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Azines (R2C¼N�N¼CR2) are very useful compounds. For
example, they undergo unusual [1,3] dipolar cycloaddition
reactions (the crisscross addition) with dienophiles, which
provide a convenient route to five-membered rings.[1] They
also participate in [3þ2] cycloaddition reactions as an ene
fragment.[2] Applications of azines include possible nonlinear
optical materials[3] and conducting polymers (polyazines).[4]

Relevant to dinitrogen fixation, the formation of azines by
metal-mediated functionalization of N2 was demonstrated.[5]

Azine derivatives display important biological properties and
are of importance for drug development.[6] Complexes of
titanium,[7] zirconium,[7c] cobalt,[7c] uranium,[8] and iron[9] are
capable of cleaving the N�N bond in azines. In all the
reported cases, the azine N�N bond is cleaved symmetrically
forming two imide units, �N¼CR2, coordinated to a metal
center. No metal-complex-catalyzed reactions were reported.
Herein we report a novel type of azine reactivity, the
rhodium-promoted catalytic “nonsymmetrical” N�N bond
cleavage accompanied by C�H activation, which leads to an
imine and benzonitrile. This is the first metal-promoted
nonsymmetric cleavage of the N�N bond in an azine[10] and
the first metal-catalyzed N�N activation in an azine.

When a toluene solution of the PCP-pincer rhodium
complex 1[11] was treated with one equivalent of benzalazine
at �30 8C, three complexes were formed (Scheme 1). One of
them, tentatively identified by NMR spectroscopy as the
[(PCP)Rh(benzalazine)] complex 2 (precedents exist for
azine complexes[7]), is an intermediate, which converts into
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the two new complexes 3 and 4 in a 1:1 ratio within an hour at
room temperature.

The phenylimine complex 3 and benzonitrile complex 4
were characterized by various NMR spectroscopy techniques
(31P, 1H, 13C, and 13C-1H and 15N-1H correlation experiments,
Table 1). Formation of the benzonitrile complex 4 was
verified by its independent synthesis from complex 1 and
PhCN. Complex 3 could not be isolated and was characterized
in a mixture with 4. The exact mode of imine coordination in 3
is uncertain and an h1-N/h2-C,N equilibrium of the coordi-
nated imine molecule may exist. Primary imine complexes are
known,[12] but to our knowledge, their direct synthesis from
azines has not been reported. Within a day at room temper-

ature, the imine complex 3 decomposed to unidentifiable
products. Complex 4 was stable at room temperature for days.

The [(PCN)Rh(N2)] complex 5 exhibits reactivity similar
to that of 1. Upon reaction with benzalazine quantitative
formation of the benzonitrile complex 6 (Table 1) was
observed together with formation of free imine PhCH¼NH
(Scheme 2).[13] This imine is unstable and rapidly decomposes

(10 min at room temperature), in agreement with literature
data.[14] The structure of 6 determined by crystal-structure
analysis is presented in Figure 1. Complex 6 is square planar

with the PhCN molecule occupying the position trans to the
aryl ring. Unlike the case of the (PCP)Rh-based system, no
azine or imine complex formation was observed, probably
reflecting the more sterically congested character of the
(PCN)Rh unit in 5. Formation of the benzonitrile complex 6
was verified by independent synthesis from complex 5 and
PhCN.

When benzalazine was used in excess (10 equiv) with
either complex 1 or 5, an unprecedented catalytic reaction
producing 7 equivalents of benzonitrile took place
(Scheme 3). The imine PhCH¼NH could not be detected,
probably because of its fast decomposition.[14] The same
turnover number (TON) was observed upon addition of

Scheme 1. Reaction of benzalazine with 1.

Table 1: Selected spectroscopic data for compounds 3, 4, and 6. NMR
spectra in [D8]toluene (1H: 400 MHz, 13C: 100 MHz, 15N: 40 MHz, 31P:
162 MHz), d in ppm, J in Hz.

3 : 31P NMR: d=61.50 (d, JRh,P=166.0); 1H NMR: d=10.25 (d,
JH,H=14.7, 1H, HN¼CHPh), 7.96 (d, JH,H=14.7, 1H, HN¼CHPh);
13C NMR: d=166.09 (brs, HN¼CHPh); 15N-1H correlation NMR (refer-
enced to liq. NH3): d=392.12 (brs, HN¼CHPh, JN,H=65.0); the NMR
assignment is verified by 1H-1H COSY, heteronuclear 13C-1H and 15N-1H
correlation experiments and 13C DEPT-135
4 : 31P NMR: d=63.85 (d, JRh,P=162.0); 1H NMR: d=7.16–7.10 (m, 3H,
aryl), 7.02–6.92 (m, 2H, aryl), 6.77 (m, 2H, aryl), 6.68 (m, 1H, aryl), 3.10
(vt, JP,H=7.2, 4H, PCH2-aryl), 2.04 (m, 4H, (CH3)2CHP), 1.36 (dvt,
JP,H=15.6, JH,H=7, 12H, (CH3)2CHP), 1.19 (dvt, JP,H=13.0, JH,H=7,
12H, (CH3)2CHP); 13C NMR: d=180.33 (dt, JRh,C=36.8, JP,C=12.2, Cipso),
157.17 (t, JP,C=12.8, PhCNRh), 137.40 (s, aryl), 135.83 (s, aryl), 134.52
(s, aryl), 134.35 (s, aryl), 133.93 (s, aryl), 127.01 (s, aryl), 125.78 (t,
JP,C=9.6, aryl), 41.82 (dvt, JP,C=21.6, JRh,C=4.1, PCH2-aryl), 31.17 (vt,
JP,C=17.2, (CH3)2CHP), 24.40 (s, (CH3)2CHP), 19.44 (s, (CH3)2CHP); IR:
ñ=2183.8 cm�1 (m, nC�N)
6 : 31P NMR: d=7.51 (d, JRh,P=231.3); 1H NMR: d=7.19–7.16 (m, 2H,
aryl), 6.98–6.93 (m, 3H, aryl), 6.52 (brs, 1H, aryl), 3.90 (s, 2H, aryl-
CH2N), 3.07 (d, JP,H=8.2, 2H, PCH2-aryl), 2.86 (m, 2H, CH3CH2N), 2.76
(m, 2H, CH3CH2N), 2.36 (s, 3H, aryl-CH3), 2.24 (s, 3H, aryl-CH3), 1.63
(t, JH,H=7.2, 6H, CH3CH2N), 1.48 (d, JP,H=11.7, 18H, (CH3)2CHP);
13C NMR: d=178.82 (dd, JRh,C=37.7, JP,C=10.0, Cipso), 146.55 (dd,
JRh,C=19.1, JP,C=6.7, PhCNRh), 145.86 (s, aryl), 130.81 (s, aryl), 130.55
(s, aryl), 129.57 (s, aryl), 127.95 (s, aryl), 123.81 (s, aryl), 118.99 (s, aryl),
115.12 (s, aryl), 65.12 (s, aryl-CH2N), 54.48 (s, NCH2CH3), 35.76 (dd,
JP,C=26.1, JRh,C=5.6, aryl-CH2P), 35.19 (dd, JP,C=11.7, JRh,C=1.9,
(CH3)2CP), 30.42 (d, JP,C=5.8, (CH3)2CP), 22.18 (s, aryl-CH3), 20.96 (s,
aryl-CH3), 13.46 (s, NCH2CH3)

