation. After filtration and concentration, the residue was purified first using a Sephadex LH 20 gel column (dichloromethane/ ethanol 1:1), then over silica gel (hexane/acetone 65:35) to yield compound **59** (136 mg, 71%). $[\alpha]_D = +63$ (c = 0.88 in dichloromethane); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.43$ (dd, H-3 Glc^{III}), 5.25 (d, $J_{12} = 3.8$ Hz, H-1 Glc^{III}), 5.19 (d, $J_{1,2} = 3.8$ Hz, H-1 Glc^V), 5.07 (d, $J_{1,2} = 7.9$ Hz, H-1 IdoUA^{II}), 4.59 (d, $J_{12} = 3.8$ Hz, H-1 Glc^I), 4.49 (dd, H-6a Glc^{III}), 4.37 (d, $J_{12} = 7.6$ Hz, H-1 GlcUA^{IV}), 4.24 (m, 2H, H-6a, H-6b Glc^V), 4.22 (dd, H-6b Glc^{III}), 4.05 (d, H-4 IdoUAII), 4.03 (d, H-4 GlcUAIV), 3.97 (ddd, H-5 GlcIII), 3.86 (ddd, H-5 Glc1), 3.79 (m, 2H, H-3, H-6a Glc1), 3.71 (dd, H-6b Glc1), 3.69 (dd, H-3 IdoUA^{II}), 3.60 (ddd, H-5 Glc^V), 3.55 (dd, H-4 Glc^{III}), 3.43 (m, 2H, H-2 Glc^I, Glc^{III}), 3.42 (dd, H-4 Glc^I), 3.37 (dd, H-3 Glc^V), 3.36 (dd, H-3 GlcUA^{IV}),

3.07 (m, 2H, H-2, H-4 Glc^V), 3.02 (dd, H-2 GlcUA^{IV}), 2.96 (dd, H-2 IdoUA^{II}); FAB-MS, positive mode: monoisotopic mass: 1706.73; calcd: 1707.89; found: 1707.6; elemental analysis calcd (%) for $C_{90}H_{114}O_{32}$: C 63.29, H 6.73; found: C 63.25, H 6.76.

Pentasaccharide 60: A solution of pentasaccharide **59** (37 mg, 21.7 μ mol) in acetic acid (2 mL) was stirred under H₂ in the presence of 5 % Pd/C (74 mg, 20 bar) for 12 h at 50 °C. The mixture was then filtered (Celite), concentrated, and codistilled with water (5 × 5 mL). The residue was dissolved in methanol (0.8 mL), and aq. NaOH was added (final concentration: 1M). After 12 h of stirring, the solution was loaded on top of a Sephadex G25F column (170 mL) equilibrated with water. The fractions containing the compound were collected, passed through a Dowex H⁺ resin column, and concentrated to give pentasaccharide **60** (19.5 mg, 87 % from pentasaccharide **59**): ESI-MS, negative mode: monoisotopic mass: 1040.41; calcd: 1041.41; found: 1041.0.

