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Abstract. Bromotrinitrosyl iron was prepared by passing a stream
of nitrogen monoxide over a mixture of iron dibromide and iron
powder at elevated temperatures. It readily loses NO to give
[(ON)2Fe(µ-Br)Fe(CO)2]. The structure of freshly obtained
[Fe(NO)3Br] was determined by X-ray diffraction at 200 K and
shows (distorted) tetrahedral coordination with N�Fe�N and
N�Fe�Br angles of 107.9(2)° and 111.0(2)° and bent Fe�N�O

Introduction

Recently, the interesting history and development of the
chemistry of nitrosyl iron halides was reviewed [1] and the
structures of the trinitrosyl iron complexes [Fe(NO)3Cl] [2]
and [Fe(NO)3I] [1] were determined by X-ray diffraction.
In the following we report on the formation and structural
characterization of [Fe(NO)3Br]. DFT theoretical studies
were carried out in order to compare the structural para-
meters in the series [Fe(NO)3X] (X � Cl, Br, I). The first
evidence for the existence of the unstable trinitrosyl iron
bromide was observed by Fischer [3] by passing nitrogen
monoxide over solid, anhydrous FeBr2 and the product con-
tained clearly more than 2 mol NO per mol Fe. The com-
plex [Fe(NO)3Br] was isolated from the reaction of
[Fe(CO)4Br2] and NO as black fine needles, which sublime
in an NO stream and easily lose nitrogen monoxide [4].
Similarly, the iodo and chloro complexes are formed from
tetracarbonyldihalo iron [Fe(CO)4X2], and NO ([4] and ex-
perimental part). In this work we used a mixture of an-
hydrous FeBr2 and Fe powder as starting materials for the
reaction with NO. Firstly, Nast [5] succeeded in isolating
chlorotrinitrosyl iron, [Fe(NO)3Cl], by passing NO over a
mixture of anhydrous FeCl2 and Fe powder at elevated tem-
peratures.
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groups (162.5(6)°). The DFT calculations in the series [Fe(NO)3X]
(X � Cl, Br, I) reproduce well the experimental structural para-
meters and vibrational frequencies.
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The halo bridged dimers, [(ON)2Fe(µ-X)2Fe(NO)2] (X �
Cl, I) with an Fe�Fe bond which often has been used for
various reactions and as catalysts (see ref. [1]) have been
prepared in good yields from FeX2/Fe and NO and sub-
sequent sublimation in vacuo [6�8].

Results and Discussion

The title complex was obtained by leading a stream of puri-
fied nitrogen monoxide over a mixture of anhydrous iron
dibromide and iron powder at �150 °C. Fine black needles
sublimed in a slow NO stream and were immediately used
for X-ray structural determination and for IR spectra.

Figure 1 Molecular structure of [Fe(NO)3Br] in the crystal



W. Beck, Th. M. Klapötke, P. Mayer

FeBr2 � Fe � 6 NO � 2[Fe(NO)3Br]

2[Fe(NO)3Br] � [(ON)2Fe(µ-Br)2Fe(NO)2] � 2 NO

The IR spectra (CH2Cl2 solution) clearly showed the two
ν̃NO absorptions of [Fe(NO)3Br] at 1899 cm�1 (A1) and at
1794 cm�1 (E). The ratio of the intensities of the two NO
absorptions (1/7.9) is typical for a tetrahedral M(NO)3

group [9] and an angle between the NO groups of 109 °C
can be calculated from this ratio (assuming linear Fe�N�O
groups [10]. Besides the ν̃NO absorptions of [Fe(NO)3Br]
two additional NO absorptions at 1817 and 1766 cm�1 ap-
peared which can be attributed to the dimer [(ON)2Fe-
(µ-Br)2 Fe(NO)2] [11] which is easily formed by the loss of
NO from [Fe(NO)3Br] as was also observed by
Kramolowsky [12] in the reaction of [Fe(NO)3Br] witch
PPh3 which gives the dinitrosyl complex [Fe(NO)2-
(PPh3)Br], OPPh3 and N2O. Solid [Fe(NO)3Br] can only be
stored without decomposition for some days under an at-
mosphere of NO.
The title complex crystallizes in the same trigonal space
group P63mc (Table 2) as do [Fe(NO)3Cl] [2] and
[Fe(NO)3I] [1]. The crystallographically imposed 3-fold axis
makes all three Fe�N�O groups equivalent. The cell vol-
ume and the structural parameters of [Fe(NO)3Br] lie be-
tween those of [Fe(NO)3X] (X � Cl, I) (Table 1). The
[Fe(NO)3X] molecules (X � Cl, Br, I) show (distorted)

