Syntheses, Crystal Structures and Reactivity of Organometallic Tantalum(IV) Phosphinidene Complexes: *trans*-[{Cp*TaCl(μ -PR)}₂] (Cp* = C₅Me₅, R = Cy, *t*Bu, Ph), *cis*- and *trans*-[{Cp*TaCl(μ -PMes})₂] (Mes = 2,4,6-Me₃C₆H₂) and *cis*-[{Cp'TaCl(μ -PMes})₂] (Cp' = C₅H₄Me)

Steffen Blaurock^[a] and Evamarie Hey-Hawkins^{*[a]}

Keywords: Tantalum / P ligands / Oxo ligands / Isocyanide ligands

The reaction of $[Cp^*TaCl_4]$ ($Cp^* = C_5Me_5$) with LiPHR (1:1 or 1:2) gives the phosphinidene-bridged tantalum(IV) complexes *trans*-[{ $Cp^*TaCl(\mu-PR)$ }₂] [R = Cy (1), *t*Bu (2), Ph (3), 2,4,6-Me_3C_6H_2 (Mes) (4b)]. When the reaction with LiPHMes is carried out in a 1:1 ratio, *cis*-[{ $Cp^*TaCl(\mu-PMes)$ }₂] (4a) is also formed besides 4b. For comparison, *cis*-[{ $Cp^{'TaCl}(\mu-PMes)$ }₂] (5) was prepared from [$Cp'TaCl_4$] ($Cp' = C_5MeH_4$) and LiPHMes (1:1). 1–5 are diamagnetic and were characterised spectroscopically (IR, MS; ¹ H, ³¹P, ¹³C NMR). Crystal structure determinations on 1–5 showed the presence of dimeric phosphinidene-bridged Ta^{IV} complexes. The phosphinidene-bridged complexes 1, 3 and 4b do not react with ace-

Introduction

Organometallic dialkyl- and diarylphosphanido complexes of early transition metals have been studied intensively, while complexes derived from functionalised phosphanes which exhibit a reactive phosphorus-ligand bond have largely been neglected.^[1] To date, only a few phosphanido derivatives of organometallic^[2,3] and inorganic^[4,5] tantalum compounds, one phosphinidene-bridged dimeric Ta^{IV} complex^[3] and two stable terminal phosphinidene complexes^[5,6] have been described in the literature.

Recently, we reported the syntheses and structures of the primary phosphane complexes [Cp'TaCl₄(PH₂Tipp)] $(Cp' = C_5H_4Me, Tipp = 2,4,6-iPr_3C_6H_2)^{[3]}$ and $[Cp^*]$ $MCl_4(PH_2R)$] [Cp* = C₅Me₅; M = Nb, Ta; R = tBu, Ad, Cy, Ph, 2,4,6-Me₃C₆H₂ (Mes)],^[7] which we expected to be suitable precursors for the preparation of phosphanido and phosphinidene complexes. However, when [Cp* $TaCl_4(PH_2R)$] (R = tBu, Cy, Ad, Ph, Mes) were treated with DBU an internal redox reaction occurred with formation of $[(DBU)H][Cp*TaCl_4]$ (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) and the corresponding diphosphane $(P_2H_2R_2)$ or decomposition products thereof.^[8] For the aryl-substituted phosphane complexes, there was also an intone, benzophenone, acetonitrile, CS_2 (1, 3), acetaldehyde (4b), or ethylaluminum dichloride (3). 3 reacts with moist acetone in the presence of traces of air to give the trinuclear cluster [{Cp*TaCl(μ_2 -O})_{3}(μ_3 -O)(μ_2 -O_2PHPh)}] (6) in very low yield. With an excess of CyNC, 3 gives [Cp*TaCl(CNCy)_4]Cl (7), which was characterised by ¹H and ¹³C NMR spectroscopy and by crystal structure determination. As a minor product, [(Cp*TaCl_2)_2(μ_2 -O)(η^2 , μ_2 -P_2Cy_2)] (8) was also obtained in the reaction of [Cp*TaCl_4] with LiPHCy. 6 and 8 were only characterised by crystal structure determination.

(© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

dication from the ³¹P NMR spectra of the formation of tantalum phosphinidene complexes, which could, however, not be isolated.

We now report the targeted synthesis of these and other dimeric Ta^{IV} phosphinidene complexes, which are accessible from [Cp^RTaCl₄] (Cp^R = Cp^{*}, Cp') and LiPHR', and some reaction products thereof. The related tantalum(IV) phenylimido complex *trans*-[{Cp*TaCl(μ -NPh)}₂] is also known.^[9]

Results and Discussion

Synthesis and Properties of *trans*-[{Cp*TaCl(μ -PR)}₂] [R = Cy (1), *t*Bu (2), Ph (3)], *cis*- and *trans*-[{Cp*TaCl(μ -PMes)}₂] (4a,b) and *cis*-[{Cp'TaCl(μ -PMes)}₂] (5)

When $[Cp^*TaCl_4]^{[7,10]}$ was treated with two equivalents of LiPHR^[11-14] in toluene (to keep the concentration of LiPHR low in solution) at low temperature (to reduce side reactions), the deep red phosphinidene-bridged tantalum(IV) complexes *trans*-[{Cp*TaCl(μ -PR)}₂] [R = Cy (1), *t*Bu (2), Ph (3), Mes (4b)] were obtained after workup in 73 to 86% yield (based on [Cp*TaCl_4]; Scheme 1).

In the ³¹P NMR spectra of the reaction mixtures, one singlet is observed for the *t*Bu, Ph and Mes derivatives, while for the Cy derivative, two singlets are observed in the low-field region, one of which has only a low intensity [δ = 437.6 (major) and 433.7 (minor) ppm]. The major signal

 [[]a] Institut für Anorganische Chemie der Universität Leipzig Johannisallee 29, 04103 Leipzig (Germany) Fax: (internat.) + 49-(0)341/9739319 E-mail: hey@rz.uni-leipzig.de

R = Cy (1), tBu (2), Ph (3), Mes (4b)

Scheme 1

was shown to belong to the *trans* isomer, while the minor signal presumably belongs to the *cis* isomer.

When the reaction of $[Cp^*TaCl_4]$ with LiPHMes was carried out in a 1:1 ratio, *cis*-[$\{Cp^*TaCl(\mu-PMes)\}_2$] (**4a**) was also formed along with **4b**. An additional signal was observed in the ³¹P NMR spectrum at $\delta = 485.8$ ppm [ratio ca. 1 (**4a**): 6 (**4b**): 3], which indicates the formation of a terminal phosphinidene complex, $[Cp^*TaCl_2(PMes)]$ (cf. the stable terminal phosphinidene complex [$Cp^*TaCl_2\{P(Tipp)\}$], which shows a singlet at $\delta = 488.0$ ppm).^[15] The mesitylphosphinidene complex could, however, not be obtained in its pure form. Complexes **4a** and **4b** could be separated by fractional crystallisation from *n*-hexane.

For comparison, cis-[{Cp'TaCl(μ -PMes)}₂] (**5**) was prepared from [Cp'TaCl₄]^[16] and LiPHMes (1:1). In the ³¹P NMR spectrum of the reaction mixture, only one signal was observed, which indicates the exclusive formation of the *cis* isomer.

In these reactions, the lithium reagent acts as a reducing agent, base and substitution reagent. The products of these reactions, that is, the oxidation product $P_2H_2R_2$, the free phosphane RPH₂, and the corresponding Ta^{IV} phosphinidene complex were detected by ³¹P NMR spectroscopy.

The formation of 1-4b was also observed when only one equivalent of LiPHR was used, but the yield was lower.

Related tantalum phosphinidene complexes include *trans*-[(Cp'TaCl{ μ -P(Tipp)})₂] (I),^[3] which was obtained by treating [Cp'TaCl₄{PH₂(Tipp)}] with DBU (1:2 or 1:3), and the stable terminal phosphinidene complexes $[N{CH_2CH_2N(SiMe_3)}_3Ta=PR] [\delta(^{31}P) = 175.1 (R = Cy)$ and 227.3 (R = tBu) ppm]^[6] and [(tBu_3SiO)₃Ta=PPh]^[5] $[\delta(^{31}P) = 334.6 \text{ ppm}]$. These ³¹P chemical shifts indicate the presence of a linear MPR unit (bent MPR unit: $\delta = 660$ to 800 ppm).^[17] For 1–5 and I, ³¹P chemical shifts of $\delta =$ 390.3 ppm (for **4b**) to 482.0 ppm (for **2**) are observed [for **I**, $\delta(^{31}P) = 391.5$ ppm], and $\Delta\delta$ (phosphane vs. phosphinidene complex) ranges from $\delta = 526$ to 562 ppm (Table 1).

Apparently, the influence of the substituted cyclopentadienyl ligand on the ^{31}P NMR chemical shift is negligible, as shown by the similar values for **4b** (Cp* complex) and **I** (Cp' complex), while alkyl-substituted phosphinidene complexes **1** and **2** exhibit low-field shifts compared to aryl-substituted phosphinidene complexes **3–5**. The same trend is observed for the corresponding primary phosphanes (Table 1).

In the ¹³C NMR spectra of **1–4**, the signals of the carbon atoms of the Cp* ring are shifted to high field by $\Delta \delta = 16.5-18$ relative to the starting material [Cp*TaCl₄] ($\delta = 132.9$ ppm).

Molecular ion peaks were observed in the mass spectra of 1-4.^[18] For 1, 3, and 4a, signals for monomeric [Cp* TaCl(PR)]⁺ and fragmentation products thereof were also observed.

In the UV/Vis spectra in pentane, **1–4** exhibit four absorptions in the ranges $682 - 753 (v_1)$, $473 - 528 (v_2)$, $337 - 396 (v_3)$, and $313 - 319 \text{ nm} (v_4)$, with molar absorption coefficients of $10^2 - 10^3$ (for v_1 , d-d transition), $2 \cdot 10^3 - 10^4$ (for v_2 and v_3 ; CT transitions), and $10^4 - 3 \cdot 10^4$ cm²/ mol (for v_4 , $\pi - \pi$ * transition of Cp*).

Molecular Structures of *trans*-[{Cp*TaCl(μ -PR)}₂] [R = Cy (1), *t*Bu (2), Ph (3), Mes (4b)], *cis*-[{Cp*TaCl(μ -PMes)}₂] (4a) and *cis*-[{Cp'TaCl(μ -PMes)}₂] (5)

Single crystals of 1-5 were obtained from concentrated solutions in diethyl ether (1, 3), pentane (2) or hexane (4a,b, 5) at 5 °C. The *trans* complexes 1-3 crystallise in the monoclinic space group $P2_1/n$, 4b in the monoclinic space group $P2_1/c$ and have two formula units per unit cell; the *cis* complexes 4a and 5 crystallise in the triclinic space group $P\overline{1}$ with two formula units in the unit cell (Table 2). The unit

Table 1. Comparison of the ³¹P NMR spectroscopic data of compounds 1-5 and $[(Cp'TaCl{\mu-P(Tipp)})_2]$ (I)^[3] (NMR in C₆D₆) with the ³¹P{¹H} NMR spectroscopic data of the corresponding primary phosphanes

δ(³¹ P, ppm)	$ \begin{array}{l} 1 \ (trans) \\ \mathbf{R} = \mathbf{Cy} \\ 437.6 \end{array} $	2 (trans) R = tBu 482.0	3 (trans) R = Ph 403.9	4a (cis) R = Mes 399.0	4b (trans) R = Mes 390.3	5 (<i>cis</i>) R = Mes 396.0	I (<i>trans</i>) 391.5
δ(³¹ P, ppm)	PH ₂ Cy ^[39] -111.3	PH ₂ Bu ^[36b] -80.5	$PH_2Ph^{[36b]}$ -122.1	PH ₂ Mes ^[36b,40,41] -153.8	PH ₂ Mes ^[36b,40,41] -153.8	PH ₂ Mes ^[36b,40,41] -153.8	PH ₂ (Tipp) ^[36b] -158.2
Δδ	549.0	562.4	526.0	552.8	544.1	549.8	549.7