⁴C₁ Pentasaccharide 61: A solution of compound 60 (19.5 mg, 18.7 μmol) and Et₃N \cdot SO₃ (94 mg, 0.52 mmol) in DMF (1.4 mL) was heated at 55 °C with protection from light for 20 h. After cooling to room temperature, the solution was diluted with aq. 0.2 M NaCl, and layered on top of a Sephadex G25F gel column (170 mL) equilibrated in aq. 0.2 M NaCl. The fractions containing the pentasaccharide were pooled together and the compound was desalted using a Sephadex G25F gel column (170 mL) equilibrated in water. After freeze-drying, pentasaccharide 61 (30.5 mg, 90%) was obtained. $[a]_D = +41$ (c = 0.9 in water); ¹H NMR (500 MHz, D₂O): $\delta =$ 5.53 (d, $J_{1,2} = 3.4$ Hz, 1 H, H-1 Glc^{III}), 5.42 (d, $J_{1,2} = 3.9$ Hz, 1 H, H-1 Glc^V), 5.15 (d, $J_{12} = 3.7$ Hz, 1 H, H-1 Glc^I), 4.93 (d, $J_{12} = 7.8$ Hz, 1 H, H-1 IdoUA^{II}), 4.67 (dd, $J_{3,4} = 8.3$ Hz, 1 H, H-3 Glc^{III}), 4.66 (d, $J_{1,2} = 8.1$ Hz, 1 H, H-1 GlcUA^{IV}), 4.61 (dd, $J_{3,4} = 8.7$ Hz, 1 H, H-3 Glc^I), 4.58 (dd, $J_{5,6b} = 1.9$ Hz, 1 H, H-6a Glc^{III}), 4.55 (dd, $J_{5,6b} = 8.3$ Hz, 1 H, H-6a Glc^I), 4.43 (dd, $J_{2,3} = 9.3$ Hz, 1 H, H-2 Glc^I), 4.33 (dd, $J_{2,3}$ = 8.7 Hz, 1 H, H-2 Glc^{III}), 4.27 (m, 2 H, $J_{5,6b}$ = 1.9 Hz, H-6a Glc^V, $J_{6a,6b} = 11.2$ Hz, H-6b Glc^{III}), 4.23 (dd, $J_{6a,6b} = 11.0$ Hz, 1 H, H-6b Glc^I), 4.15 (ddd, $J_{5,6a} = 1.9$ Hz, 1 H, H-5 Glc^{III}), 4.14 (dd, $J_{6a,6b} =$ 11.2 Hz, 1 H, H-6b Glc^V), 4.13 (ddd, J_{5.6a} = 2.2 Hz, 1 H, H-5 Glc^I), 4.03 (dd, $J_{3,4} = 9.5$ Hz, 1 H, H-3 IdoUA^{II}), 4.02 (ddd, $J_{5,6a} = 1.9$ Hz, 1 H, H-5 Glc^V), 3.98 (m, 2H, H-4 IdoUA^{II}, H-4 GlcUA^{IV}), 3.86 (dd, $J_{4.5} = 9.4$ Hz, 1H, H-4 Glc^{III}), 3.83 (dd, $J_{4,5} = 9.5$ Hz, 1 H, H-4 Glc^{I}), 3.60 (dd, $J_{3,4} = 9.2$ Hz, 1 H, H-3 GlcUA^{IV}), 3.53 (dd, $J_{3,4} = 9.4$ Hz, H1H, -3 Glc^V), 3.36 (dd, $J_{4,5} = 10.0$ Hz, 1 H, H-4 Glc^V), 3.28 (m, $J_{2,3} = 9.3$ Hz, 2 H, H-2 GlcUA^{IV}, $J_{2,3} = 9.9$ Hz, H-2 Glc^V), 3.19 (dd, $J_{2,3} = 9.0$ Hz, 1 H, H-2 IdoUA^{II}); ESI-MS (negative mode): monoisotopic mass: 1797.95; calcd: 1799.30; found: 1799.0.

Acknowledgement

This work is part of a collaboration between N.V. Organon (Oss, The Netherlands), and Sanofi Recherche on antithrombotic oligosaccharides. We thank Isidore Lederman for technical assistance, and the Toulouse Staff of the "Service d'Analyse de la Recherche Amont" (C. Picard, Head) for elemental analyses (M. Maftouh, S. Albugues), NMR analyses (C. Ponthus, D. Albene, M. Rival), and MS analyses (F. Uzabiaga, V. Videau).

