

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 1993–1996

2-Piperazinecarboxamides as potent and selective melanocortin subtype-4 receptor agonists

Brenda L. Palucki,^{a,*} Min K. Park,^{a,*} Ravi P. Nargund,^a Rui Tang,^b Tanya MacNeil,^b David H. Weinberg,^b Aurawan Vongs,^b Charles I. Rosenblum,^b George A. Doss,^c Randall R. Miller,^c Ralph A. Stearns,^c Qianping Peng,^c Constantin Tamvakopoulos,^c Lex H. T. Van der Ploeg^b and Arthur A. Patchett^a

> ^aDepartment of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065-0900, USA ^bDepartment of Obesity Research, Merck Research Laboratories, Rahway, NJ 07065-0900, USA ^cDepartment of Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900, USA

> > Received 26 January 2005; revised 18 February 2005; accepted 22 February 2005

Abstract—We report the discovery and optimization of substituted 2-piperazinecarboxamides as potent and selective agonists of the melanocortin subtype-4 receptor. The 5- and 6-alkylated piperazine compounds exhibit low bioactivation potential as measured by covalent binding in microsome preparations. © 2005 Elsevier Ltd. All rights reserved.

The five cloned melanocortin receptor subtypes (MC1R–MC5R) are a part of a family of seven-transmembrane G-protein-coupled receptors. These receptors, which are located peripherally and centrally, interact with their endogenous ligands, the melanocortins and corticotropins, to regulate a diverse number of physiological functions, including the control of feeding and sexual behavior, as well as skin pigmentation, steroidogenesis, energy metabolism, and exocrine secretion.¹ Over the past few years, research efforts in drug discovery groups are focusing on identifying novel MC4R agonists for the potential treatment of obesity and sexual dysfunction.²

Recent efforts at Merck have led to the identification of **MB243**, a potent and selective, small-molecule agonist of the MC4R. Indeed, **MB243** was shown to stimulate erectile activity as well as reduce food intake in rats.³ Nonetheless, further development of this compound was discontinued due to the potential for bioactivation as seen in vitro through extensive covalent binding in rat and human liver microsomes.⁴ NMR analysis of the isolated adducts suggested that bioactivation was

occurring via initial oxidation at C-5 on the piperazine ring. Consequently, we speculated that blocking the site of activation via alkylation on the piperazine ring should reduce bioactivation. Herein, we report the synthesis and evaluation of alkyl-substituted 2-piperazinecarboxamides, which are potent and selective MC4R agonists with significantly reduced bioactivation.

The 5-alkylated piperazine compounds were prepared in a linear fashion as illustrated in Scheme 1. Starting with commercially available methyl N- β -Boc-L- α , β -diamino-propionate hydrochloride, **2**, conversion to diamine **3** was achieved via alkylation with various substituted α -bromoketones.⁵ Removal of the Boc group followed by intramolecular reductive amination provided

Keywords: Melanocortin; Piperazinecarboxamide.

^{*} Corresponding authors. Tel.: +1 732 594 6188; fax: +1 732 594 5966; e-mail: brenda_palucki@merck.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.02.068

Scheme 1. Reagents and conditions: (a) α -bromoketone, DIEA, DMF (12–60%); (b) TFA, CH₂Cl₂, then, Na(OAc)₃BH, AcOH, DCE; (c) (Boc)₂O, TEA, CH₂Cl₂ (45–74% for two steps); (d) NaOH, MeOH, H₂O (88–100%); (e) **6**, EDC, HOBt, DIEA, CH₂Cl₂ (46–93%); (f) TFA, CH₂Cl₂ (98–100%); (g) preparative HPLC.

piperazine 4. Protection of both secondary amines of the piperazine ring followed by hydrolysis of the ester yielded the 5-alkylated-2-piperazinecarboxylic acids, 5. Coupling of piperazine 5 with 1-[(2R)-2-amino-3-(4-fluorophenyl)-1-oxopropyl]-4-cyclohexyl-N-(1,1-dimethyl-ethyl)-4-piperidine carboxamide (6)⁶ and deprotection provided dipeptide 7 as a 2:1–10:1 mixture of *trans:cis* diastereomers. The diastereomers were separated using preparative reverse-phase HPLC to give the *trans*-piperazines 8–13, and *cis*-piperazines 14–18, as either the ditrifluoroacetic acid or dihydrochloride salts.⁷ Piperazine 19 contains a spirocyclopropyl group at C-5, and consequently, preparative HPLC separation was not necessary.

Scheme 2 illustrates the synthesis of compounds 24 and 25. Starting with diamine 4, benzyl protection of the α -amine, Boc-deprotection, and intramolecular reductive amination provided piperazine 21. Reductive amination of the piperazine amine with formaldehyde followed by hydrogenation yielded the methylated piperazine 22. Final Boc-protection and hydrolysis provided piperazine acid 23. Coupling of piperazine acid 23 with amine 6,⁶ deprotection, and separation via preparative reverse-phase HPLC provided the *trans*-piperazine 24 and *cis*-piperazine 25.