Scheme 2. Reaction of benzalazine with 5.

Figure 1. Molecular structure of 6. Selected bond lengths [H] and bond
angles [8]: Rh2-C41=1.986(11), Rh2-N4=2.033(9), Rh2-P4=2.197(4),
Rh2-N8=2.196(11), N4-C5=1.159(15); N4-Rh2-C41=174.2(7), P4-
Rh2-N8=163.0(3). CCDC-197955 contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
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100 equivalents of the azine, which indicates that the catalysis
is hampered by the benzonitrile product in both the PCP and
PCN cases; PhCN coordinates to the rhodium centers to form
the complexes 3 and 6, and interferes with the azine activation
process, which causes low TONs. Optimization of the catalysis
is currently being sought in our group. Stoichiometric (not
catalytic) C�H and N�N activation in azines are reported,[7]

but not the combination of both in one system as in the
(PCP)Rh-based one.[15]

Treating complexes 1 or 5 with the ketazine Me(Ph)C¼N�
N¼C(Ph)Me revealed no reactivity even at elevated temper-
atures. Interestingly, when the nonsymmetrical azine
Me(Ph)¼N�N¼C(Ph)H was reacted with complex 1 in
toluene, the same organometallic products as in the benza-
lazine case, complexes 3 and 4, were formed in a 1:1 ratio
within one hour at room temperature together with an
equivalent amount of the ketazine Me(Ph)C¼N�N¼
C(Ph)Me, as observed by NMR spectroscopy and confirmed
by GC-MS (Scheme 4).[16]

Thus, a symmetric ketazine molecule can be formed from
two nonsymmetric aldazine/ketazine molecules. Such a metal-
promoted apparent N�N bond cleavage/coupling sequence is
unprecedented to our knoweledge. Importantly, only the
aldazine “half” gives rise to the imine (and nitrile) complexes.
These observations imply involvement of a C�H activation
and suggest that a complex reaction mechanism, probably
bimolecular, is operative. We believe that the azine splitting
observed in the (PCP)Rh- and (PCN)Rh-based systems does
not proceed through direct metal insertion into the N�N
bond. Further confirmation was obtained from a computa-
tional DFT study of the N�N cleavage step (at the mPW1k[17]/
LANL2DZ+P//mPW1k/LANL2DZ[18] level of theory[19]).
Our model system included a PCP ligand with H-substituted
phosphanyl groups and a formaldazine molecule. (No spin-
state crossing was considered.) The direct N�N bond cleavage
producing the bisimide rhodium complex (Scheme 5) was

found to have a kinetic barrier of 63 kcalmol�1 (and to be
endergonic by 11.6 kcalmol�1), grossly inconsistent with the
experimental observation that the reaction takes place even
at �30 8C. The optimized geometry of the bisimide complex
exhibits a large deviation from planarity in the chelate core,
the two phosphanyl groups acquiring a close to cis config-
uration (P-Rh-P angle is 1088). This is likely to result from the
strong trans effect of the imide ligands, which destabilizes the
complex and causes a high activation barrier as a consequence
of the large change in geometry compared to the azine
complex. Thus, most probably, direct N�N activation is not
operative in our systems—in contrast to the reported
examples.[7–9] Computational investigation of the mechanism
is currently under way.

In conclusion, we have reported a novel type of azine
reactivity, the nonsymmetrical rhodium-mediated N�N bond
cleavage, coupled with C�H activation to form a nitrile and an
imine. The reaction is catalytic, providing the first example of
metal-complex-catalyzed N�N bond cleavage in an azine,
although deactivation by the nitrile product takes place. It
most probably does not proceed through direct N�N bond
cleavage, but through a mechanism involving a C�H activa-
tion step. A metal-promoted N�N bond cleavage/N�N
coupling sequence was also demonstrated that led to a
symmetric ketazine from a mixed aldazine/ketazine molecule.
These reactions provide new insight into metal-promoted
transformations of azines. The synthetic implications of these
findings are being explored.
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