Table 1 Bond lengths /Å and angles /° and cell volumes /Å3 of
[Fe(NO)3X]

X N-O Fe-N Fe-X Fe-N-O N-Fe-N N-Fe-X O···Fe···O V

Cl 1.152(5) 1.702(4) 2.252(2) 161.5(4) 106.5(2) 112.3(2) � 268.9(1)
Br 1.154(7) 1.705(5) 2.388(2) 162.5(6) 107.9(2) 111.0(2) 99.6(2) 288.20(3)
I 1.145(6) 1.706(4) 2.588(2) 165.5(6) 110.3(2) 108.6(2) 104.6 (1) 317.66(5)

Table 2 Crystallographic Data of [Fe(NO)3Br]

formula BrFeN3O3

formula weight 225.77
temperature / K 200(2)
crystal system hexagonal
space group P63mc
a /Å 7.2950(4)
b /Å 7.2950(4)
c /Å 6.2533(3)
volume /Å3 288.20(3)
z 2
absorption coefficient/min�1 9.470
density calc./Mg/m3 2.602
F(000) 212
range (theta)/° 3.22 � 27.43
index ranges � 8 � h � 9, �9 � k � k, �7 � l � 7
reflections collected 3097
reflections unique 265 [R(intl � 0.0927]
data / restraints / parameters 265/1/20
GOOF 1.102
R1 (all data) 0.0319
wR2 (all data) 0.0720
R1 [I > 2 σ (I)] 0.0280
wR2 (I > 2 σ (I)] 0.0699
absolute structure parameter 0.51(3)(racemic twin refinement)
largest diff. peak and hole / e·Å�3 0.539 and �0.307
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tetrahedral coordination (Fig.1). In the series Cl � Br � I,
with increasing Fe�X bond lengths the Fe�N�O and
N�Fe�N angles become larger and the N�Fe�X angles
become smaller. The environment at the Fe atom in the
iodo complex is closer to tetrahedral geometry. The bending
of the Fe�N�O groups (Table 1) which were also found
in [(ON)2Fe(µ-I)2Fe(NO)2] [6] was verified by theoretical
considerations [2, 13, 14].
Summerville and Hoffmann [13] noticed for nitrosyl com-
plexes a correlation between N�M�N angles and
M�N�O bending which is also observed in the
[Fe(NO)3X] series. With decreasing N�Fe�N angles an in-
crease of Fe�N�O bending is found (Table 1). For a large
series of dinitrosyl complexes a distinct linear correlation
between the non bonding O···M···O angles and the
N�M�N bond angles has been demonstrated [14] and this
trend is observed also for [Fe(NO)3X] (X � Br, I) (Table 1).
DFT calculations by Legzdins et al. [2] on [(ON)3FeFBF3] con-
firm, that bent Fe�N�O links have an electronic origin
and can be explained by MO theory.

DFT Calculations on [Fe(NO)3X] (X � Cl, Br, I)

The DFT calculations carried out in this work showed very
good agreement with the experimental structural data, es-
pecially for the Fe�X bond length (Table 3). Moreover, the
trends in the series Cl � Br � I are well reproduced for

Table 3 Experimental and computational data for [Fe(NO)3X]

Cl Br I
p.g. C3ν C3ν C3ν

d(Fe-X) / Å 2.252(2) 2.388(2) 2.588(2)
exptl.
B3LYP/ECP a 2.256 2.4047 2.615

d(Fe-N) / Å
exptl. 1.702(4) 1.705(5) 1.706(4)
B3LYP/ECP a 1.661 1.659 1.657

d(N-O) / Å
exptl. 1.152(5) 1.154(7) 1.145(6)
B3LYP/ECP a 1.143 1.143 1.143

<(Fe-N-O) /°
exptl. 161.5(4) 162.5(6) 166.5(6)
B3LYP/ECP a 167.6 170.4 174.5

<(N-Fe-N) /°
exptl. 106.5(2) 107.9(2) 110.3(2)
B3LYP/ECP a 111.1 112.7 115.0

<(N-Fe-X) /°
exptl. 112.3(2) 111.0(2) 108.6(2)
B3LYP/ECP a 107.8 106.0 103.1

ν(N-O), E / cm1

1789 1794 1798
1893 (3030) 1899 (3100) 1901(3140)

ν (N-O), Al / cm1

1898 1899 1895
1993 (398) 1993 (412) 1991 (475)

zpe / kcal mol�1 15.8 15.8 15.9

-EB3LYP / a.u. 974.096588 527.261044 525.300853
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the Fe�N bond length and also for the Fe�N�O,
N�Fe�N and N�Fe�X bond angles. The calculated ν̃NO
wavenumbers are by �100 cm�1 higher than the experimen-
tal values and agree well if a linear scaling factor of 0.95
is applied.