Table 2. Crystal data and structure refinement for $1\!-\!8$

FULL PAPER

	1.00	3	•	4 / 1 \	
Compound	1·2Et ₂ O	2	3	4a (<i>cis</i>)	4b
Empirical formula	$C_{36}H_{62}OCI_2P_2Ta_2$	$C_{28}H_{48}Cl_2P_2Ta_2$	$C_{32}H_{40}Cl_2P_2Ta_2$	C ₃₈ H ₅₂ P ₂ Cl ₂ Ta ₂ · hexane	$C_{38}H_{52}P_2Cl_2Ta_2$
Molecular mass	1005 76	879 40	919 38	1003 54	1003 54
Temperature [K]	220(2)	220(2)	220(2)	220(2)	220(2)
	220(2)	220(2)	220(2)	220(2)	220(2)
Crystal system	monochnic	monoclinic	monoclinic	Inclinic	monoclinic
Space group	$P2_1/n$ (no. 14)	$P2_1/n$ (no. 14)	$P2_1/n$ (no. 14)	P1 (no. 2)	$P2_1/c$ (no. 14)
Unit cell dimensions					
a [Å]	12.168(2)	12.386(3)	8.813(2)	8.7270(3)	11.1373(5)
b[Å]	9.219(2)	9.288(2)	13.214(3)	12.6329(4)	9,7817(4)
	18 841(4)	14 166(3)	14.724(3)	21 2748(8)	17 5396(8)
e [14]	00	11.100(5)	00	104.018(1)	00
α[·]	90	90	90	104.018(1)	90
β[°]	106.95(3)	96.25(3)	105.53(3)	91.234(1)	90.052(1)
γ[°]	90	90	90	99.577(1)	90
V [Å ³]	2021.7(7)	1619.9(6)	1652.1(6)	2239.2(2)	1910.8(2)
Z	2	2	2	2	2
a [$a \mathrm{cm}^{-3}$]	1 556	1 803	1 8/18	1 552	1 744
pealed, [g cm]	1.550	7.005	1.040	7.002	1.744
μ (Mo- K_{α}) [mm ⁻¹]	5.644	7.029	6.897	5.099	5.971
F(000)	972	852	884	1030	980
Θ _{min} Θ _{max} [°]	1.78-24.74	2.08-27.93	2.11 - 27.86	1.73-28.54	1.83-27.85
Index ranges					
	-13 h 13	-15 h 14	-11 b 11	-11 6 11	-14 b 10
	10 1 10	12 1 17	17 60	Q h 1Z	10 10
	-10 K 10	-12 K 11	-1/ K9	-0 K 10	-12 K 12
	21 / 18		19 / 19	-21 1 28	20 <i>l</i> 21
Reflections collected	8166	14304	9194	13684	
Independent reflections	3295	3601	3568	9902	4145
R(int)	0.0182	0.0405	0.0336	0.0186	0.0430
Parameters	240	178	237	432	281
Goodness-of-fit on F^2	0.974	1.060	1.029	0.946	1.029
Engl Dindian Us 2= (2)	0.274	1.000	1.029	0.240	1.04.9
Final K indices $[I > 2\sigma(I)]$	0.0277	0.0000	0.02.00	0.0200	0.0251
R_1	0.0275	0.0228	0.0269	0.0290	0.0364
wR_2	0.0747	0.0554	0.0631	0.0911	0.0860
R indices (all data)					
R_1	0.0301	0.0267	0.0360	0.0406	0.0572
wR ₂	0.0798	0.0575	0.0679	0.0946	0.1034
Largest diff, peak and hole	0.05 and 0.87	1.07 and 1.47	1.02 and 1.24	2.07 and -1.44	2.28 and -2.34
$r_{a} = \frac{3}{3}$	0.95 anu0.67	1.07 and1.47	1.02 and1.24	2.07 anu1.44	2.20 and -2.34
C 1	<i>E</i>	,		~	
Compound	5	6	7	8	
Compound Empirical formula	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone	7 C38H59N4Cl2Ta	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂	
Compound Empirical formula Molecular mass	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38	
Compound Empirical formula Molecular mass Temperature [K]	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33 220(2)	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01 220(2)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33 220(2) triclinic	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ acetone 1318.01 220(2) monoclinic	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space aroun	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33 220(2) triclinic PT (ro. 2)	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01 220(2) monoclinic P2 (n (no. 14)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 (u (po. 14)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic Ca(uo, P)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group	5 C ₃₀ H ₃₀ P ₂ Cl ₂ Ta ₂ 891.33 220(2) triclinic <i>P</i> I (no. 2)	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01 220(2) monoclinic P2 ₁ /n (no. 14)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 ₁ /n (no. 14)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions	5 C ₃₀ H ₃₆ P ₂ Cl ₃ Ta ₂ 891.33 220(2) triclinic <i>P</i> T (no. 2)	6 C ₃₆ H ₅₁ O ₆ PCI ₅ Ta ₃ ⋅acetone 1318.01 220(2) monoclinic P2₁/n (no. 14)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 ₁ /n (no. 14)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å]	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33 220(2) triclinic <i>P</i> T (no. 2) 9.0480(3)	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ -acetone 1318.01 220(2) monoclinic P2 ₁ /n (no. 14) 11.5431(3)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 ₁ /n (no. 14) 15.056(2)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å]	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}1_{2}\mathbf{T}\mathbf{a}_{2} \\ 891.33 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} \ (\text{no. 2}) \\ 9.0480(3) \\ 13.4376(4) \end{array}$	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ :acetone 1318.01 220(2) monoclinic P2 ₁ /n (no. 14) 11.5431(3) 24.6455(5)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 ₁ /n (no. 14) 15.056(2) 15.261(2)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1) 16.1667(1)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å]	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33 220(2) triclinic <i>P</i> T (no. 2) 9.0480(3) 13.4376(4) 13.9232(4)	6 C ₃₆ H ₅₁ O ₆ PCI ₃ Ta ₃ ·acetone 1318.01 220(2) monoclinic P2 ₁ /n (no. 14) 11.5431(3) 24.6455(5) 16.1917(3)	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 ₁ /n (no. 14) 15.056(2) 15.261(2) 16.911(2)	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1) 16.1667(1) 11.3250(2)	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] a [°]	$\begin{array}{c} {\bf 5} \\ \hline {\rm C}_{30}{\rm H}_{36}{\rm P}_2{\rm C}{\rm L}_2{\rm T}{\rm a}_2 \\ {\rm 891.33} \\ {\rm 220(2)} \\ {\rm triclinic} \\ {\rm P}\overline{1} \ ({\rm no.\ 2}) \\ \hline {\rm 9.0480(3)} \\ {\rm 13.4376(4)} \\ {\rm 13.9232(4)} \\ {\rm 77.837(1)} \end{array}$	$\begin{array}{c} 6 \\ \hline C_{36}H_{51}O_6PCl_3Ta_3\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \end{array}$	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1) 16.1667(1) 11.3250(2) 90	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] c [Å] β [°] β [°]	5 C ₃₀ H ₃₆ P ₂ Cl ₂ Ta ₂ 891.33 220(2) triclinic <i>P</i> T (no. 2) 9.0480(3) 13.4376(4) 13.9232(4) 77.837(1) 75.24	$\begin{array}{c} 6 \\ \hline C_{36}H_{51}O_6PCl_3Ta_3\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91 \\ 16(2) \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96 (195(1)) \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°]	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}_{12}\mathbf{T}a_{2} \\ 891.33 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} (\text{no. } 2) \\ 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.04(1) \end{array}$	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01 220(2) monoclinic P2 ₁ /n (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1)	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 00 \end{array}$	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1) 16.1667(1) 11.3250(2) 90 96.195(1) 00	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [A] b [A] c [A] $\alpha [°]$ $\beta [°]$ $\gamma [°]$	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}1_{2}\mathbf{T}\mathbf{a}_{2} \\ & 891.33 \\ & 220(2) \\ & triclinic \\ & P\overline{1} (no. 2) \\ \hline \mathbf{9.0480(3)} \\ & 13.4376(4) \\ & 13.9232(4) \\ & 77.837(1) \\ & 75.24 \\ & 77.024(1) \\ & 1400000000000000000000000000000000000$	$\begin{array}{c} 6 \\ \hline C_{36}H_{51}O_6PCl_3Ta_3:acetone \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 440.100 \end{array}$	7 C ₃₈ H ₅₉ N ₄ Cl ₂ Ta 823.74 220(2) monoclinic P2 ₁ /n (no. 14) 15.056(2) 15.261(2) 16.911(2) 90 91.16(2) 90	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1) 16.1667(1) 11.3250(2) 90 96.195(1) 90	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] α [°] β [°] γ [°] γ [°]	$\begin{array}{c} {\color{red} {\bf 5}} \\ \hline {\rm C}_{30}{\rm H}_{36}{\rm P}_2{\rm C}{\rm L}_2{\rm T}{\rm a}_2 \\ {\color{red} {891.33}} \\ {\color{red} {220(2)}} \\ {\color{red} {\rm triclinic}} \\ {\color{red} {\rm P}\overline{1} \ ({\rm no.}\ 2)} \\ \\ {\color{red} {9.0480(3)}} \\ {\color{red} {13.4376(4)}} \\ {\color{red} {13.9232(4)}} \\ {\color{red} {77.837(1)}} \\ {\color{red} {75.24}} \\ {\color{red} {77.024(1)}} \\ {\color{red} {1573.83(8)}} \end{array}$	$\begin{array}{r} {\bf 6} \\ {\rm C}_{36}{\rm H}_{51}{\rm O}_6{\rm PC}1_5{\rm Ta}_3\text{-acctone} \\ 1318.01 \\ 220(2) \\ {\rm monoclinic} \\ P2_1/n \ (no.\ 14) \\ 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] γ [°] Z	$\begin{array}{c} {\color{red} {\bf 5}} \\ \hline {\rm C}_{30}{\rm H}_{36}{\rm P}_2{\rm C}{\rm L}_2{\rm T}{\rm a}_2 \\ {\color{red} {891.33}} \\ {\color{red} {220(2)}} \\ {\color{red} {\rm triclinic}} \\ {\color{red} {\it P}{\rm T}} ({\rm no},2) \\ \\ {\color{red} {9.0480(3)}} \\ {\color{red} {13.4376(4)}} \\ {\color{red} {13.9232(4)}} \\ {\color{red} {77.837(1)}} \\ {\color{red} {75.24}} \\ {\color{red} {77.024(1)}} \\ {\color{red} {1573.83(8)}} \\ {\color{red} {2}} \end{array}$	$\begin{array}{c} 6 \\ \hline C_{36}H_{51}O_6PCl_3Ta_3\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] γ [°] γ [°] Z $\rho_{cated.}$ [g cm ⁻³]	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}_{12}\mathbf{T}a_{2} \\ 891.33 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} (no. 2) \\ 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \end{array}$	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01 220(2) monoclinic P2 ₄ /n (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \end{array}$	8 C ₃₂ H ₅₂ OP ₂ Cl ₄ Ta ₂ 1018.38 220(2) monoclinic <i>Cc</i> (no. 9) 20.6118(1) 16.1667(1) 11.3250(2) 90 96.195(1) 90 3760.7(7) 2 1.799	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $p_{cated.} [g cm^{-3}]$ $U(Mo-K_a) [mm^{-1}]$	$\begin{array}{r} {\color{red} {\bf 5}} \\ \hline {\rm C}_{30}{\rm H}_{36}{\rm P}_2{\rm C}{\rm I}_2{\rm T}{\rm a}_2 \\ {\color{red} 891.33} \\ {\color{red} 220(2)} \\ {\color{red} {\rm triclinic}} \\ {\color{red} P\overline{\rm I}} ({\rm no.}~2) \\ \hline {\color{red} 9.0480(3)} \\ {\color{red} 13.4376(4)} \\ {\color{red} 13.9232(4)} \\ {\color{red} 77.837(1)} \\ {\color{red} 75.24} \\ {\color{red} 77.024(1)} \\ {\color{red} 1573.83(8)} \\ {\color{red} 2} \\ {\color{red} 1.881} \\ {\color{red} 7.236} \end{array} \end{array}$	$\begin{array}{r} {\bf 6} \\ {\rm C}_{36}{\rm H}_{51}{\rm O}_6{\rm PC}I_5{\rm T}{\rm a}_{3}\text{-}{\rm acctone} \\ 1318.01 \\ 220(2) \\ {\rm monoclinic} \\ P2_1/n ({\rm no.~14}) \\ 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $p_{catot.} [g cm -3]$ $\mu (Mo-K_{\alpha}) [mm^{-1}]$ $E (MO - K_{\alpha}) [mm^{-1}]$	$\begin{array}{r} {\color{red} {\bf 5}} \\ \hline {\rm C}_{30}{\rm H}_{36}{\rm P}_2{\rm C}{\rm L}_2{\rm T}{\rm a}_2 \\ {\color{red} {891.33}} \\ {\color{red} {220(2)}} \\ {\color{red} {\rm triclinic}} \\ {\color{red} {P1}} ({\rm no.~2}) \\ \\ {\color{red} {9.0480(3)}} \\ {\color{red} {13.4376(4)}} \\ {\color{red} {13.9232(4)}} \\ {\color{red} {77.837(1)}} \\ {\color{red} {75.24}} \\ {\color{red} {77.024(1)}} \\ {\color{red} {1573.83(8)}} \\ {\color{red} {2}} \\ {\color{red} {1.881}} \\ {\color{red} {7.236}} \\ {\color{red} {852}} \end{array}$	$\begin{array}{r} {\bf 6} \\ {\rm C}_{36}{\rm H}_{51}{\rm O}_6{\rm PC}{\rm I}_5{\rm Ta}_{3}\text{-acctone} \\ {\rm 1318.01} \\ {\rm 220(2)} \\ {\rm monoclinic} \\ {\rm P2}_{1}/n \ ({\rm no.\ 14}) \\ {\rm 11.5431(3)} \\ {\rm 24.6455(5)} \\ {\rm 16.1917(3)} \\ {\rm 90} \\ {\rm 105.062(1)} \\ {\rm 90} \\ {\rm 4448.1(2)} \\ {\rm 4} \\ {\rm 1.967} \\ {\rm 7.622} \\ {\rm 2524} \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] α [°] β [°] γ [°] γ [°] γ [°] γ [°] γ [°] μ [Δ^3] Z $\rho_{cated.