B. Casu, M. Petitou, A. Provasoli, P. Sinaÿ, *Trends Biochem. Sci.* 1988, 13, 221–225.

^[2] Selected recent references, see: Heparin: a) D. E. Humphries, G. W. Wong, D. S. Friend, M. F. Gurish, W.-T. Qiu, C. Huang, A. H. Sharpe, R. L. Stevens, Nature 1999, 400, 769-772; b) E. Forsberg, G. Pejler, M. Ringvall, C. Lunderius, B. Tomasini-Johansson, M. Kusche-Gullberg, I. Eriksson, J. Ledin, L. Hellman, L. Kjellen, Nature 1999, 400, 773-776; heparan sulfate: c) D. Shukla, J. Liu, P. Blaiklock, N. W. Shworak, X. Bai, J. D. Esko, G. H. Cohen, R. J. Eisenberg, R. D. Rosenberg, P. G. Spear, Cell 1999, 99, 13-22; d) S. E. Guimond, J. E. Turnbull, Curr. Biol. 1999, 9, 1343-1346; e) M. M. Verbeek, I. Otte-Höller, J. van den Born, L. P. W. J. van den Heuvel, G. David, P. Wesseling, R. M. W. de Waal, Am. J. Pathol. 1999, 155, 2115-2125; f) M. Bernfield, M. Götte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, M. Zako, Annu. Rev. Biochem. 1999, 68, 729-777; dermatan sulfate: g) M. S. G. Pavão, K. M. Aiello, C. C. Werneck, L. C. F. Silva, A.-P. Valente, B. Mulloy, N. S. Colwell, D. M. Tollefsen, P. A. S. Mourão, J. Biol. Chem. 1998, 273, 27848-27857.

- [3] B. Casu, J. Choay, D. R. Ferro, G. Gatti, J.-C. Jacquinet, M. Petitou, A. Provasoli, M. Ragazzi, P. Sinaÿ, G. Torri, *Nature* 1986, 322, 215.
- [4] a) A. S. Perlin, B. Casu, G. R. Sanderson, L. F. Johnson, *Can. J. Chem.* 1970, 48, 2260–2268; b) G. Gatti, B. Casu, A. S. Perlin, *Biochem. Biophys. Res. Commun.* 1978, 85, 14–20.
- [5] G. Gatti, B. Casu, G. Torri, J. R. Vercelotti, *Carbohydr. Res.* 1979, 68, C3-C7.
- [6] A. K. Mitra, S. Arnott, D. H. Isaac, E. D. T. Atkins, J. Mol. Biol. 1983, 169, 873–901.
- [7] J. E. Scott, M. J. Tigwell, Biochem. J. 1978, 173, 103-114.
- [8] a) G. Gatti, B. Casu, G. K. Hamer, A. S. Perlin, *Macromolecules* 1979, 12, 1001–1007; b) J. Augé, S. David, *Tetrahedron* 1984, 40, 2101–2106; c) D. A. Rees, E. R. Morris, J. F. Stoddart, E. S. Stevens, *Nature* 1985, 317, 480.
- [9] a) P. Sinaÿ, J.-C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, G. Torri, *Carbohydr. Res.* **1984**, *132*, C5–C9; b) M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, P. Sinaÿ, J.-C. Jacquinet, G. Torri, *Carbohydr. Res.* **1986**, *147*, 221–236.
- [10] a) M. Petitou, C. A. A. van Boeckel, Prog. Chem. Org. Nat. Prod.
 1992, 60, 143-210; b) C. A. A. van Boeckel, M. Petitou, Angew. Chem. 1993, 105, 1741-1761; Angew. Chem. Int. Ed. Engl. 1993, 32, 1671-1690.