Experimental Section

[Fe(NO)3Br] from FeBr2/Fe and NO [Fe(NO)3Br] was synthesized
using the apparatus described earlier [5, 15]. A slow stream of puri-
fied (using 50 % KOH solution and solid NaOH) nitrogen monox-
ide (Aldrich) was passed through a glass tube over a ceramic con-
tainer with a mixture of � 2g anhydrous, sublimed FeBr2 and
excess Fe powder (Aldrich). The electric oven was heated to
�150 °C and then allowed to cool down to �100 °C within 3 h.
Black fine needles sublimed to the colder part of the tube which
were collected under NO atmosphere and immediately used for
X-ray structure determination and IR spectra.
IR spectra (Perkin Elmer Spectrum One, CH2Cl2): νNO � 1794 vs,
1899 w ([Fe(NO)3Br]); 1766 w, 1817 w ([Fe2(NO)4Br2]); 1735 w-m,
cm�1 (decomposition product?).

[Fe(NO)3Br] from [Fe(CO)4Br2] and NO (see [4])

A slow stream of purified NO (from NaNO2 and 50 % H2SO4 in a
Kipp apparatus was passed over a vessel with a mixture of �1 g
[Fe(CO)4Br2] [16] and excess iron powder (from Fe(CO)5) in a glass
tube which was heated to 60 °C. NO is consumed. If the heating is
made to quickly, sudden reaction with glowing of the solid may
occur. When the consumption of NO is finished the temperature is
raised to 115 °C. After 6 h bright, 1�2 cm long, black needles were
sublimed to the colder part of the tube in a slow stream of NO.
[Fe(NO)3Br] (225.79) Calc.
Fe 24.74, Br 35.40, Found Fe 25.2, Br 35.6 %.

[Fe(NO)3Cl] from [Fe(CO)4Cl2] and NO

As described above for [Fe(CO)4Br2]/Fe a mixture of [Fe(CO)4Cl2]
and Fe powder treated with NO affords the complex [Fe(NO)3Cl]
in an exothermic reaction.
[Fe(NO)3Cl] (181.32) Calc.19.56, Found Cl 19.73 %.

X-ray Structure Determination of [Fe(NO)3Br]

The data in table 2 were collected on a NONIUS KAPPA CCD
with a rotating anode using Mo-Kα radiation. The structure was
solved with direct methods by applying the program SIR 97 [17];
for the refinement the program SHELX 97 was used.

Further details on the crystal structure investigation may be ob-
tained from the Fachinformationszentrum Karslruhe, 76344
Eggenstein-Leopoldshafen, Germany (fax: (�49) 7247-808-606;
e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository num-
ber CSD 416028

Methods

All calculations were carried out using the Gaussian G03W (re-
vision B.03) program package [18]. The structures and analytical
frequencies were computed at the hybrid density functional (DFT)
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B3LYP level of theory, using Becke’s three parameter functional
where the local and non-local correlation is provided by the LYP
(the correlation functional of Lee, Yang, Parr) expression [19�21].
For N, O and Cl a polarized valence triple-zeta basis set of the type
6-311G(2df) was used.

For iron, bromine and iodine energy-consistent pseudopotentials
were used [22]. The energy-consistent pseudopotentials of the
Stuttgart/Cologne group are semi-local pseudopotentials adjusted
to reproduce atomic valence-energy spectra. The adjustment of the
pseudopotential parameters has been done in fully numerical calcu-
lations, valence basis sets have been generated a-posteriori via en-
ergy optimization. In this study we used quasirelativistic multielec-
tron-fit Wood-Boring (MWB) pseudopotentials for bromine
(ECP28MWB) [23] and iodine (ECP46MWB) [23] and a relativistic
multielectron-fit Dirac-Fock (MDF) potential for iron
(ECP10MDF) [24].

The bromine (7), iodine (7) and iron (16) valence electrons were
treated with valence basis sets of the following contraction: Br,
(14s10p2d1f)/[3s3p2d1f]; [25]; I,(14s10p3d1f)/[3s3p2d1f] [8]; Fe,
(8s7p6d1f)/[6s5p3d1f] [24].
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