}$ [g cm ⁻³] μ (Mo- K_{α}) [mm ⁻¹] F(000)	$\begin{array}{r} {\color{red}{5}} \\ \hline {\color{red}{5}} S_{30} H_{36} P_2 C L_2 T a_2 \\ 891.33 \\ 220(2) \\ triclinic \\ P \overline{1} (no. 2) \\ \hline {\color{red}{9}} 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.52.27.90 \\ \end{array}$	$\begin{array}{r} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{P}\mathbf{C}\mathbf{I}_{3}\mathbf{T}\mathbf{a}_{3}\text{:} \text{acctone} \\ 1318.01 \\ 220(2) \\ \text{monoclinic} \\ P2_{1}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54.27.95 \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 170.28.04 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 160.27.45 \end{array}$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{r} {\bf 5} \\ \hline {\bf C}_{30}{\bf H}_{36}{\bf P}_2{\bf C}_2{\bf T}a_2 \\ 891.33 \\ 220(2) \\ {\rm triclinic} \\ {\it P}\overline{1} \ ({\rm no}, 2) \\ \hline {\bf 9.0480(3)} \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \end{array}$	6 C ₃₆ H ₅₁ O ₆ PCl ₃ Ta ₃ ·acetone 1318.01 220(2) monoclinic P2 ₄ /n (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \end{array}$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{r} {\color{red} {5} \\ \hline {C_{30} H_{36} P_2 C L_2 T a_2 \\ 891.33 \\ 220(2) \\ triclinic \\ P\overline{1} (no. 2) \\ \hline {9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \end{array}}$	$\frac{6}{C_{36}H_{51}O_6PCl_5Ta_{3}\cdot acetone}\\ 1318.01\\ 220(2)\\ monoclinic\\ P2_{1}/n (no. 14)\\ 11.5431(3)\\ 24.6455(5)\\ 16.1917(3)\\ 90\\ 105.062(1)\\ 90\\ 4448.1(2)\\ 4\\ 1.967\\ 7.622\\ 2524\\ 1.54-27.85\\ \end{cases}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $\gamma [°]$ $\gamma [°]$ $\gamma [°]$ $p_{catod.} [g cm 3]$ $\mu (Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max} [°]$ Index ranges	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{3}\mathbf{Ta}_{3}\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_{1}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 h 4 \end{array}$	$\begin{array}{c} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 \ h \ 19 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ -10 h \ 26 \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] c [Å] $p[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\gamma[^{\circ}]$ $\beta[\alpha m^{-1}]$ $\beta[\alpha m^{-1}]$ F(000) $\Theta_{min}, \Theta_{max} [^{\circ}]$ Index ranges	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{36}\mathbf{P}_{2}\mathbf{C}_{2}\mathbf{T}_{a2} \\ 891.33 \\ 220(2) \\ \text{triclinic} \\ P\overline{1} (\text{no. } 2) \\ 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline -11 h \ 11 \\ -12 k \ 17 \end{array}$	$\begin{array}{c} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{5}\mathbf{T}\mathbf{a}_{5}\text{-actone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ \mathcal{P}_{2_{1}}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 h \ 14 \\ -32 k \ 30 \end{array}$	$\begin{array}{c} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 h 19 \\ -19 k 20 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline -10 h \ 26 \\ -19 k \ 20 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] c [Å] $\alpha [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $\rho_{cated.} [g cm^{-3}]$ $\mu (Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max} [°]$ Index ranges	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}1_{2}\mathbf{T}\mathbf{a}_{2} \\ & 891.33 \\ & 220(2) \\ & triclinic \\ & P\overline{1} (no. 2) \\ \hline 9.0480(3) \\ & 13.4376(4) \\ & 13.9232(4) \\ & 77.837(1) \\ & 75.24 \\ & 77.024(1) \\ & 1573.83(8) \\ & 2 \\ & 1.881 \\ & 7.236 \\ & 852 \\ & 1.53-27.89 \\ \hline \\ & -11 h \ 11 \\ & -12 k \ 17 \\ & -18 l \ 17 \\ \end{array}$	$\begin{array}{c} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{5}\mathbf{T}\mathbf{a}_{3}\text{-} \operatorname{acetone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_{1}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 \\ -32 \\ k \\ 30 \\ -21 \\ l \\ 20 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_2\textbf{Cl}_4\textbf{Ta}_2 \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] $\alpha [°]$ $\beta [°]$ $\gamma [°]$ $\gamma [°]$ $\gamma [°]$ $\gamma [°]$ $p_{caled.} [g cm^{-3}]$ $\mu (Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max.} [°]$ Index ranges	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{5}\mathbf{T}\mathbf{a}_{5}\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_{1}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 \\ h \\ 14 \\ -32 \\ k \\ 30 \\ -21 \\ l \\ 20 \\ 35789 \\ \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 h 19 \\ -19 k 20 \\ -22 l 22 \\ 35585 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline -10 h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] b [Å] c [Å] p [°] γ [°] γ [°] γ [°] μ (Mo-K _a) [mm ⁻¹] $F(000)$ $\Theta_{min}, \Theta_{max}$ [°] Index ranges Reflections collected Indexendent reflections	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	6 $C_{36}H_{51}O_6PCl_3Ta_3$ -acctone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -14 -21 20 35789 9601	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 h 19 \\ -19 k 20 \\ -22 l \ 22 \\ 35585 \\ 8761 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_{2}\textbf{Cl}_{4}\textbf{Ta}_{2} \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] α [°] β [°] γ [°] V [Å] Z ρ_{calcd} [g cm ⁻³] μ (Mo- K_{α}) [mm ⁻¹] $F(000)$ Θ_{min} . Θ_{max} [°] Index ranges Reflections collected Independent reflections	$\begin{array}{r} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}1_{2}\mathbf{T}\mathbf{a}_{2} \\ & 891.33 \\ & 220(2) \\ & triclinic \\ & P\overline{1} (no. 2) \\ \hline 9.0480(3) \\ & 13.4376(4) \\ & 13.9232(4) \\ & 77.837(1) \\ & 75.24 \\ & 77.024(1) \\ & 1573.83(8) \\ & 2 \\ & 1.881 \\ & 7.236 \\ & 852 \\ & 1.53-27.89 \\ \hline \\ & -11 h \ 11 \\ & -12 k \ 17 \\ & -18 l \ 17 \\ & 8814 \\ & 6373 \\ & 0.058 \end{array}$	6 $C_{36}H_{51}O_6PCI_3Ta_3$ -acctone 1318.01 220(2) monoclinic $P2_4/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -12 80 -21 20 35789 9691 0.0472	$\begin{array}{c} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 h 19 \\ -19 k 20 \\ -22 l 22 \\ 35585 \\ 8761 \\ 0.0202 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_2\textbf{Cl}_4\textbf{Ta}_2 \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.015 \\ \hline \textbf{0} \ 15 \\ 0.015 \\ \hline \textbf{0} \ 15 \\ \textbf{0} \ 15 \\ \hline \textbf{0} \ 15 \\ \textbf{0} \ 15 \\ \hline \textbf{0} \ 1$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] α [°] β [°] γ [°] V [ų] Z $\rho_{caled.}$ [g cm ⁻³] μ (Mo- K_{α}) [mm ⁻¹] F (000) $\Theta_{min.}$ $\Theta_{max.}$ [°] Index ranges Reflections collected Independent reflections R (int)	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{5}\mathbf{T}\mathbf{a}_{3}\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ P2_{1}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 \\ h \\ -32 \\ k \\ 30 \\ -21 \\ l \\ 20 \\ 35789 \\ 9691 \\ 0.0472 \\ \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 h \ 19 \\ -19 k \ 20 \\ -22 l \ 22 \\ 35585 \\ 8761 \\ 0.0320 \\ \hline \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline \\ 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \\ -10 h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ \hline \end{array}$	
CompoundEmpirical formulaMolecular massTemperature [K]Crystal systemSpace groupUnit cell dimensions a [Å] b [Å] c [Å] β [?] γ [?] V [Å] Z $p_{cated.}$ [g cm 3] μ (Mo- K_{α}) [mm $^{-1}$] $F(000)$ $\Theta_{min.} \Theta_{max.}$ [°]Index rangesReflections collectedIndependent reflections $R(int)$ Parameters	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} {\bf 6} \\ {\rm C}_{36}{\rm H}_{51}{\rm O}_6{\rm PC}{\rm I}_5{\rm Ta}_3\text{-acctone} \\ 1318.01 \\ 220(2) \\ {\rm monoclinic} \\ P2_1/n ({\rm no. 14}) \\ 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline \\ -14 \\ h 14 \\ -32 \\ k 30 \\ -21 \\ l 20 \\ 35789 \\ 9691 \\ 0.0472 \\ 482 \\ \end{array}$	$\begin{array}{r} 7\\ C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ \end{array}$	$\begin{array}{c} 8\\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2\\ 1018.38\\ 220(2)\\ monoclinic\\ Cc (no. 9)\\ \hline \\ 20.6118(1)\\ 16.1667(1)\\ 11.3250(2)\\ 90\\ 96.195(1)\\ 90\\ 3760.7(7)\\ 2\\ 1.799\\ 6.208\\ 1984\\ 1.60-27.45\\ \hline \\ -10 h \ 26\\ -19 k \ 20\\ -14 l \ 12\\ 9147\\ 4526\\ 0.0415\\ 370\\ \hline \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] p [°] γ [°] γ [°] γ [°] ρ [add, [g cm ⁻³] μ (Mo- K_{α}) [mm ⁻¹] $F(000)$ Θ_{min} . Θ_{max} [°] Index ranges Reflections collected Independent reflections $R(int)$ Parameters Goodness-of-fit on F^2	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{3}\mathbf{Ta}_{3}\text{-acctone} \\ 1318.01 \\ 220(2) \\ monoclinic \\ \mathcal{P}_{21}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 h \ 14 \\ -32 k \ 30 \\ -21 l \ 20 \\ 35789 \\ 9691 \\ 0.0472 \\ 482 \\ 1.168 \\ \end{array}$	$\begin{array}{r} 7\\ C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_2\textbf{Cl}_4\textbf{Ta}_2 \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] α [°] β [°] γ [°] V [ų] Z $\rho_{cated.}$ [g cm ³] μ (Mo- K_{α}) [mm ⁻¹] $F(000)$ $\Theta_{min.} \Theta_{max}$ [°] Index ranges Reflections collected Independent reflections $R(int)$ Parameters Goodness-of-fit on F^2 Final R indices $I > 2\sigma$ (h]	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 6 \\ \hline \mathbf{C}_{36}\mathbf{H}_{51}\mathbf{O}_{6}\mathbf{PC}\mathbf{I}_{5}\mathbf{T}\mathbf{a}_{3}\text{-acctone} \\ 1318.01 \\ 220(2) \\ \hline \mathbf{monoclinic} \\ P2_{1}/n (no. 14) \\ \hline 11.5431(3) \\ 24.6455(5) \\ 16.1917(3) \\ 90 \\ 105.062(1) \\ 90 \\ 105.062(1) \\ 90 \\ 4448.1(2) \\ 4 \\ 1.967 \\ 7.622 \\ 2524 \\ 1.54-27.85 \\ \hline -14 \\ -32 \\ k \\ 30 \\ -21 \\ l \\ 20 \\ 35789 \\ 9691 \\ 0.0472 \\ 482 \\ 1.168 \\ \end{array}$	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 \\ h \\ 19 \\ -19 \\ k \\ 20 \\ -22 \\ l \\ 22 \\ 35585 \\ 8761 \\ 0.0320 \\ 642 \\ 1.105 \\ \end{array}$	$\begin{array}{c} 8\\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2\\ 1018.38\\ 220(2)\\ monoclinic\\ Cc (no. 9)\\ \hline \\ 20.6118(1)\\ 16.1667(1)\\ 11.3250(2)\\ 90\\ 90\\ 96.195(1)\\ 90\\ 3760.7(7)\\ 2\\ 1.799\\ 6.208\\ 1984\\ 1.60-27.45\\ \hline \\ -10 h \ 26\\ -19 k \ 20\\ -14 l \ 12\\ 9147\\ 4526\\ 0.0415\\ 370\\ 1.114\\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] $\alpha [°]$ $\beta [°]$ $\gamma [°]$ $\gamma [°]$ $V [Å^3]$ Z $p_{caled.} [g cm^{-3}]$ $\mu(Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max} [°]$ Index ranges Reflections collected Independent reflections R(int) Parameters Goodness-of-fit on F^2 Final R indices $[I > 2\sigma (I)]$	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}\mathbf{I}_{2}\mathbf{T}a_{2} \\ 891.33 \\ 220(2) \\ triclinic \\ P\overline{1} (no. 2) \\ 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline -11 h \ 11 \\ -12 k \ 17 \\ -18 l \ 17 \\ 8814 \\ 6373 \\ 0.0698 \\ 325 \\ 0.891 \\ 0 \ 0473 \\ \end{array}$	6 $C_{36}H_{51}O_6PCI_3Ta_3$ -acetone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -12 200 35789 9691 0.0472 482 1.168 0.0290	$\begin{array}{r} 7 \\ \hline C_{38}H_{59}N_4Cl_2Ta \\ 823.74 \\ 220(2) \\ monoclinic \\ P2_1/n (no. 14) \\ \hline 15.056(2) \\ 15.261(2) \\ 16.911(2) \\ 90 \\ 91.16(2) \\ 90 \\ 91.16(2) \\ 90 \\ 91.16(2) \\ 90 \\ 3884.8(8) \\ 4 \\ 1.408 \\ 2.997 \\ 1688 \\ 1.79-28.04 \\ \hline -19 h 19 \\ -19 k 20 \\ -22 l 22 \\ 35585 \\ 8761 \\ 0.0320 \\ 642 \\ 1.105 \\ 0.0297 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline \\ 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \\ -10 h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ 0 \ 0272 \\ \end{array}$	