In an effort to further understand bioactivation of 2-piperazinecarboxamides, we also synthesized and examined

Scheme 2. Reagents and conditions: (a) PhCHO, Na(OAc)₃BH, DCE (100%); (b) TFA, CH₂Cl₂, then, Na(OAc)₃BH, AcOH, DCE (72%); (c) HCHO, NaCNBH₃, NaOAc, TFA, MeOH (71%); (d) H₂, Pd/C, HCl, EtOH (55%); (e) (Boc)₂O, TEA, CH₂Cl₂ (83%); (f) NaOH, MeOH, H₂O (100%); (g) **6**, EDC, HOBt, DIEA, CH₂Cl₂ (84%); (h) TFA, CH₂Cl₂ (98%); (i) preparative HPLC.

a 6-alkylated-2-piperazincarboxamide. The synthesis of piperazine **30**, is depicted in Scheme 3. The commercially available N- α -Z-L-2,3-diaminopropionic acid, **26**, was converted to the methyl ester and then alkylated with α -bromo-3-methyl-2-butanone⁵ to give **27**. Deprotection via hydrogenation and concomitant intramolecular reductive amination provided piperazine ester **28**. Protection of both secondary amines of the piperazine ring and hydrolysis yielded acid **29**. Coupling, deprotection, and separation via preparative reverse-phase HPLC afforded piperazine **30** as a single diastereomer.⁸

The piperazine compounds (8–19, 24–35, 30) were evaluated in a competitive binding assay (Table 1) and

Scheme 3. Reagents and conditions: (a) TMSCl, MeOH (98%); (b) αbromo-3-methyl-2-butanone, DIEA, DMF (49%); (c) H₂, Pd/C, EtOH (93%); (d) (Boc)₂O, TEA, CH₂Cl₂ (62%); (e) NaOH, MeOH, H₂O (53%); (f) **6**, EDC, HOBt, DIEA, CH₂Cl₂ (48%); (g) TFA, CH₂Cl₂ (97%); (h) preparative HPLC.

 Table 1. Binding affinity and selectivity of compounds for the human melanocortin subtype-4 receptor^a

Compds	IC ₅₀ ^b (nM)		
	MC4R	MC3R/4R	MC5R/4R
α-MSH	19 ± 2	1	6
8	6 ± 1	86	87
9	$3 \pm 2^{\circ}$	152	126
10	4 ± 1	140	116
11	$8 \pm 1^{\circ}$	119	59
12	5 ± 1	116	39
13	5 ± 1	99	40
14	40 ± 5	59	75
15	20 ± 6	61	49
16	25 ± 10	42	65
17	29 ± 9	48	26
18	24 ± 5	49	23
19	17 ± 3	42	61
24	$3 \pm 1^{\circ}$	116	192
25	46 ± 5	36	49
30	11 ± 1^{c}	81	105

^a Values represent mean ± standard error except where indicated. All data represent at least three determinations except for where indicated.

^b Displacement of [125 I]-NDP- α -MSH from human receptors expressed in CHO cells.

^c Values (n = 2) represent mean \pm standard deviation.

functional assay (Table 2).⁹ The *trans*-piperazine compounds (8–13, 24, 30) are the best compounds in terms of overall binding affinity, functional potency, and receptor subtype selectivity. In addition, *N*-methylation on the piperazine ring, does not affect potency or selectivity (24 vs 9). The spirocyclopropylpiperazine compound, 19, shows a 5-fold loss in functional potency in comparison to the *trans*-methyl analog, 8, with reduced

 Table 2. Functional activity of compounds at human melanocortin receptors

Compds	EC ₅₀ ^a (nM) [% max] ^b		
	MC4R ^c	MC3R ^d	MC5R ^c
α-MSH	1.9 ± 0.1 [100]	$1.1 \pm 0.1 [102]^{c}$	17 ± 1 [113]
8	8 ± 2 [79]	[6 ± 3]	880 ± 100 [42]
9	5 ± 1 [89]	[9 ± 4]	710 ± 270 [43]
10	3 ± 1 [82]	[8 ± 2]	340 ± 29 [49]
11	5 ± 1 [102]	[9 ± 4]	760 ± 200 [44]
12	7 ± 2 [99]	[11 ± 3]	360 ± 58 [46]
13	7 ± 2 [95]	$[10 \pm 3]$	300 ± 48 [62]
14	150 ± 73 [69]	$[6 \pm 2]$	$[45 \pm 4]^{d}$
15	42 ± 10 [77]	[6 ± 2]	1400 ± 210 [41]
16	36 ± 10 [67]	[4 ± 3]	1400 ± 280 [33]
17	91 ± 25 [77]	[5 ± 3]	1000 ± 170 [54]
18	93 ± 23 [69]	[5 ± 4]	920 ± 210 [56]
19	41 ± 16 [53]	$[6 \pm 4]$	1900 ± 220 [36]
24	2 ± 1 [85]	$150 \pm 21 \ [29]^{c}$	450 ± 51 [56]
25	330 ± 170 [58]	[8 ± 2]	2400 ± 1000 [36]
30	18 ± 2 [92]	$[4 \pm 1]$	$[10 \pm 1]^{d}$

^a Concentration of compound at 50% maximum cAMP accumulation.

 b Percentage of cAMP accumulation at 10 μM compound relative to $\alpha\text{-MSH}.$

^c Values represent mean ± standard error except where indicated. All data represent at least three determinations.

