

\$0957-4166(96)00009-2

## A Novel Stereoselective Synthesis of Enantiomerically Pure Antifungal Agent, (+)-Preussin

Hidemi Yoda,<sup>\*</sup> Hiroyasu Yamazaki, and Kunihiko Takabe<sup>\*</sup>

Department of Molecular Science, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

**Abstract:** An efficient and novel process is described for the asymmetric synthesis of (2S, 3S, 5R)-1-methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol, (+)-preussin employing reductive deoxygenation of a functionalized quaternary  $\alpha$ -hydroxy *N*-Boc pyrrolidine obtained by stereocontrolled elaboration of tri-*O*-benzyl- $\beta$ -D-arabino-furanose. The synthetic strategy involves no separation of stereoisomers through the entire sequence.

(+)-Preussin (L-657,398) 1, an antifungal antibiotic first isolated in 1988 from fermentation broths of Aspergillus ochraceus ATCC 22947, has attracted considerable attention since this compound was shown to inhibit growth of the bacteria, *Candida*, and filamentous fungi, including *Trichophyton menta* and *Microsporum canis*.<sup>1</sup> The relative and absolute stereochemistry of 1 was determined from <sup>1</sup>H and <sup>13</sup>C NMR spectra and nuclear Overhauser effect experiments.<sup>1b</sup> Due to its interesting activities as well as unique structural features, to our knowledge, five approaches





to the total synthesis of 1 have been elaborated to date,<sup>2</sup> some of which required multistep reactions or have included a nonstereoselective route with stereoisomer separation.

On the other hand, recently we reported a novel and short synthetic strategy for the preparation of enantiomerically pure (-)-anisomycin<sup>3</sup> employing the *cis*-selective lactam formation protocol.<sup>4</sup> In this connection it is noteworthy that (+)-preussin 1 and its acetate ester show a broader spectrum of antifungal activity against both filamentous fungi and yeasts than the structurally related anisomycin.<sup>1a</sup>

With these considerations in mind, we wish to communicate the details of a novel synthetic process for the preparation of 1 without separation of stereoisomers. This method features the stereocontrolled elaboration of the functionalized N-Boc lactam derivative according to our preceding report<sup>5</sup> in which asymmetric deoxygenation of the quaternary  $\alpha$ -hydroxy compound is an essential step for introducing a stereogenic center.

As shown in Scheme 1, functionalized diastereomerically pure N-p-methoxybenzyl (MPM) lactam 3, obtained from commercially available 2,3,5-tri-O-benzyl- $\beta$ -D-arabinofuranose  $2^{3,4,5}$  in high yield, was treated with CAN followed by the Boc-protection to give N-Boc lactam 4. After removal of the protecting groups from 4 with Pd(black), highly regioselective acylation with PhOCSCI followed by radical deoxygenation with



**Scheme 1.** Reagents and conditions: (a) 1 MPMNH<sub>2</sub>, Benzene, MS 4A, reflux; quant; 2 BnMgCl, -78 °C, THF; 3 PCC, MS 4A, CH<sub>2</sub>Cl<sub>2</sub>; 59% (2 steps); (b) 1 Ce(NH<sub>4</sub>)<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub>, CH<sub>3</sub>CN-H<sub>2</sub>O; 76%; 2 (Boc)<sub>2</sub>O, Et<sub>3</sub>N, DMAP, CH<sub>2</sub>Cl<sub>2</sub>; quant.; (c) 1 Pd(black), HCOOH, MeOH; quant.; 2 PhOCSCl, pyridine, DMAP, CH<sub>3</sub>CN; 3 Bu<sub>3</sub>SnH, AIBN, toluene, 90 °C; 72% (2 steps); (d) TBSCl, imidazole, DMF; 91%; (e) 1 C<sub>9</sub>H<sub>19</sub>MgBr, -78 °C, THF; 2 Et<sub>3</sub>SiH, BF<sub>3</sub>•OEt<sub>2</sub>, -40~-30 °C, CH<sub>2</sub>Cl<sub>2</sub>; 67% (2 steps); (f) 1 Bu<sub>4</sub>NF, THF; 97%; 2 LiAIH<sub>4</sub>, THF, 50 °C; 92%.

Bu<sub>3</sub>SnH<sup>6</sup> resulted in the preparation of 5,  $[\alpha]^{24}_{D} + 25.1$  (c 0.85, CHCl<sub>3</sub>) in high yield. This was then silylated to give 6,  $[\alpha]^{23}_{D} + 37.9$  (c 1.20, CHCl<sub>3</sub>). Nucleophilic addition of nonylmagnesium bromide to the key compound 6 provided the labile quaternary  $\alpha$ -hydroxy *N*-Boc intermediate. This was readily submitted to reductive deoxygenation with Et<sub>3</sub>SiH in the presence of BF<sub>3</sub> • OEt<sub>2</sub>, cleanly leading to the pyrrolidine derivative 7,  $[\alpha]^{25}_{D}$  -46.4 (c 1.50, CHCl<sub>3</sub>) as a single stereoisomer<sup>5</sup> in 67% yield (2 steps) with the desired *R* configuration.<sup>7</sup> Accompanying formation of small amounts of ketone (5%) derived from equilibrium of the quaternary intermediate was observed. Finally, 7 was reduced effectively with LiAlH4 in THF in 92% yield after desilylation to complete the total synthesis of (+)-preussin 1,  $[\alpha]^{24}_{D}$  +28.2 (c 1.00, CHCl<sub>3</sub>) [natural 1,  $[\alpha]^{25}_{D}$  +22.0 (c 1.0, CHCl<sub>3</sub>)<sup>1b</sup>]. The spectral data of the synthetic amorphous solid 1 were completely identical with those of the reported natural<sup>1</sup> and synthetic<sup>2</sup> compound.

This process, in which (+)-preussin is synthesized from 2,3,5-tri-*O*-benzyl- $\beta$ -D-arabinofuranose, involves no separation of stereoisomers throughout the entire sequence and provides a new synthetic strategy.

## References and notes

- (a) Schwartz, R. E.; Liesch, J.; Hensens, O.; Zitano, L.; Honeycutt, S.; Garrity, G.; Fromtling, R. A.; Onishi, J.; Monaghan, R. J. Antibiot. 1988, 41, 1774. (b) Johnson, J. H.; Phillipson, D. W.; Kahle, A. D. J. Antibiot. 1989, 42, 1184.
- D. J. Antibiot. 1989, 42, 1184.
  (a) Pak, C. S.; Lee, G. H. J. Org. Chem. 1991, 56, 1128. (b) Shimazaki, M.; Okazaki, F.; Nakajima, F. Ishikawa, T.; Ohta, A. Heterocycles 1993, 36, 1823. (c) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485. (d) Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721. (e) Deng, W.; Overman, L. E. J. Am. Chem. Soc. 1994, 116, 11241.
- 3. Yoda, H.; Nakajima, T.; Yamazaki, H.; Takabe, K. Heterocycles 1995, 41, 2423.
- 4. (a) Lay, L.; Nicotra, F.; Paganini, A.; Pangrazio, C.; Panza, L. Tetrahedron Lett. 1993, 34, 4555. (b) Hashimoto, M.; Terashima, S. Chem. Lett. 1994, 1001.
- 5. Yoda, H.; Yamazaki, H.; Kawauchi, M.; Takabe, K. Tetrahedron: Asymmetry in press.
- 6. Sharma, R.; Marquez, V. E. Synth. Commun. 1994, 24, 1937.
- 7 The absolute configuration of the generated stereogenic center was determined based on its spectral data of synthetic (+)-1.

(Received in Japan 20 November 1995)