CompoundEmpirical formulaMolecular massTemperature [K]Crystal systemSpace groupUnit cell dimensions a [Å] b [Å] c [Å] β [°] γ [°] γ [°] γ [°] γ [°] $\rho_{calot.}$ [g cm ³] μ (Mo- K_{α}) [mm ⁻¹] $F(000)$ $\Theta_{min.} \Theta_{max.}$ [°]Index rangesReflections collectedIndependent reflections $R(int)$ ParametersGoodness-of-fit on F^2 Final R indices [$l > 2\sigma(l)$] R_1	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{36}\mathbf{P}_{2}\mathbf{C}_{12}\mathbf{T}a_{2} \\ 891.33 \\ 220(2) \\ triclinic \\ P\overline{1} (no. 2) \\ 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline -11 \ h \ 11 \\ -12 \ k \ 17 \\ 8814 \\ 6373 \\ 0.0698 \\ 325 \\ 0.891 \\ \hline 0.0473 \\ 0.1257 \\ \end{array}$	6 $C_{36}H_{51}O_6PCl_3Ta_3$ -acctone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -14 -21 20 35789 9691 0.0472 482 1.168 0.0290 0.0370	$\begin{array}{c} 7\\ C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ 0.0297\\ 0.0682\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_{2}\textbf{Cl}_{4}\textbf{Ta}_{2} \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ 0.0272 \\ 0.0696 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $p_{cated.} [g cm^{-3}]$ $\mu (Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max} [°]$ Index ranges Reflections collected Independent reflections R(int) Parameters Goodness-of-fit on F^2 Final R indices $[I > 2\sigma (I)]$ R_1 WR_2 B indices ($I = 2\pi i$)	$\begin{array}{r} {\bf 5} \\ \hline {\bf C}_{30} {\bf H}_{30} {\bf P}_2 {\bf C}_1 {\bf T} {\bf a}_2 \\ 891.33 \\ 220(2) \\ triclinic \\ {\bf P} {\bf \bar{1}} ({\rm no.}\ 2) \\ \hline {\bf 9.0480(3)} \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline {\bf -11} h \ 11 \\ {\bf -12} k \ 17 \\ {\bf -18} l \ 17 \\ 8814 \\ 6373 \\ 0.0698 \\ 325 \\ 0.891 \\ \hline {\bf 0.0473} \\ 0.1257 \\ \end{array}$	$\begin{array}{r} {\bf 6} \\ {\rm C}_{36}{\rm H}_{51}{\rm O}_6{\rm PC}{\rm I}_5{\rm T}{\rm a}_3{\rm ``acetone} \\ {\rm 1318.01} \\ {\rm 220(2)} \\ {\rm monoclinic} \\ {\rm P2}_{1/n} \ ({\rm no.~14}) \\ {\rm 11.5431(3)} \\ {\rm 24.6455(5)} \\ {\rm 16.1917(3)} \\ {\rm 90} \\ {\rm 105.062(1)} \\ {\rm 90} \\ {\rm 105.062(1)} \\ {\rm 90} \\ {\rm 4448.1(2)} \\ {\rm 4} \\ {\rm 1.967} \\ {\rm 7.622} \\ {\rm 2524} \\ {\rm 1.54-27.85} \\ \hline \\ {\rm -14} \ h \ {\rm 14} \\ {\rm -32} \ k \ {\rm 30} \\ {\rm -21} \ l \ {\rm 20} \\ {\rm 35789} \\ {\rm 9691} \\ {\rm 0.0472} \\ {\rm 482} \\ {\rm 1.168} \\ \\ {\rm 0.0290} \\ {\rm 0.0730} \\ \end{array}$	$\begin{array}{r} 7\\ \hline C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ \hline 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ \hline -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ 0.0297\\ 0.0682\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_2\textbf{Cl}_4\textbf{Ta}_2 \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ 0.0272 \\ 0.0696 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $\gamma [°]$ $V [Å^3]$ Z $\rho_{calcd.} [g cm^{-3}]$ $\mu(Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max.} [°]$ Index ranges Reflections collected Independent reflections R(int) Parameters Goodness-of-fit on F^2 Final R indices $[I > 2\sigma (I)]$ R_1 wR_2 R indices (all data)	$\begin{array}{c} 5 \\ \hline \mathbf{C}_{30}\mathbf{H}_{30}\mathbf{P}_{2}\mathbf{C}\mathbf{I}_{2}\mathbf{T}\mathbf{a}_{2} \\ & 891.33 \\ 220(2) \\ triclinic \\ P\overline{1} (no. 2) \\ \hline 9.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline -11 h \ 11 \\ -12 k \ 17 \\ -18 l \ 17 \\ 8814 \\ 6373 \\ 0.0698 \\ 325 \\ 0.891 \\ \hline 0.0473 \\ 0.1257 \\ \hline 0.057 \\ \hline \end{array}$	6 $C_{36}H_{51}O_6PCI_5Ta_3$ -acetone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -12 200 35789 9691 0.0472 482 1.168 0.0290 0.0730	$\begin{array}{r} 7\\ \hline C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ \hline -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ 0.0297\\ 0.0682\\ \hline 0.0297\\ 0.0682\\ \hline 0.0255\\ \hline \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2 \\ 1018.38 \\ 220(2) \\ monoclinic \\ Cc (no. 9) \\ \hline \\ 20.6118(1) \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \\ -10 h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ 0.0272 \\ 0.0696 \\ \hline \\ 0.155 \\ \hline \end{array}$	
CompoundEmpirical formulaMolecular massTemperature [K]Crystal systemSpace groupUnit cell dimensions a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $p_{caled.}$ [g cm ⁻³] μ (Mo- K_{α}) [mm ⁻¹] $F(000)$ $\Theta_{min.} \Theta_{max.}$ [°]Index rangesReflections collectedIndependent reflections $R(int)$ ParametersGoodness-of-fit on F^2 Final R indices [$I > 2\sigma(I)$] R_1 wR_2 R indices (all data) R_1	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	6 $C_{36}H_{51}O_6PCl_3Ta_3$ -acetone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54-27.85 -14 -14 -20 35789 9691 0.0472 482 1.168 0.0290 0.0730 0.0374	$\begin{array}{r} 7\\ \hline C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ \hline -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ 0.0297\\ 0.0682\\ 0.0372\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_{2}\textbf{Cl}_{4}\textbf{Ta}_{2} \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ Cc (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ 0.0272 \\ 0.0696 \\ 0.0278 \\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [A] b [A] c [A] a [c] $\beta [c]$ $\gamma [c]$ $\gamma [c]$ $\gamma [c]$ $V [A^{2}]$ Z $P_{cated} [g cm^{-3}]$ $\mu (Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min} \Theta_{max} [c]$ Index ranges Reflections collected Independent reflections R(int) Parameters Goodness-of-fit on F^{2} Final R indices $[I > 2\sigma (I)]$ R_{1} wR_{2}	$\begin{array}{r} {\bf 5} \\ \hline {\bf C}_{30} {\bf H}_{30} {\bf P}_2 {\bf C}_1 {\bf T} {\bf a}_2 \\ 891.33 \\ 220(2) \\ triclinic \\ {\bf P} {\bf \bar{\Gamma}} (no. 2) \\ \hline {\bf 9.0480(3)} \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline {\bf -11} \ h \ 11 \\ -12 \ k \ 17 \\ -18 \ l \ 17 \\ 8814 \\ 6373 \\ 0.0698 \\ 325 \\ 0.891 \\ \hline {\bf 0.0473} \\ 0.1257 \\ \hline {\bf 0.0761} \\ 0.1629 \\ \end{array}$	6 $C_{36}H_{51}O_6PCl_3Ta_3$ -acctone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -12 20 35789 9691 0.0472 482 1.168 0.0290 0.0374 0.0848	$\begin{array}{r} 7\\ \hline C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ \hline -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ \hline 0.0297\\ 0.0682\\ \hline 0.0372\\ 0.0717\\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline \textbf{C}_{32}\textbf{H}_{52}\textbf{OP}_2\textbf{Cl}_4\textbf{Ta}_2 \\ 1018.38 \\ 220(2) \\ \text{monoclinic} \\ \hline \textbf{Cc} (no. 9) \\ \hline \textbf{20.6118(1)} \\ 16.1667(1) \\ 11.3250(2) \\ 90 \\ 96.195(1) \\ 90 \\ 3760.7(7) \\ 2 \\ 1.799 \\ 6.208 \\ 1984 \\ 1.60-27.45 \\ \hline \textbf{-10} h \ 26 \\ -19 k \ 20 \\ -14 l \ 12 \\ 9147 \\ 4526 \\ 0.0415 \\ 370 \\ 1.114 \\ \hline \textbf{0.0272} \\ 0.0696 \\ \hline \textbf{0.0278} \\ 0.0761 \\ \hline \textbf{0.0761} \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] a [°] $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $p_{cated.} [g cm^{-3}]$ $\mu(Mo-K_{\alpha}) [mm^{-1}]$ F(000) $\Theta_{min.} \Theta_{max} [°]$ Index ranges Reflections collected Independent reflections R(int) Parameters Goodness-of-fit on F^2 Final R indices ($I > 2\sigma(I)$] R_1 wR_2 R indices (all data) R_1 wR_2 Largest diff. peak and hole	$\begin{array}{r} {\bf 5} \\ \hline {\bf C}_{30} {\bf H}_{30} {\bf P}_2 {\bf C}_1 {\bf T} {\bf a}_2 \\ {\bf 891}_{.33} \\ {\bf 220} (2) \\ {\bf triclinic} \\ {\bf P} {\bf \bar{1}} ({\bf no}, 2) \\ \hline {\bf 9}_{.04} {\bf 80} (3) \\ {\bf 13}_{.43} {\bf 76} (4) \\ {\bf 13}_{.92} {\bf 32} (4) \\ {\bf 77}_{.83} {\bf 7(1)} \\ {\bf 75}_{.24} \\ {\bf 77}_{.024} (1) \\ {\bf 1573}_{.83} {\bf 8(8)} \\ {\bf 2} \\ {\bf 1.881} \\ {\bf 7}_{.236} \\ {\bf 852} \\ {\bf 1.53}_{-} {\bf 27}_{.89} \\ \hline {\bf -11} h \ {\bf 11} \\ {\bf -12} k \ {\bf 17} \\ {\bf -18} l \ {\bf 17} \\ {\bf 8814} \\ {\bf 6373} \\ {\bf 0}_{.0698} \\ {\bf 325} \\ {\bf 0}_{.891} \\ \hline {\bf 0}_{.0473} \\ {\bf 0}_{.1257} \\ \hline {\bf 0}_{.0761} \\ {\bf 0}_{.1629} \\ {\bf 2}_{.02} \ {\rm and} -1.94 \end{array}$	6 $C_{36}H_{51}O_6PCI_5Ta_3$ -acetone 1318.01 220(2) monoclinic $P2_1/n$ (no. 14) 11.5431(3) 24.6455(5) 16.1917(3) 90 105.062(1) 90 4448.1(2) 4 1.967 7.622 2524 1.54–27.85 -14 -21 20 35789 9691 0.0472 482 1.168 0.0290 0.0374 0.0848 0.76 and -1.86	$\begin{array}{r} 7\\ \hline C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ \hline 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ \hline -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ 0.0297\\ 0.0682\\ \hline 0.0372\\ 0.0717\\ 0.57 \ and -0.92\\ \end{array}$	$\begin{array}{c} 8\\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2\\ 1018.38\\ 220(2)\\ monoclinic\\ Cc (no. 9)\\ \hline \\ 20.6118(1)\\ 16.1667(1)\\ 11.3250(2)\\ 90\\ 90\\ 96.195(1)\\ 90\\ 3760.7(7)\\ 2\\ 1.799\\ 6.208\\ 1984\\ 1.60-27.45\\ \hline \\ -10 h \ 26\\ -19 k \ 20\\ -14 l \ 12\\ 9147\\ 4526\\ 0.0415\\ 370\\ 1.114\\ \hline \\ 0.0272\\ 0.0696\\ \hline \\ 0.0278\\ 0.0761\\ 1.33 \ and -2.13\\ \end{array}$	
Compound Empirical formula Molecular mass Temperature [K] Crystal system Space group Unit cell dimensions a [Å] b [Å] c [Å] a [Å] b [Å] c [Å] a [°] f [°] γ [°] V [Å ³] Z $P_{calcd.}$ [g cm ⁻³] μ (Mo- K_{α}) [mm ⁻¹] F(000) $\Theta_{min.}$ Θ_{max} [°] Index ranges Reflections collected Independent reflections R(int) Parameters Goodness-of-fit on F^2 Final R indices [$I > 2\sigma$ (I)] R_1 wR_2 R indices (all data) R_1 wR_2 Largest diff. peak and hole [e Å ⁻³]	$\begin{array}{r} {\bf 5} \\ \hline {\bf C}_{30} {\bf H}_{36} {\bf P}_2 {\bf C}_1 {\bf T} {\bf a}_2 \\ 891.33 \\ 220(2) \\ triclinic \\ {\bf P} {\bf \bar{1}} (no. 2) \\ \hline {\bf 9}.0480(3) \\ 13.4376(4) \\ 13.9232(4) \\ 77.837(1) \\ 75.24 \\ 77.024(1) \\ 1573.83(8) \\ 2 \\ 1.881 \\ 7.236 \\ 852 \\ 1.53-27.89 \\ \hline {\bf -11} h \ 11 \\ {\bf -12} k \ 17 \\ {\bf -18} i \ 17 \\ {\bf -18} i \ 17 \\ {\bf 8814} \\ 6373 \\ 0.0698 \\ 325 \\ 0.891 \\ \hline {\bf 0}.0473 \\ 0.1257 \\ \hline {\bf 0}.0761 \\ 0.1629 \\ 2.02 \ and -1.94 \\ \end{array}$	$\begin{array}{r} {\bf 6} \\ {\rm C}_{36}{\rm H}_{51}{\rm O}_6{\rm PC}{\rm I}_5{\rm Ta}_3\text{-acctone} \\ {\rm I}_{31}8.01 \\ {\rm 220(2)} \\ {\rm monoclinic} \\ {\rm P2}_{1}/n \ ({\rm no.\ 14}) \\ {\rm I}_{1.543}{\rm I}_{(3)} \\ {\rm 24.6455(5)} \\ {\rm I}_{6.1917(3)} \\ {\rm 90} \\ {\rm 105.062(1)} \\ {\rm 90} \\ {\rm 105.062(1)} \\ {\rm 90} \\ {\rm 4448.1(2)} \\ {\rm 4} \\ {\rm 1.967} \\ {\rm 7.622} \\ {\rm 2524} \\ {\rm 1.54-27.85} \\ \hline \\ {\rm -14} h \ 14 \\ {\rm -32} k \ 30 \\ {\rm -21} l \ 20 \\ {\rm 35789} \\ {\rm 9691} \\ {\rm 0.0472} \\ {\rm 482} \\ {\rm 1.168} \\ \hline \\ {\rm 0.0290} \\ {\rm 0.0730} \\ \hline \\ {\rm 0.0374} \\ {\rm 0.0848} \\ {\rm 0.76 \ and -1.86} \\ \end{array}$	$\begin{array}{r} 7\\ C_{38}H_{59}N_4Cl_2Ta\\ 823.74\\ 220(2)\\ monoclinic\\ P2_1/n (no. 14)\\ 15.056(2)\\ 15.261(2)\\ 16.911(2)\\ 90\\ 91.16(2)\\ 90\\ 91.16(2)\\ 90\\ 3884.8(8)\\ 4\\ 1.408\\ 2.997\\ 1688\\ 1.79-28.04\\ -19 h \ 19\\ -19 k \ 20\\ -22 l \ 22\\ 35585\\ 8761\\ 0.0320\\ 642\\ 1.105\\ 0.0297\\ 0.0682\\ 0.0372\\ 0.0717\\ 0.57 \ and -0.92\\ \end{array}$	$\begin{array}{c} 8\\ \hline \\ C_{32}H_{52}OP_2Cl_4Ta_2\\ 1018.38\\ 220(2)\\ monoclinic\\ Cc (no. 9)\\ \hline \\ 20.6118(1)\\ 16.1667(1)\\ 11.3250(2)\\ 90\\ 90\\ 90\\ 96.195(1)\\ 90\\ 3760.7(7)\\ 2\\ 1.799\\ 6.208\\ 1984\\ 1.60-27.45\\ \hline \\ -10 h \ 26\\ -19 k \ 20\\ -14 l \ 12\\ 9147\\ 4526\\ 0.0415\\ 370\\ 1.114\\ \hline \\ 0.0272\\ 0.0696\\ \hline \\ 0.0278\\ 0.0761\\ 1.33 \ and -2.13\\ \end{array}$	

