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The first enantioselective dearomative [3+2] annulation of 5-
amino-isoxazoles with quinone monoimines was realized using 
a chiral phosphoric acid as catalyst. Various novel (bridged) 

10 isoxazoline fused dihydrobenzofurans bearing two continuous 
quaternary stereocenters were achieved in moderate to good 
yields (up to 94 %) with moderate to good enantioselectivities 
(up to 98 % ee). The absolute configurations of two products 
were assigned by X-ray crystal structural analyses and a 

15 plausible reaction mechanism was proposed.

Introduction
Isoxazolines are important building blocks of a large number of 
biologically active compounds.1 Isoxazolines are also versatile 
intermediates for the synthesis of important organic molecules.2 

20 Consequently, many efficient strategies have been developed to 
construct structurally diverse isoxazolines.3,4 However, catalytic 
asymmetric synthesis of enantioenriched isoxazolines has been 
rarely reported.4a-4f

2,3-Dihydrobenzofurans are important building blocks found in 
25 a wide range of natural products and pharmaceutical substances.5 

Therefore, the construction of 2,3-dihydrobenzofurans is of great 
interest to the researchers.6

Asymmetric dearomative reactions7 are efficient strategy to 
construct chiral heterocyclic compounds. In the last decade, many 

30 types of aromatic compounds have been employed in asymmetric 
dearomative reactions. However, dearomative reactions of 
isoxazoles have been rarely researched. Very recently, Qi and co-
workers reported a three-component tandem reaction involving 
dearomative Michael addition of 5-amino-pyrazoles or 5-amino-

35 isoxazole with nitroolephins followed by cyclization with cyclic 
ketones to provide a series of spiral fused polycyclic compounds 
with moderate to good yields in good diastereoselectivities.8

In recent years, great progress has been made in catalytic 
asymmetric reactions of quinone derivatives for the construction 

40 of novel chiral heterocyclic compounds.6c,6e,6f,6h,6j,6m,6n,9,10 Our 
group has also been engaged in development of new asymmetric 
transformations of quinone derivatives.6m,6n,10d In continuation of 
our research on asymmetric reaction of quinone derivatives, herein 
we reported the first highly enantioselective dearomative [3+2] 

45 annulation of 5-amino-isoxazoles with quinone monoimines 
promoted by chiral phosphoric acids. In the presence of a chiral 
phosphoric acid, the reactions proceeded efficiently to provide 

various (bridged) isoxazoline fused dihydrobenzofurans with 
moderate to good yields in moderate to good enantioselectivities. 

50 Results and Discussion
First, various chiral phosphoric acids were evaluated in the 

dearomative [3+2] coupling of 3,4-dimethylisoxazol-5-amine 1a 
with 4-methyl-N-(4-oxocyclohexa-2,5-dienylidene)benzene- 
sulfonamide 2a in dichloromethane at 0 oC. As can be seen in Table 

55 1, all of the chiral phosphoric acids promoted the reaction smoothly 
to provide isoxazoline fused dihydrobenzofuran 3a in moderate 
yields (Table 1, entries 1-6) and PA3 which bears a 2-naphthyl 
group in the 3,3’ position of BINOL, gave the product 3a in 
quantitative yield with the highest ee value of 79% (Table 1, entry 

60 3). Thus PA3 was determined as the optimal catalyst and used in 
the following investigations. 

Table 1 Evaluation of the chiral phosphoric acids and optimization of the 
conditions.a

65

NTs

O N O

O

NH2

TsHN

PA

Solvent

1a

2a 3a

N
O

NH2

O

O
P

O

OH

R1

R1

PA1: R1 = 9-anthryl
PA2: R1 = 2,4,6-iPr3C6H2
PA3: R1 = 2-naphthyl

O

O
P

O

OH

R2

R2
Ph

Ph

O

O
P

O

OH

PA6

PA4: R2 = 9-anthryl

PA5: R2 =

Entry PA (mol%) Solvent T (℃) t (h) Yield 
(%)b

ee (%)c

1 PA 1 (10) CH2Cl2 0 0.3 94 59
2 PA 2 (10) CH2Cl2 0 0.3 95 41
3 PA 3 (10) CH2Cl2 0 4 99 79
4 PA 4 (10) CH2Cl2 0 0.3 99 9
5 PA 5 (10) CH2Cl2 0 4 85 13
6 PA 6 (10) CH2Cl2 0 4 67 8
7 PA 3 (10) DCE 0 10 99 79
8 PA 3 (10) CHCl3 0 10 96 75
9 PA 3 (10) toluene 0 20 86 58
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10 PA 3 (10) CH3CN 0 5 89 77
11 PA 3 (10) Et2O 0 45 73 79
12 PA 3 (10) MTBE 0 36 92 89
13 PA 3 (10) THF 0 10 83 92
14 PA 3 (10) DME 0 12 87 94
15 PA 3 (10) DME -10 12 89 93
16 PA 3 (5) DME 0 12 81 92

a Unless otherwise specified, the reaction was carried out with 0.10 mmol 
of 1a, 0.12 mmol of 2a, and 0.01 mmol of the chiral phosphoric acid in 1 
mL of solvent. b Isolated yield based on 1a. c Enantiomeric excess was 
determined by HPLC analysis on a chiral stationary phase. Ts = 4-

5 toluenesulfonyl.