- [11] a) G. Torri, B. Casu, G. Gatti, D. Ferro, A. Provasoli, M. Ragazzi, J. Choay, M. Petitou, J.-C. Jacquinet, P. Sinaÿ, *Abstr. XIIth Int. Carbohydr. Symp.*, Utrecht, **1984**, 458; b) G. Torri, B. Casu, G. Gatti, M. Petitou, J. Choay, J.-C. Jacquinet, P. Sinaÿ, *Biochem. Biophys. Res. Commun.* **1985**, *128*, 134–140.
- [12] M. Ragazzi, D. R. Ferro, A. Provasoli, J. Comput. Chem. 1986, 7, 105 112.
- [13] D. R. Ferro, A. Provasoli, M. Ragazzi, G. Torri, B. Casu, G. Gatti, J.-C. Jacquinet, P. Sinaÿ, M. Petitou, J. Choay, J. Am. Chem. Soc. 1986, 108, 6773–6778.
- [14] a) P. N. Sanderson, T. N. Huckerby, I. A. Nieduszynski, *Glycoconjugate J.* 1985, 2, 109–120; b) M. Ragazzi, D. R. Ferro, B. Perly, G. Torri, B. Casu, P. Sinaÿ, M. Petitou, J. Choay, *Carbohydr. Res.* 1987, 165, C1–C5; c) P. N. Sanderson, T. N. Huckerby, I. A. Nieduszynski, *Biochem. J.* 1987, 243, 175–181; d) D. R. Ferro, A. Provasoli, M. Ragazzi, B. Casu, G. Torri, V. Bossennec, B. Perly, P. Sinaÿ, M. Petitou, J. Choay, *Carbohydr. Res.* 1990, 195, 157–167; e) Y. Inoue, Y. Inouye, K. Nagasawa, *Biochem. J.* 1990, 265, 533–538; f) M. J. Forster, B. Mulloy, *Biopolymers* 1993, 33, 575–588; g) G. Venkataraman, V. Sasisekharan, C. L. Cooney, R. Langer, R. Sasisekharan, *Proc. Natl. Acad. Sci.* USA 1994, 91, 6171–6175; h) D. Mikhailov, K. H. Mayo, I. R. Vlahov, T. Toida, A. Pervin, R. J. Linhardt, *Biochem. J.* 1996, 318, 93–102; i) H. E. Conrad, *Heparin-binding Proteins*, Academic Press, London, 1998, pp. 48–50.
- [15] a) M. Petitou, T. Barzu, J.-P. Hérault, J.-M. Herbert, *Glycobiology* 1997, 7, 323–327; b) U. R. Desai, M. Petitou, I. Björk, S. T. Olson, *Biochemistry* 1998, 37, 13033–13041.
- [16] P. S. Lei, P. Duchaussoy, P. Sizun, J.-M. Mallet, M. Petitou, P. Sinaÿ, Bioorg. Med. Chem. 1998, 6, 1337-1346.
- [17] C. A. A. van Boeckel, S. F. van Aelst, G. N. Wagenaars, J. R. Mellema, H. Paulsen, T. Peters, A. Pollex, V. Sinnwell, *Recl. Trav. Chim. Pays-Bas* 1987, 106, 19–29.
- [18] Meanwhile it has been reported that a conformationnally locked ${}^{1}C_{4}$ pentasaccharide is practically devoid of affinity for antithrombin: N. Sakairi, J. E. M. Basten, G. A. van der Marel, C. A. A. van Boeckel, J. H van Boom, *Chem. Eur. J.* **1996**, *2*, 1007–1013. For a preliminary communication of the synthesis of ${}^{2}S_{0}$ containing pentasaccharide, see S. K. Das, J.-M. Mallet, J. Esnault, P.-A. Driguez, P. Duchaussoy, P. Sizun, J.-P. Herault, J.-M. Herbert, M. Petitou, P. Sinaÿ, *Angew. Chem.* **2001**, *113*, 1723–1726; *Angew. Chem. Int. Ed.* **2001**, *40*, 1670–1673.