FULL PAPER

cell of 1 contains four noninteracting diethyl ether molecules, and that of 4a two hexane molecules.

The pronounced tendency of Ta^{IV} to form binuclear complexes is also evident in the molecular structures of **1–5**. The *trans* complexes **1–4b** are centrosymmetric dimers in which two Ta atoms are bound by two bridging phosphinidene [PCy (1) (Figure 1), PtBu (2) (Figure 2), PPh (3) (Figure 3), PMes (Figure 4)] groups. Each Ta atom also bears a terminal chloro ligand, and a Cp* ligand completes the coordination sphere of the Ta atom (Table 3). The fourmembered metallacycles Ta-P-Ta'-P' are planar and almost square (the centres of the planar Ta₂P₂ rings in **1–4b** coincide with crystallographic inversion centres); this indicates substantial p π -d π backbonding (P \rightarrow Ta) of the phosphorus lone pair. Complex I exhibits comparable structural parameters.^[3]

Figure 1. Molecular structure of *trans*-[{Cp*TaCl(μ -PCy)}₂] (1) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity.

In the *cis* complexes 4a (Figure 5) and 5 (Figure 6), a butterfly-type central Ta₂P₂ ring is observed [dihedral angle for 4a: Ta(1)-P(1)-Ta(2)/Ta(1)-P(2)-Ta(2) 27.61(6)°, 5: Ta(1)-P(1)-Ta(2)/Ta(1)-P(2)-Ta(2) 10.4(2)°]. Due to geometric requirements, the aryl rings in 4a are almost perpendicular to the Ta₂P planes [dihedral angles 89.9(4)° and 88.9(4)°]. This structure is also retained in solution, as indicated by two signals for the nonequivalent meta-H atoms (¹H NMR) and the *ortho*-methyl groups in the ¹H and ¹³C NMR spectra. In 5, both mesityl rings are also almost perpendicular to the Ta₂P planes [dihedral angles 86.6(4)° for P(2)-mesityl and 73.8(4)° for P(1)-mesityl]. However, in this case free rotation around the $P-C_{ipso}(Mes)$ bond is possible in solution, as indicated by the presence of only one broad signal for the equivalent meta-H atoms and the orthomethyl groups (¹H NMR).

Figure 2. Molecular structure of *trans*-[{Cp*TaCl(μ -PtBu)}₂] (2) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity.

Figure 3. Molecular structure of *trans*-[{Cp*TaCl(μ -PPh)}₂] (3) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity.

Complexes **1–5** are diamagnetic, thus the presence of a Ta–Ta single bond can be assumed. For other dimeric complexes it was observed that the Ta–Ta bond length^[19] is strongly dependent on the number and type of ligands (e.g., hydrido-bridged complexes generally have shorter Ta–Ta bonds than comparable halogen-bridged complexes^[20]). A comparable value of 3.165 Å was observed for [{TaCl₃(SMe₂)(μ -SPh)}₂],^[21] in which a Ta–Ta single bond is present according to theoretical calculations.^[22]

FULL PAPER

Figure 4. Molecular structure of *trans*-[{Cp*TaCl(μ -PMes)}₂] (**4b**) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity.

Figure 5. Molecular structure of *cis*-[{Cp*TaCl(μ -PMes)}₂] (4a) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity.

Table 3. Selected bond lengths [Å] and angles [°] of compounds 1-5 and [(Cp'TaCl{ μ -P(Tipp)})_2] (1)^{[3]}

Compound	Ta-P	Ta-Ta	Ta-Cl	Та-Р-Та	P-Ta-P
1	2.334(2), 2.336(2)	3.132(1)	2.358(2)	84.26(6)	95.74(6)
2	2.354(1), 2.357(1)	3.1759(8)	2.360(1)	84.78(4)	95.22(4)
3	2.345(1), 2.344(1)	3.1957(6)	2.357(1)	85.92(4)	94.08(4)
4a	$3 \times 2.344(2),$ 2.349(1)	3.0881(3)	2.347(2), 2.352(2)	82.31(5), 82.39(5)	93.87(5), 94.00(5)
4b	2.328(2), 2.331(2)	3.0773(5)	2.364(2)	82.68(7)	97.32(7)
5	2.348(3), 2.358(3) 2.336(3), 2.357(3)	3.1253(7)	2.351(3), 2.365(3)	83.0(1), 83.7(1)	95.9(1), 96.3(1)
I	2.317(6), 2.338(2)	3.100(3)	2.350(2)	83.51(8)	96.49(8)

The Ta-P bond lengths in 1-5 are similar to those of $I^{[3]}$ (Table 3) and the terminal phosphinidene complex $[(tBu_3SiO)_3Ta=PPh]^{[5]}$ [2.317(4) Å] with a bent TaPC ar-[Ta-P-C rangement $110.2(4)^{\circ}$], while $[N{CH_2CH_2N(SiMe_3)}_3Ta=PCy]^{[6]}$ has a linear TaPC arrangement and a shorter Ta-P bond of 2.145(7) Å. However, all these distances are shorter than the sum of the covalent radii of Ta and P (2.44 Å).^[23] Longer bonds are obphosphanido for bridging ligands served (e.g., $[{Cp'Ta(PPh_2)(\mu-PPh_2)}_2], Ta-P_{br} 2.486(2), 2.458(2) Å].^{[3]}$ The trigonal-planar geometry of the P atoms of the

bridging phosphinidene group in the *trans* complexes 1-4b

(sum of bond angles ca. 360°) indicates that the PR group acts as a three-electron donor. In the *cis* complexes **4a** and **5**, the P atoms also have a trigonal-planar environment [sum of bond angles **4a**: P(1): $358.0(2)^{\circ}$, P(2): $357.8(2)^{\circ}$, **5**: P(1): $356.8(4)^{\circ}$, P(2): $358.8(4)^{\circ}$].

The Ta-Cl bonds in **1–5** (Table 3) are shorter than those in the Ta chloro phosphane complexes (e.g., [{TaCl₂(μ -Cl)(μ -PMe₂CH₂PMe₂)}₂], Ta-Cl (terminal) 2.435(7), 2.457(6) Å;^[24] trans-[CpTaCl₂(CO)(PMe₂Ph)₂], Ta-Cl 2.518(4), 2.539(4) Å;^[25] [Cp*TaCl₃(PMe₃)], Ta-Cl 2.395(3) to 2.416(3) Å;^[26] cis-[Cp*TaCl₂(CO)₂(PMe₃)], Ta-Cl 2.504(2), 2.512(2) Å^[26]).