Afterwards various solvents were screened in the reaction. 
Reactions in 1,2-dichloroethane, chloroform, acetonitrile and ether 
gave similar enantioselectivities to dichloromethane (Table 1, 
entries 7,8,10 and 11). Toluene delivered much lower 

10 enantioselection (Table 1, entry 9). To our delight, reaction in some 
ethereal solvents provided the product with obviously higher 
enantioselectivities (Table 1, entries 12-14), in which 
dimethoxyethane afforded the best result (Table 1, entry 14). 
Therefore dimethoxyethane was determined as the optimal solvent 

15 and used in the following investigations. When the reaction was 
performed at lower temperature (-10 oC), no better resukt was 
obtained (Table 1, entry 15). Furthermore, we also tried to lower 
the catalyst loading to 5 mol%, but both the yield and the 
enantioselectivity decreased (Table 1, entry 16).

20 With the optimized reaction conditions in hand, the scope of the 
reaction was investigated. The results were summarized in Table 
2. 

Table 2 Substrate scope of the enantioselective dearomative [3+2] 
25 annulation of 5-amino-isoxazoles 1 with quinone monoimines 2.a

N O

R1

O

R2

NH2

R4HN

N

+

PA3

2 3

O

R4

(10 mol%)

DME, 0 oC

1

N
O

R2
R1

NH2

R3

R3

Entry 3 t Yield 
(%)b

ee 
(%)c,d

1 3aa: R1 = Me 12 h 87 94
2 3ba: R1= t-Bu 12 h 63 87
3 3ca: R1= Ph 12 h 79 94
4 3da: R1 = 4-FC6H4 60 h 73 94
5 3ea: R1 = 4-ClC6H4 40 h 64 93
6 3fa: R1 = 4-BrC6H4 48 h 82 94
7 3ga: R1= 4-MeOC6H4 7 d 58 93
8 3ha: R1= 3-ClC6H4 40 h 79 94
9 3ia: R1 = 2-thienyl 7 d 55 93
10

N O

R1

O

NH2

TsHN

3ja: R1 = 2-furanyl 48 h 60 94
11 3ka: R2 = allyl 4 d 75 81
12 3la: R2 = Bn 4 d 49 85
13 3ma: R2 = 4-FC6H4CH2 4 d 36 81
14 3na: R2 = 4-ClC6H4CH2 48 h 60 94
15

N O

O

R2

NH2

TsHN

3oa: R2 = Ph 48 h NR -

16 3ab: R3 = Me 16 h 94 92
17 3ac: R3 = Br 16 h 90 91
18

N O

O

NH2

TsHN

R3
3ad: R3 = OMe 16 h 35 85

19 3ae: R4 = Ns 12 h 68 86
20 3af: R4 = 4- 12 h 90 91

N O

O

NH2

R4HN MeOC6H4SO2

a Unless otherwise specified, the reaction was carried out with 0.10 mmol 
of 1, 0.12 mmol of 2, and 0.01 mmol of the chiral phosphoric acid PA3 in 
1 mL of 1,2-dimethoxyethane at 0 ℃ b Isolated yield based on 1. c 

30 Enantiomeric excess was determined by HPLC analysis on a chiral 
stationary phase. d The absolute configuration of 3fa was determined by an 
X-ray crystal structural analysis and the other products were assigned 
absolute configurations by analogy. Ts = 4-toluenesulfonyl, Ns = 4-
nitrobenzenesulfonyl.

35 Generally, 5-amino-4-methylisoxazoles with different 
substituents on 3-position were tolerable in the reaction with 
quinone monoimine 2a to afford the corresponding isoxazoline 
fused dihydrobenzofurans (Table 2, entries 1-10) in moderate to 
good yields with high ee values. However, lower 

40 enantioselectivities were observed with some 5-amino-3-methyl-
isoxazoles with different substituents on 4-position (Table 2, 
entries 11-13), whereas 4-(4-chlorobenzyl)-3-methylisoxazol-5-
amine 1n exhibited good enantioselectivity in reaction with 2a 
(Table 2, entry 14). When 3-methyl-4-phenylisoxazol-5-amine 1o 

45 was subjected in reaction with 2a, no reaction was observed (Table 
2, entry 15). Furthermore, various quinone monoimines with 
different substituents on 3-position and quinone monoimines with 
different N-substituents were also tested in reaction with 3,4-
dimethyl-isoxazol-5-amine 1a. Generally the corresponding 

50 products were obtained with good ee values (Table 2, entries 16-
20), although lower yields were observed with 3ad and 3ae (Table 
2, entries 18 and 19). We also tried to use N-Boc-isoxazol-5-amine 
in this reaction. However, no reaction was observed, perhaps due 
to the decrease of electron density of the isoxazole ring.