- [19] P. Westerduin, C. A. A. van Boeckel, J. E. M. Basten, M. A. Broekhoven, H. Lucas, A. Rood, H. van der Heijden, R. G. M. van Amsterdam, T. G. van Dinther, D. G. Meuleman, A. Visser, G. M. T. Vogel, J. B. L. Damm, G. T. Overklift, *Bioorg. Med. Chem.* **1994**, 2, 1267–1280.
- [20] J. F. Stoddart, Stereochemistry of Carbohydrates, Wiley, New York, 1971, p. 93.
- [21] P. Köll, H. Komander, J. Kopf, Chem. Ber. 1980, 113, 3919-3926.
- [22] M. K. Gurjar, S. K. Das, U. K. Saha, Tetrahedron Lett. 1994, 35, 2241 2244.
- [23] A. V. R. Rao, M. K. Gurjar, T. R. Devi, K. R. Kumar, *Tetrahedron Lett.* 1993, 34, 1653–1656.
- [24] a) J. M. Küster, I. Dyong, Justus Liebigs Ann. Chem. 1975, 2179–2189; b) P. J. Garegg, T. Iversen, S. Oscarsson, Carbohydr. Res. 1976, 50, C12–C14; c) J.-M. Petit, J.-C. Jacquinet, P. Sinaÿ, Carbohydr. Res. 1980, 82, 130–134; d) P. J. Garegg, H. Hultberg, Carbohydr. Res. 1981, 93, C10–C11; e) J.-M. Mallet, G. Meyer, F. Yvelin, A. Jutand, C. Amatore, P. Sinaÿ, Carbohydr. Res. 1993, 244, 237–246.
- [25] E. D. M. Eades, D. H. Ball, L. Long Jr., J. Org. Chem. 1965, 30, 3949– 3951.
- [26] Selected ¹H NMR data (250 MHz, CDCl₃): δ = 9.02 (d, J = 8 Hz, 1 H, O-CH=CH-CHO), 7.07 (d, J = 12.5 Hz, 1 H, O-CH=CH-CHO E), 5.50 (dd, 1 H, O-CH=CH-CHO).
- [27] a) S. David, J. Eustache, J. Chem. Soc. Perkin Trans. 1 1979, 2521– 2525; b) A. A. L. Gunatilaka, N. Hirai, D. G. I. Kingston, Tetrahedron Lett. 1983, 24, 5457–5460.
- [28] I. I. Cubero, M. D. Alonso, M. T. P. Lopez-Espinosa, J. P. Ramirez, *Carbohydr. Lett.* **1999**, *3*, 323–338.
- [29] D. Crich, S. Sun, *Tetrahedron* 1998, 54, 8321-8348, and references therein.
- [30] H. B. Sinclair, J. Org. Chem. 1979, 44, 3361-3368.
- [31] H. van der Heijden, T. Geertsen, M. Pennekamp, R. Willems, D. J. Vermaas, P. Westerduin, *Abstr. 1Xth Eur. Carbohydr. Symp.*, Utrecht, 1987, 154.
- [32] P. Köll, F. S. Tayman, K. Heyns, Chem. Ber. 1979, 112, 2305-2313.
- [33] S. Pérez, C. Meyer, A. Imberty, in *Modelling of Biomolecular Structures and Mechanisms* (Eds.: A. Pullman, J. Jortner, B. Pullman), Kluwer Academic Press, Dordrecht, 1995, pp. 425–444.
- [34] A similar pentasaccharide has already been synthesized by others [18] but, bearing an O-sulfonate at position 2 of L-iduronic acid, its properties cannot be compared with those of the present compounds to assess the influence of the conformation of L-iduronic acid on the biological properties. Indeed, it has been shown that this O-sulfonate may itself influence the affinity for antithrombin (M. Petitou, J.-C. Lormeau, J. Choay, *Eur. J. Biochem.* **1988**, *176*, 637–640).
- [35] a) A. B. Smith III, R. A. Riviero, K. J. Hale, H. V. Vaccaro, J. Am. Chem. Soc. 1991, 113, 2092–2112.
- [36] N. J. Davis, S. L. Flitsch, Tetrahedron Lett. 1993, 34, 1181-1184.
- [37] This compound, in store in our laboratory, had been obtained from 1,6-di-O-acetyl-2,3,4-tri-O-methyl-D-glucopyranose by reaction with thioethanol/boron trifluoride, followed by deacetylation and benzylation.
- [38] a) P. Konradsson, U. E. Udodong, B. Fraser-Reid, *Tetrahedron Lett.* **1990**, *31*, 4313-4316; b) G. H. Veeneman, S. H. van Leeuwen, J. H. van Boom, *Tetrahedron Lett.* **1990**, *31*, 1331-1334.
- [39] M. Petitou, P. Duchaussoy, G. Jaurand, F. Gourvenec, I. Lederman, J.-M. Strassel, T. Barzû, B. Crépon, J.-P. Hérault, J.-C. Lormeau, A. Bernat, J.-M. Herbert, J. Med. Chem. 1997, 40, 1600-1607.
- [40] K. Sakai, Y. Nakahara, T. Ogawa, Tetrahedron Lett. 1990, 31, 3035.
- [41] S. David, S. Hanessian, *Tetrahedron* **1985**, *41*, 643–663.
- [42] A. N. Teien, M. Lie, *Thromb. Res.* 1977, 10, 399-410.

Received: February 15, 2001 [F3078]