Figure 6. Molecular structure of *cis*-[{Cp'TaCl(μ -PMes)}₂] (5) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity.

Reactivity of 1, 3 and 4

While terminal electrophilic phosphinidene complexes are highly reactive,^[27] 1-5 are air-stable as solids for at least several hours. 1, 3 and 4b also exhibit a remarkable stability towards acetone, benzophenone, acetonitrile, CS₂ (1 and 3), acetaldehyde (4b), or EtAlCl₂ (3), even at elevated temperatures.

Complex 3 reacts with moist acetone (50-fold excess) in the presence of traces of air to give the trinuclear cluster $[{Cp*TaCl(\mu_2-O)}_3(\mu_3-O)(\mu-O_2PHPh)}]$ (6) in very low yield (Scheme 2). 6 was only characterised by crystal structure determination.

Scheme 2

Complex **6** crystallises as yellow prismatic crystals in the monoclinic space group $P2_1/n$ with four molecules of acetone in the unit cell. The central structural fragment is a Ta₃O₄ cluster, in which the Ta^V and O atoms alternatingly occupy the corners of a heterocubane with one missing corner (Figure 7). Related clusters have been reported for Zr, Nb, Ta and Mo.^[28] Each Ta atom is coordinated by a Cp^{*} and one terminal chloro ligand. Two Ta atoms have a coordination number of six [Ta(1) and Ta(2)]; Ta(3) is five-coordinate. The Ta–Ta distances range from 3.1185(3) to 3.3378(3) Å. There are two types of O atoms: one triply-bridging [O(6)] and three doubly-bridging oxo ligands [O(3), O(4), and O(5); Ta–O 1.910(3) to 2.003(3) Å]. The latter Ta–O bond lengths are in the range for single bonds,^[28a,28b] while the Ta–O(6) bond lengths differ by

Figure 7. Molecular structure of $[{Cp*TaCl(\mu_2-O)}_3(\mu_3-O)(\mu_2-O)]_3(\mu_3-O)($ O₂PHPh)}] (6) showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]). Hydrogen atoms are omitted for clarity. Bond lengths [A] and angles [°]: Ta(1)-O(4) 1.960(3), Ta(1)-O(3) 1.991(3), Ta(1)-O(1) 2.127(3), Ta(1)-O(6) 2.148(3), Ta(2)-O(5) 1.964(3), Ta(2)-O(3) 2.003(3), Ta(2)-O(2) 2.117(3), Ta(2)-O(6) 2.136(3), Ta(3)-O(5) 1.910(3), Ta(3) - O(4) 1.915(3), Ta(3) - O(6) 2.058(3), Ta(1) - Cl(1) 2.506(1), $\begin{array}{c} Ta(5) = \underbrace{Ta(5)}_{2 \times 10} & 2.451(1), \\ 2 \times 185(3), & Ta(1) - Ta(2) \\ - 10(4) & P(1) \end{array}$ Ta(3)-Cl(3)3.3378(3), Ta(1) - Ta(3)2.429(1),Ta(2) - Ta(3)3.1206(3), P(1) = O(1) = 1.51O(4), P(1) = O(2) = 1.514(4), P(1) = C(31)1.778(6); 98.6(1), O(4) - Ta(1) - O(3)O(4) - Ta(1) - O(1)155.9(1). O(4) - Ta(1) - O(6)O(1) - Ta(1) - O(6)O(3) - Ta(1) - O(1)O(3) - Ta(1) - O(6)74.0(1) 86.6(1), 71.2(1), 85.7(1) O(4) - Ta(1) - Cl(1)86.9(1), O(3) - Ta(1) - Cl(1)148.8(1). O(1) - Ta(1) - Cl(1)O(6) - Ta(1) - Cl(1)77.1(1), 81.05(9). O(5) - Ta(2) - O(3)O(5) - Ta(2) - O(2)97.7(1), 156.1(1)O(3) - Ta(2) - O(2)O(5) - Ta(2) - O(6)O(2) - Ta(2) - O(6)74.0(1)86.2(1), O(3) - Ta(2) - O(6)85.1(1). 71.2(1), O(5) - Ta(2) - Cl(2)O(3) - Ta(2) - Cl(2)87.6(1), 148.7(1). O(2) - Ta(2) - Cl(2)77.5(1), O(6) - Ta(2) - Cl(2)80.91(9) O(5) - Ta(3) - O(6)O(4) - Ta(3) - O(6)76.9(1), 77.0(1) O(5) - Ta(3) - Cl(3)86.0(1) O(4) - Ta(3) - Cl(3)85.4(1) O(6) - Ta(3) - Cl(3)136.68(9), O(1) - P(1) - O(2)112.5(2). O(1) - P(1) - C(31)109.4(3). O(2) - P(1) - C(31)109.2(2)P(1) - O(1) - Ta(1)123.7(2), P(1) - O(2) - Ta(2)124.8(2)107.2(2), Ta(1) - O(3) - Ta(2)113.4(2) Ta(3) - O(4) - Ta(1)Ta(3) - O(5) - Ta(2)107.3(2), Ta(3) - O(6) - Ta(2)96.1(1), Ta(3) - O(6) - Ta(1)95.7(1), Ta(2) - O(6) - Ta(1)102.4(1). C(36)-C(31)-P(1) 122.1(5), C(32)-C(31)-P(1) 120.0(5)

ca. 0.1 Å [Ta(3)–O(6) 2.058(3), Ta(1)–O(6) 2.148(3), Ta(2)–O(6) 2.136(3) Å]. For Ta(1) and Ta(2), the *trans* effect of the Cp* ligand apparently affects the Ta–O bond lengths. Similar structural data were found for [(Cp* TaCl)₃(μ_2 -Cl)(μ_2 -O)₂(μ_3 -O)(μ -O₂SitBu₂)].^[28b]

In addition, a $P(H)(Ph)O_2^{-1}$ ligand, the anion of phenyl phosphinic acid, bridges Ta(1) and Ta(2). However, the PH proton could not be localised. Due to the small amount of **6** available, no ³¹P NMR spectrum could be obtained to verify the presence of the PH proton. However, since tantalum(v) is present in this cluster, the presence of an anionic $P(H)(Ph)O_2^{-1}$ ligand must be assumed. The P-O bond lengths indicate multiple bond character (ca. 1.51 Å).^[28f]

While no reaction of **3** with one or two equivalents of CyNC was observed, a 10-fold excess of CyNC gave the tantalum(III) complex $[Cp*TaCl(CNCy)_4]Cl$ (7) (Scheme 3), which was characterised by ¹H, ¹³C NMR spectroscopy and

Scheme 3

Figure 8. Molecular structure of [Cp*TaCl(CNCy)₄]Cl (7) showing the atom numbering scheme employed (ORTEP plot, 50% probab-ility, SHELXTL PLUS; $XP^{(37)}$). Only the cation is shown. Hydrogen atoms are omitted for clarity; selected bond lengths [Å] and angles [°]: Ta(1)-C(11) 2.179(4), Ta(1)-C(32) 2.185(4), Ta(1)-C(11) 2.179(4), 2.187(4), Ta(1)-C(25)Ta(1) - C(18)2.187(4)Ta(1) - Cl(1)2.5146(9), N(1)-C(11) 1.151(5), N(1)-C(12) 1.460(5), N(2)-C(18)1.147(5), N(2)-C(19) 1.452(5), N(3)-C(25) 1.154(5), N(3)-C(26) 1.452(5), N(4)-C(C(11)-Ta(1)-C(32))N(4) - C(32)1.152(5) N(4) - C(33)1 459(5) 84.69(13), $\dot{C}(11) - Ta(1) - C(18)$ 87.54(14) C(32) - Ta(1) - C(18) = 153.37(13),C(11) - Ta(1) - C(25)153.23(13). C(32) - Ta(1) - C(25)86.15(13), C(18) - Ta(1) - C(25)89.51(14). C(11) - Ta(1) - Cl(1)76.99(10), C(32) - Ta(1) - Cl(1)76.98(10), C(18) - Ta(1) - Cl(1)76.46(10), 76.45(10). C(25) - Ta(1) - Cl(1)C(11) - N(1) - C(12)165.6(4), C(18) - N(2) - C(19)166.5(4), C(25) - N(3) - C(26)174.6(4), C(32) - N(4) - C(33)175.5(4), N(1) - C(11) - Ta(1)176.1(3), N(2) - C(18) - Ta(1)176.0(3). N(3) - C(25) - Ta(1) 177.2(3), N(4) - C(32) - Ta(1) 177.7(3).

by crystal structure determination. A molecular ion peak was observed for the cation in 7 by FAB-MS (3-nitrobenzaldehyde as matrix) at m/z = 786. In the ³¹P NMR spectrum of the reaction mixture, signals for the oxidation products (PPh)_n (n = 4-6)^[29] were observed. In addition, two doublets ($\delta = -57.8$ ppm and -121.4 ppm, ¹J_{PP} = 311 Hz) were observed, which we could not assign.

Complex 7 crystallises as orange rhombic crystals from THF in the monoclinic space group $P2_1/n$. In the cation (Figure 8), the NC group occupies the axial position in three of the four cyclohexyl groups of the isocyanide ligands. The reason for this unexpected arrangement is the formation of hydrogen bonds between the hydrogen atom of the α -C atom C(26) of the isocyanide ligand in which the NC group is in the equatorial position and the hydrogen atom on the β -C atom of an isocyanide ligand of a second molecule to a chloride anion (Figure 9). However, in solution the four isocyanide ligands are equivalent (¹³C NMR).

Figure 9. Hydrogen bonding in [Cp*TaCl(CNCy)₄]Cl (7) (ORTEP plot, 50% probability, SHELXTL PLUS; XP^[37]).

For the TaCN group, two mesomeric structures can be formulated (as for carbonyl groups):

Figure 10. Molecular structure of $[(Cp*TaCl_2)_2(\mu_2-O)(\eta^2,\mu_2 P_2Cy_2$] (8) showing the atom numbering scheme employed (OR-TEP plot, 50% probability, SHELXTL PLUS; $XP^{(37)}$). Hydrogen atoms are omitted for clarity. Bond lengths [Å] and angles [°]: Ta(2)-O(1) 1.974(6), Ta(2)-Cl(3) 2.413(2), Ta(2)-Cl(4) 2.425(2), Ta(2)-P(1) 2.580(2), Ta(2)-P(2) 2.600(2), Ta(1)-O(1) 1.978(6), Ta(1)-Cl(2) 2.407(2), Ta(1)-Cl(1) 2.413(2), Ta(1)-P(2) 2.578(2),Ta(1)-P(1) 2.602(2), P(1)-C(21) 1.884(9), P(1)-P(2) 2.188(3), 1.864(9); C 4) 148.73(17), O(1) - Ta(2) - Cl(3)P(2) - C(27)94.31(18). O(1) - Ta(2) - Cl(4)Cl(3) - Ta(2) - Cl(4)88.86(9), O(1) - Ta(2) - P(1)69.02(17), Cl(3) - Ta(2) - P(1)137.96(8), Cl(4) - Ta(2) - P(1)Cl(3) - Ta(2) - P(2)O(1) - Ta(2) - P(2)Cl(4) - Ta(2) - P(2)67.73(17), 88.01(8), 81.33(8), 88.14(8), P(1) - Ta(2) - P(2)49.97(8), O(1) - Ta(1) - Cl(2)94.81(17). Cl(2)-Ta(1)-Cl(1)Cl(2)-Ta(1)-P(2)O(1) - Ta(1) - Cl(1)148.85(16), 90.28(8), O(1) - Ta(1) - P(2)68.17(17), 137.60(8), $\begin{array}{c} Cl(1) - Ta(1) - P(2) \\ Cl(2) - Ta(1) - P(1) \\ P(2) - Ta(1) - P(1) \end{array}$ O(1) - Ta(1) - P(1) Cl(1) - Ta(1) - P(1)68.49(16), 87.57(7), 87.88(8), 81.04(8), 49.97(8), C(21) - P(1) - P(2)111.3(4), P(2) - P(1) - Ta(2)65.49(9), C(21) - P(1) - Ta(2)138.1(3), C(21) - P(1) - Ta(1)131.2(3), P(2) - P(1) - Ta(1)64.45(9), C(27) - P(2) - P(1)P(1) - P(2) - Ta(1) Ta(2) - P(1) - Ta(1)87.02(7), 111.2(3), C(27) - P(2) - Ta(1)138.2(3),65.57(9), C(27) - P(2) - Ta(2)P(1) - P(2) - Ta(2)64.55(9), 131.0(3), Ta(1) - P(2) - Ta(2) 87.10(7), Ta(2) - O(1) - Ta(1) 129.1(3).