55 Bridged polycyclic frameworks widely exist in natural products 
and pharmaceuticals. Construction of bridged polycyclic 
compounds has always been an attractive and challenging task for 
chemists.11 Herein we presented the enantioselective synthesis of 
novel bridged isoxazoline fused dihydrobenzofurans 3pa-3xa via 

60 tandem dearomative [3+2] annulation-cyclization of some ethyl 4-
acetate-isoxazol-5-amines with quinone imine 2a. 

N O

R1

O

N
H

TsHN

N

+

PA3

2a 3
O

(10 mol%)

DME, 0oC

1

N
O

R1

NH2

CO2Et
O

Ts

N O

Ph

O

N
H

TsHN

O

3pa
3d, 84% yield

90% ee

N O
O

N
H

TsHN

O

4.5d, 63% yield
96% ee

F

N O
O

N
H

TsHN

O

3qa

7d, 52% yield
97% ee

Cl

3ra
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N O
O

N
H

TsHN

O

7d, 55% yield
98% ee

Br

N O
O

N
H

TsHN

O

3sa
60h, 59% yield

94% ee

MeO

N O
O

N
H

TsHN

O

3ta

6d, 76% yield
98% ee

Cl

3ua

3xa

N O
O

N
H

TsHN

O

4.5d, 73% yield
95% ee

N O
O

N
H

TsHN

O

3va
7d, 67% yield

92% ee

N O
O

N
H

TsHN

O

3wa
36h, 68% yield

89% ee

S O

Scheme 1 Construction of bridged isoxazoline fused 
dihydrobenzofurans. Reaction conditions: Unless otherwise 

5 specified, the reactions were carried out with 0.10 mmol of 1, 0.12 
mmol of 2a, and 0.01 mmol of PA3 in 1 mL of 1,2-
dimethoxyethane at 0 oC. Yields shown are of the isolated products 
and based on 1. Enantiomeric excesses were determined by HPLC 
analysis on a chiral stationary phase. The absolute configuration of 

10 3xa was determined by an X-ray crystal structural analysis and the 
other products were assigned absolute configurations by analogy.

As can be seen in Scheme 1, under the optimized conditions, the 
reactions proceeded for prolonged time to provide the bridged 
products in moderate yields with good enantioselectivities. The 

15 electron nature of 3-substituent has little effect on the result. Thus 
a facile strategy has been established to construct such kind of 
bridged polycyclic compounds with good enantioselection.

The absolute configurations of 3fa and 3xa were determined as 
(3aR,8aS) by X-ray crystal structural analyses12 (Figure 1). 

20 Consequently, the other products can be assigned absolute 
configurations by analogy.

N O

O

NH2

TsHN

(3aR,8aR)-3fa

Br

N O
O

N
H

TsHN

O

(3aR,8aR)-3xa

Figure 1. X-ray crystal structures of (3aR,8aR)-3fa and (3aR,8aR)-3xa.

25 Based on the absolute configuration of product 3fa, a plausible 

reaction mechanism was proposed. As outlined in Scheme 2, first, 
bifunctional phophoric acid activated both isoxazole 1f and 
quinone monoimine 2a. Isoxazole 1f attacked quinone monoimine 
2a to give the intermediate (4R)-A which underwent aromatization 

30 immediately to give phenol intermediate (4R)-B. Finally, 
intramolecular acetalization generated isooxazoline fused 
dihydrobenzofuran (3aR,8aR)-3fa.

N O

O

NH2

TsHN

(3aR,8aR)-3fa

Br

O

OPO

O

Ar

Ar

N S

O

O

O

HN

O

Ts

(4R)-A

N
O NH

Br

H

N
O NH

Br

HN

OH

Ts

(4R)-B

N
O NH

Br

aromitization

1,4-addition

acetalization

H

Scheme 2. Plausible reaction mechanism.

35 Conclusions
In conclusion, we have developed an enantioselective 

dearomative [3+2] annulation of 5-amino-isoxazoles with quinone 
monoimines promoted by a chiral phosphoric acid. Through this 
transformation, various isoxazoline fused dihydrobenzofurans 

40 were approached with moderate to good yields in moderate to good 
enantioselectivities. Moreover, via tandem dearomative [3+2] 
annulation-cyclization, some bridged isoxazoline fused 
dihydrobenzofurans were also prepared with moderate yields in 
good enantioselectivities. The absolute configurations of a fused 

45 product and a bridged product were determined by X-ray crystal 
structural analyses. Accordingly, a plausible reaction mechanism 
was proposed.
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