^d Values represent mean ± standard deviation except where indicated. All data represent at least three determinations.

Table 3. Covalent binding to rat liver microsomal proteins^a

Compound	+ NADPH (pmol equiv/mg protein)
MB243	2153 ± 266^{b}
8	50
10	107
11	103
30	216

^a The numbers represent values for covalent binding after 30 min incubations of [³H]-compound¹¹ with rat liver microsomes in the presence of NADPH.

^b Mean \pm standard deviation (n = 3).

receptor subtype selectivity. Interestingly, the 6-isopropylpiperazine compound, **30**, is a potent and selective MC4R agonist with very little activation on the MC5R subtype (10%).

A representative number of the alkylated piperazine compounds were evaluated for potential bioactivation.¹⁰ Indeed, alkyl substitution on C-5 of the piperazine ring dramatically reduced covalent binding in comparison to **MB243** (Table 3). Likewise, the 6-isopropylpiperazine analog, **30**, also afforded a 10-fold decrease in covalent binding as compared to **MB243**. Thus, as predicted, alkylation at either C-5 or C-6 of the piperazine ring blocks oxidation and further bioactivation.

In summary, we report the synthesis and evaluation of MC4R agonists containing a 5- or 6-alkylated piperazine side chain. Structure–activity studies show the *trans*-5-alkylpiperazine diastereomers are potent and selective MC4R agonists, while the corresponding *cis*isomers exhibit moderate potency and receptor subtype selectivity. More importantly, the 5- and 6-alkylated piperazine side-chain analogs show significantly reduced covalent binding in comparison to **MB243**.

References and notes

- For recent reviews on melanocortin system, see: (a) Holder, J. R.; Haskell-Luevano, C. Med. Res. Rev. 2004, 24, 325; (b) Voisey, J.; Carroll, L.; van Daal, A. Curr. Drug Targ. 2003, 4, 586; (c) Sebhat, I.; Ye, Z.; Bednarek, M.; Weinberg, D.; Nargund, R.; Fong, T. M. Ann. Rep. Med. Chem. 2003, 38, 31; (d) Gantz, I.; Fong, T. M. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E468; (e) Zimanyi, I. A.; Pelleymounter, M. A. Curr. Pharm. Des. 2003, 9, 1381; (f) Yang, Y. K.; Harmon, C. M. Obesity Rev. 2003, 4, 239.
- For recent patent reviews, see: (a) Bednarek, M. A.; Fong, T. M. Expert Opin. Ther. Patents 2004, 14, 1; (b) Speak, J. D.; Bishop, M. J. Expert Opin. Ther. Patents 2002, 12, 1631; (c) Wikberg, J. E. S. Expert Opin. Ther. Patents 2001, 11, 61; (d) Anderson, P. M.; Boman, A.; Seifert, E.; Skottner, A.; Torbjorn, L. Expert Opin. Ther. Patents 2001, 11, 1583.
- Palucki, B. L.; Park, M. K.; Nargund, R. P.; Ye, Z.; Sebhat, I. K.; Pollard, P. G.; Kalyani, R. N.; Tang, R.; MacNeil, T.; Weinberg, D. H.; Vongs, A.; Rosenblum, C. I.; Doss, G. A.; Miller, R. R.; Stearns, R. A.; Tamvakopoulos, C.; Cashen, D. E.; Martin, W. J.; McGowan, E.; Strack, A. M.; MacIntyre, D. E.; Van der Ploeg, L. H. T.; Patchett, A. A. *Bioorg. Med. Chem. Lett.* 2005, *15*, 171.

- Doss, G. A.; Miller, R. R.; Zhang, Z.; Teffera, Y.; Nargund, R. P.; Palucki, B.; Park, M. K.; Tang, Y. S.; Evans, D. C.; Baillie, T. A.; Stearns, R. A. *Chem. Res. Toxicol.* 2005, 18, 271.
- 5. The α -bromoketones were either commercially available or prepared via bromination of ketone using bromine in methanol.
- 6. See Ref. 3 for the synthesis of this intermediate.
- 7. NMR studies were carried out to determine the stereochemistry of the piperazine ring, and the major isomer was assigned *trans* based on the observed coupling constants.
- 8. Absolute stereochemistry was not determined and minor diastereomer could not be isolated.
- For a detailed description of the assay protocols, see: (a) Bednarek, M. A.; MacNeil, T.; Kalyani, R. N.; Tang, R.; Van der Ploeg, L. H. T.; Weinberg, D. H. J. Med. Chem. 2001, 44, 3665; (b) Bednarek, M. A.; Siva, M. V.; Arison, B.; MacNeil, T.; Kalyani, R. N.; Huang, R.-R. C.; Weinberg, D. H. Peptides 1999, 20, 401.
- 10. For a detailed description of the assay protocols, see Ref. 4.
- 11. The tritium group is on the *p*-fluorophenyl ring of each compound.