As the Ta-C bond lengths of the isocyanide ligands [2.179(4) to 2.187(4) Å] are in the range of Ta-C single bonds and the C-N-C(Cy) groups are almost linear [165.6(4)° to 175.5(4)°], mesomeric structure **A** can be assumed. The Ta atom is located 0.502(2) Å above the plane of the four isocyanide carbon atoms.

As a minor product, [(Cp*TaCl₂)₂(μ_2 -O)(η^2 , μ_2 -P₂Cy₂)] (8) was also obtained in the reaction of [Cp*TaCl₄] with one equivalent of LiPHCy. 8 was only characterised by crystal structure determination; in the ³¹P NMR spectrum of the reaction mixture a singlet of low intensity at δ = 538.6 ppm was observed, which could be attributed to 8 or a precursor complex thereof. As two doublets are observed in the highfield region of the ³¹P NMR spectrum of [Cp₂TaH(η^2 -P₂R₂)] (R = Ph:^[2a,30] δ = -145.1 ppm and -162.8 ppm, R = Cy:^[30] δ = -123.1 ppm and -143.3 ppm) the latter seems more likely.

A possible route for the formation of **8** is hydrolysis of $[Cp*TaCl_4]$ to give $[(Cp*TaCl_3)_2(\mu-O)]$, which can then re-

act with $P_2H_2R_2$ (formed in the redox reaction which gives 1) to yield the observed product (Scheme 4).

Complex 8 crystallises in the monoclinic space group *Cc*. In 8, two Cp*TaCl₂ fragments are bridged by one oxo ligand and a diphosphanediyl group $P_2Cy_2^{2^-}$; this indicates the presence of Ta^V (Figure 10). In general, free diphosphenes P_2R_2 are only stable when sterically demanding R groups are present;^[31] however, unstable derivatives can be stabilised by coordination to a transition metal.^[32] The Ta-P bond lengths [Ta(2)-P(1) 2.580(2), Ta(2)-P(2) 2.600(2), Ta(1)-P(2) 2.578(2), Ta(1)-P(1) 2.602(2) Å] are in the range observed for other tantalum diphosphene complexes [2.602(5) to 2.632(5) Å].^[32]

In 8, the P(1)–P(2) bond length of 2.188(3) Å indicates a single bond. In the tantalum diphosphene complexes $[Cp_2TaH(\eta^2-P_2R_2)]$ (R = Cy, H) the P–P bond lengths are shorter [2.131(3) and 2.136(6) Å].^[30]

Experimental Section

All experiments were carried out under purified dry argon. Solvents were dried and freshly distilled under argon. The NMR spectra were recorded with an AVANCE DRX 400 spectrometer (Bruker), ¹H NMR: internal standard solvent (benzene or CDCl₃), external standard SiMe₄. ¹³C NMR: external standard SiMe₄, internal standard solvent. ³¹P NMR: external standard 85% H₃PO₄. The IR spectra were recorded with a FT-IR spectrometer Perkin–Elmer System 2000 in the range 350–4000 cm⁻¹. UV/Vis spectra were recorded in pentane with a LAMBDA 900 (Perkin–Elmer) in an inert-gas cuvette. The melting points were determined in sealed capillaries under argon and are uncorrected. LiPHCy,^[11] LiPH*I*Bu,^[12] LiPHPh,^[13] LiPHMes,^[14] [Cp'TaCl₄]^[16] and [Cp*TaCl₄]^[10] were prepared by literature procedures.

General Procedure for the Preparation of *trans*-[{Cp*TaCl(μ -PR)}₂] [R = Cy (1), *t*Bu (2), Ph (3), Mes (4b)]: A suspension of [Cp*TaCl₄] in toluene (30 mL) was cooled to -70 °C, and two equivalents of LiPHR were added to the stirred reaction mixture over 2 h. The resulting suspension was slowly warmed to room temperature and stirred overnight. The solvent was removed and the solid dissolved in diethyl ether (1, 3), pentane (2), or hexane (4b). The mixture was filtered. Deep red crystals were obtained by cooling the filtrate to 5 °C.

The Ta^{IV} phosphinidene complex (Table 1) and the oxidation products $P_2H_2R_2$ (or their decomposition products: cyclic oligophosphanes and the free phosphane RPH₂) were detected by ³¹P NMR spectroscopy. The following signals were observed for the oxidation products:

*t*Bu: $\delta = -57.5$ ppm [s, (P*t*Bu)₄],^[29] -71.7 (d) and -108.0 (t) (P*t*Bu)₃ ppm.^[33]

Cy: $\delta = -68.3$ (s, PCy)₄, -84.3 and -87.5 (m, *rac-* and *meso-*P₂H₂Cy₂),^[29] -111.0 (t, PH₂Cy) ppm.

Ph: $\delta = ca. 3 [m, (PPh)_5], -21.3 [s, (PPh)_6], -47.6 [s, (PPh)_4]^{[29,34]} -67.4, -70.9 (m,$ *meso-*and*rac-P*₂H₂Ph₂; the signal for the unstable diphosphane disappears after two days),^[35,36] -122.1 (t, PH₂Ph) ppm.

Mes: $\delta = -43.2$ [s, (PMes)₄], -109.3 (d), -143.9 (t) (PMes)₃, -110.4, -117.5 (m, *meso-* and *rac-P*₂H₂Mes₂), -153.8 (t, PH₂Mes) ppm.

1: (0.45 g, 0.98 mmol) [Cp*TaCl₄], (0.48 g, 1.96 mmol) LiPHCy, rhombohedral deep red crystals of 1·2 Et₂O, yield: 0.40 g (81% rel. [Cp*TaCl₄]), m.p. 319 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 1.12$ [t, ³J_{H,H} = 7.0 Hz, 6 H, CH₃ in ether], 1.38 (m, 4 H, 4-H in Cy), 1.46 (m, 8 H, 3-H/5-H in Cy), 1.76 (m, 8 H, 2-H/6-H in Cy), 2.00 (m, 2 H, 1-H in Cy), 2.20 (s, 30 H, CH₃ in Cp*), 3.27 [q, ³J_{H,H} = 7.0 Hz, 4 H, CH₂ in ether] ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): $\delta = 14.0$ (CH₃ in C₅Me₅), 16.2 (CH₃ in ether), 27.5 (C-4 in Cy), 30.0 [d, ³J_{P,C} = 19 Hz; C-3/C-5 in Cy], 35.9 [d, ²J_{P,C} = 79 Hz; C-2/C-6 in Cy], 52.1 (br; C-1 in Cy), 66.6 (CH₂ in ether), 114.9 (C₅Me₅) ppm. Solvent-free 1, C₃₂H₅₂Cl₂P₂Ta₂ (931.51): C 41.3, H 5.6, Cl 7.6; found C 40.4, H 5.3, Cl 7.2.

2: (0.40 g, 0.87 mmol) [Cp*TaCl₄], (0.17 g, 1.77 mmol) LiPH*t*Bu, yield: 0.33 g (86% rel. [Cp*TaCl₄]), m.p. 341 °C (dec.), prismatic deep red crystals. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 1.48$ [d, ³*J*_{P,H} = 14 Hz, 18 H, *t*Bu], 2.18 (s, 30 H, C*H*₃ in Cp*) ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): $\delta = 14.8$ (*C*H₃ in C₅Me₅), 35.1 [C(CH₃)₃], 35.6 [*C*(CH₃)₃], 116.4 (*C*₅Me₅) ppm. C₂₈H₄₈Cl₂P₂Ta₂ (879.40): calcd. C 38.3, H 5.5, Cl 8.1; found C 38.8, H 5.6, Cl 8.1.

3: (0.50 g, 1.09 mmol) [Cp*TaCl₄], (0.25 g, 2.20 mmol) LiPHPh, yield: 0.42 g (85% rel. [Cp*TaCl₄]), m.p. 341 °C (dec.), rhombohedral deep red crystals. ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 2.03$ (s, 30 H, CH₃ in Cp*), 6.97 (br, 2 H, *p*-H in Ph), 7.36 [pseudo t, ³J_{H,H} = 14, ³J_{P,H} = 14 Hz, 4 H, *o*-H in Ph], 8.17 [t, ³J_{H,H} = 14 Hz, 4 H, *m*-H in Ph] ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): $\delta = 13.6$ (CH₃ in C₅Me₅), 115.3 (C₅Me₅), 129.7 (*p*-C in Ph), 125.2 (*m*-C in Ph), 136.0 (*o*-C in Ph), 148.6 (*ipso*-C in Ph) ppm. C₃₂H₄₀Cl₂P₂Ta₂ (919.38): calcd. Cl 7.7; found Cl 8.1.

4b: (0.40 g, 0.87 mmol) [Cp*TaCl₄], (0.28 g, 1.8 mmol) LiPHMes, yield: 0.32 g (73% rel. [Cp*TaCl₄]), m.p. 321 °C (dec.), rhombohedral deep red crystals. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 2.01 (s, 30 H, CH₃ in Cp*), 2.22 (s, 6 H, *p*-Me in Mes), 2.72 (s, 12 H, *o*-Me in Mes), 7.01 (s, 4 H, *m*-H in Mes) ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): δ = 13.3 (CH₃ in C₅Me₅), 22.0 (*p*-Me in Mes), 132.9 (*p*-C in Mes), 139.4 (*o*-C in Mes), 144.8 (*ipso*-C in Mes) ppm. C₃₈H₅₂Cl₂P₂Ta₂ (1003.54): calcd. C 45.5, H 5.2; Cl 7.1; found C 45.9, H 5.4, Cl 7.0.

Synthesis of cis-[{Cp*TaCl(µ-PMes)}₂] (4a): A suspension of one equivalent of [Cp*TaCl₄] (0.5 g, 1.09 mmol) in toluene (30 mL) was cooled to -70 °C, and one equivalent of LiPHMes (0.17 g, 1.09 mmol) was added to the stirred reaction mixture over 3 h. The resulting suspension was stirred at -70 °C for 2 h, and then slowly warmed to room temperature and stirred overnight. The solvent was removed under vacuum, and the solid recrystallised twice from *n*-hexane. Yield: 80 mg (29% rel. LiPHMes); m.p. 289 °C (dec.). ¹H NMR (400 MHz, C_6D_6 , 25 °C): $\delta = 2.05$ (s, 30 H, CH_3 in Cp*), 2.26 (s, 6 H, p-Me in Mes), 2.39 (s, 6 H, o-Me in Mes), 2.56 (s, 6 H, o-Me in Mes), 6.91 (s, 2 H, m-H in Mes), 6.97 (s, 2 H, m-H in Mes) ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): $\delta = 12.9$ (CH₃ in C₅Me₅), 21.8 (p-Me in Mes), 23.1 (o-Me in Mes), 24.3 (o-Me in Mes), 115.5 (C₅Me₅), 128.0 (m-C in Mes), 130.9 (m-C in Mes),139.7 (p-C in Mes), 142.1 (o-C in Mes), 145.7 (o-C in Mes), 149.3 (ipso-C in Mes) ppm. C₃₈H₅₂Cl₂P₂Ta₂ (1003.54): calcd. C 45.5, H 5.2; Cl 7.1; found C 45.8, H 6.0, Cl 6.8.

Synthesis of *cis*-[{Cp'TaCl(μ -PMes)}₂] (5): A suspension of [Cp'TaCl₄] (0.4 g, 0.99 mmol) in toluene (20 mL) was cooled to -70 °C, and one equivalent of LiPHMes (0.15 g, 0.98 mmol) was added to the stirred reaction mixture over 3 h. The resulting suspension was stirred at -70 °C for 2 h, and then slowly warmed to

room temperature and stirred overnight. The solvent was removed in vacuo, and the solid recrystallised twice from *n*-hexane. Yield: 0.19 g (43.5% rel. LiPHMes), rhombohedral orange-red crystals; m.p. 276 °C (dec.). ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 2.00$ (s, 6 H, C₅*Me*H₄), 2.34 (s, 6 H, *p*-Me in Mes), 2.49 (br, 12 H, *o*-Me in Mes), 5.72 (t, *J*_{H,H} = 2.6 Hz, 4 H, C₅MeH₄), 6.27 (t, *J*_{H,H} = 2.6 Hz, 4 H, C₅MeH₄), 6.64 (br, 4 H, *m*-H in Mes) ppm. C₃₀H₃₆Cl₂P₂Ta₂ (891.33): C 40.4, H 4.1, Cl 8.0; found C 40.6, H 4.2, Cl 7.7.

Synthesis of [Cp*TaCl(CNCy)₄]Cl (7): Cyclohexyl isocyanide (0.17 g, 1.6 mmol) was added to a solution of **3** (0.15 g, 0.16 mmol) in toluene (20 mL). Over 3 days, the red solution turned orange. The solvent was removed under vacuum, and the solid recrystallised from THF to give **7** as rhombic orange crystals (0.10 g, 38% rel. to **3**); m.p. 345 °C (dec.). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = ca. 1.3 (m, 24 H, 3-H, 4-H, 5-H in Cy), ca. 1.7 (m, 16 H, 2-H, 6-H in Cy), 2.29 (s, 15 H, CH₃ in Cp*), 4.45 (br, 4 H, 1-H in Cy) ppm. ¹³C{¹H} NMR (100.61 MHz, CDCl₃, 25 °C): δ = 13.7 (CH₃ in C₅Me₅), 23.5 (C-4 in Cy), 26.1 (C-3 and C-5 in Cy), 33.5 (C-2 and C-6 in Cy), 55.4 (C-1 in Cy), 70.3 (*C*NCy) 102.2 (*C*₅Me₅) ppm. C₃₈H₅₉Cl₂N₄Ta (823.74): C 55.4, H 7.2, Cl 8.6; found C 55.0, H 7.8, Cl 8.4.

Data Collection and Structural Refinement of 1-8: Details of the data collection and crystal structure refinement are summarised in Table 2. Data (Mo-Ka, $\lambda = 0.71073$ Å) were collected with a Siemens CCD (SMART). All observed reflections were used for determination of the unit cell parameters. The structures were solved by direct methods (SHELXTL PLUS^[37]) and subsequent difference Fourier syntheses and refined by full-matrix least-squares on F^2 (SHELXTL PLUS^[37]). Restrictions for 1-8: Ta, Cl, C, O, N and P atoms anisotropic, H atoms located or in calculated positions and refined isotropically. Absorption correction with SADABS^[38]. CCDC-181631 (1), -181629 (2), -181627 (3),- 181633 (4a), -181635 (4b), -181632 (5), -181630 (6), -181628 (7) and CCDC-181634 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We gratefully acknowledge support of this work by the Landesgraduiertenförderung Sachsen (scholarship for S. B.). We thank the company H. C. Starck GmbH & Co. KG for a generous donation of $TaCl_5$.

^[1] Eds. E. W. Abel, F. G. A. Stone, G. Wilkinson, *Comprehensive Organometallic Chemistry II*, Volumes 4 and 5, Pergamon Press, **1995**.

^[2] ^[2a] J. C. Leblanc, C. Moïse, J. Organomet. Chem. 1989, 364, C3-C4. ^[2b] R. T. Baker, J. C. Calabrese, R. L. Harlow, I. D. Williams, Organometallics 1993, 12, 830-841. ^[2c] G. I. Ni-konov, L. G. Kuzmina, P. Mountford, D. A. Lemenovskii, Organometallics 1995, 14, 3588-3591. ^[2d] G. Bonnet, O. Lavastre, J. C. Leblanc, C. Moïse, New. J. Chem. 1988, 12, 551-552. ^[2e] C. Poulard, G. Boni, P. Richard, C. Moïse, J. Chem. Soc., Dalton Trans. 1999, 2725-2730. ^[2f] O. Lavastre, G. Bonnet, G. Boni, M. Kubicki, C. Moïse, J. Organomet. Chem. 1997, 547, 141-147. ^[2g] P. Sauvageot, O. Blacque, M. M. Kubicki, S. Juge, C. Moïse, Organometallics 1996, 15, 2399-2403. ^[2h] S. Challet, O. Lavastre, C. Moïse, J.-C. Leblanc, New J. Chem. 1994, 18, 1155-1161.

FULL PAPER

- ^[3] G. A. A. Hadi, K. Fromm, S. Blaurock, S. Jelonek, E. Hey-Hawkins, *Polyhedron* **1997**, *16*, 721–731.
- [4] P. J. Domaille, B. M. Foxmann, T. J. McNeese, S. S. Wreford, J. Am. Chem. Soc. 1980, 102, 4114–4120.
- ^[5] J. B. Bonanno, P. T. Wolczanski, E. B. Lobkovsky, J. Am. Chem. Soc. **1994**, 116, 11159–11160.
- ^[6] C. C. Cummins, R. R. Schrock, W. M. Davis, Angew. Chem. 1993, 105, 758–761; Angew. Chem. Int. Ed. Engl. 1993, 32, 756–759.
- ^[7] S. Blaurock, E. Hey-Hawkins, Z. Anorg. Allg. Chem., in press.
- [8] S. Blaurock, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 2002, 628, 37–40.
- [9] M. Culmsee, T. Kruck, G. Meyer, M. S. Wickleder, Z. Anorg. Allg. Chem. 2001, 627, 1111–1112.
- [10] R. D. Sanner, S. T. Carter, W. J. Bruton, Jr., J. Organomet. Chem. 1982, 240, 157–162.
- ^[11] E. Hey-Hawkins, S. Kurz, *Phosphorus, Sulfur, and Silicon* 1994, 90, 281–284.
- ^[12] E. Hey-Hawkins, S. Kurz, J. Sieler, G. Baum, J. Organomet. Chem. **1995**, 486, 229–235.
- ^[13] C. Frenzel, E. Hey-Hawkins, *Phosphorus, Sulfur* **1998**, *143*, 1–17.
- ^[14] E. Hey, F. Weller, J. Chem. Soc., Chem. Commun. 1988, 782–783.
- ^[15] U. Segerer, R. Felsberg, S. Blaurock, G. A. Hadi and E. Hey-Hawkins, Phosphorus, Sulfur **1999**, *144–146*, 477–480; S. Blaurock, *Dissertation*, Universität Leipzig, **2000**; S. Blaurock, G. A. Hadi, E. Hey-Hawkins, *Angew. Chem.* (in preparation).
- ^[16] M. J. Bunker, A. de Cian, M. L. H. Green, J. J. E. Moreau, N. Siganporia, J. Chem. Soc., Dalton Trans. 1980, 2155–2161.
- ^[17] P. B. Hitchcock, M. F. Lappert, W. P. Leung, *Chem. Commun.* 1987, 1282–1283.
- ^[18] EI for 1-3, FAB for 4a, 4b. The mass spectra were recorded with a Varian MAT 711 (EI, 70 eV, source temperature 180 °C. FAB in nitrobenzaldehyde as matrix).
- ^[19] ^[19a] J. A. M. Canich, F. A. Cotton, *Inorg. Chem.* 1987, 26, 3473-3478. ^[19b] F. A. Cotton, M. P. Diebold, W. J. Roth, *Polyhedron* 1985, 4, 1103-1108. ^[19c] A. J. Scioly, M. L. Luetkens, R. B. Wilson, J. C. Huffmann, A. P. Sattelberger, *Polyhedron* 1987, 6, 741-757. ^[19d] A. P. Sattelberger, R. B. Wilson Jr., J. C. Huffmann, *Inorg. Chem.* 1982, 21, 4179-4184. ^[19e] F. A. Cotton, M. P. Diebold, S. A. Duraj, W. J. Roth, *Polyhedron* 1985, 4, 1479-1484.
- ^[20] L. Messerle, Chem. Rev. 1988, 88, 1229-1254.
- ^[21] G. C. Campbell, J. A. M. Canich, F. A. Cotton, S. A. Duraj, J. F. Haw, *Inorg. Chem.* **1986**, *25*, 287–290.
- ^[22] M. B. Hall, R. F. Fenske, Inorg. Chem. 1972, 11, 768-775.
- [23] L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie, Weinheim, 1962.
- [^{24]} A. R. Chakravarty, F. A. Cotton, M. P. Diebold, D. B. Lewis,
 W. J. Roth, J. Am. Chem. Soc. **1986**, 108, 971–976.
- ^[25] R. J. Burt, G. J. Leigh, D. L. Hughes, J. Chem. Soc., Dalton Trans. 1981, 793-799.
- ^[26] V. C. Gibson, T. P. Kee, W. Clegg, J. Chem. Soc., Dalton Trans. 1990, 3199–3210.
- ^[27] ^[27a] D. W. Stephan, Angew. Chem. 2000, 112, 322-328; Angew. Chem. 2000, 39, 314-329. ^[27b] F. Mathey, Multiple Bonds and Low Coordination in Phosphorus Chemistry, M. Regitz, O. J. Scherer (eds), Thieme, Stuttgart, 1990, p.38. ^[27c] F. Mathey, Angew. Chem. 1987, 99, 285-296; Angew. Chem. Int. Ed. Engl. 1987, 26, 275-286. ^[27d] K. D. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon Copy, Wiley, Chichester, 1998, p.19. ^[27e] M. J. M. Vlaar, A. W. Ehlers, F. J. J. de Kanter, M. Schakel, A. L. Spek, K. Lammertsma, Angew. Chem. 2000, 112, 3071-3074; Angew. Chem. Int. Ed. 2000, 39, 2943-2945. ^[27f] M. J. M. Vlaar, P. Valkier, A. W. Ehlers, F. J. J. de Kanter, M. Schakel, A. L. Spek, M. Lutz, K. Lammertsma, Chem. Eur. J.

- 2001, 7, 3551-3557. ^[27g] M. J. M. Vlaar, A. W. Ehlers, F. J. J. de Kanter, M. Schakel, A. L. Spek, M. lutz, N. Sigal, Y. Apeloig, K. Lammertsma, Angew. Chem. 2000, 112, 4296-4299; Angew. Chem. Int. Ed. 2000, 39, 4127-4130. [27h] M. J. M. Vlaar, F. J. J. de Kanter, M. Schakel, A. L. Spek, M. Lutz, K. Lammertsma, J. Organomet. Chem. 2001, 617-618, 311-317. ^[27i] M. J. M. Vlaar, S. G. A. van Assema, F. J. J. de Kanter, M. Schakel, A. L. Spek, M. Lutz, K. Lammertsma, Chem. Eur. J. 2002, 8, 58-65. ^[27j] M. J. M. Vlaar, A. W. Ehlers, M. Schakel, S. B. Clendenning, J. F. Nixon, M. Lutz, A. L. Spek, K. Lammertsma, Chem. Eur. J. 2001, 7, 3545-3549. [27k] J. B. M. Wit, G. Th. van Eijkel, F. J. J. de Kanter, M. Schakel, A. W. Ehlers, M. Lutz, A. L. Spek, K. Lammertsma, Tetrahedron 2000, 56, 137-141. [271] J. B. M. Wit, G. Th. van Eijkel, F. J. J. de Kanter, M. Schakel, A. W. Ehlers, M. Lutz, A. L. Spek, K. Lammertsma, Angew. Chem. 1999, 111, 2716-2719; Angew. Chem. Int. Ed. 1999, 38, 2596-2599. (and references therein)
- ^[28] ^[28a] P. Jernakoff, C. de Meric de Bellefon, G. L. Geoffroy, A. L. Rheingold, S. J. Geib, *Organometallics* 1987, *6*, 1362–1364.
 ^[28b] H.-J. Gosink, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, E. Irmer, R. Herbst-Irmer, *Organometallics* 1994, *13*, 3420–3426.
 ^[28c] E. Benory, A. Bino, D. Gibson, F. A. Cotton, Z. Dori, *Inorg. Chim. Acta* 1985, *99*, 137–142.
 ^[28d] D. T. Richens, L. Helm, P.-A. Pittet, A. E. Merbach, F. Nicolõ, G. Chapuis, *Inorg. Chem.* 1989, *28*, 1394–1402.
 ^[28e] F. Boutonnet, M. Zablocka, A. Igau, J. Jaud, J.-P. Majoral, J. Schamberger, G. Erker, S. Werner, C. Krüger, *J. Chem. Soc., Chem. Commun.* 1995, 823–824.
 ^[28t] J. de la Mata, R. Fandos, M. Gómez, P. Gómez-Sal, S. Martinez-Carrera, P. Royo, Organometallics 1990, *9*, 2846–2850.
- ^[29]]M. Baudler, K. Glinka, Chem. Rev. 1993, 93, 1623-1667.
- ^[30] N. Etkin, M. T. Benson, S. Courtenay, M. J. McGlinchey, A. D. Bain, D. W. Stephan, *Organometallics* 1997, *16*, 3504-3510.
- ^[31] M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. **1981**, 103, 4587–4589.
- ^[32] ^[32a] J. C. Green, M. L. H. Green, G. E. Morris, J. Chem. Soc., Chem. Commun. 1974, 212–213. ^[32b] P. S. Elmers, M. L. Scudder, B. O. West, J. Organomet. Chem. 1976, 122, 281–288.
 ^[32c] B. Deppisch, H. Schäfer, Acta Crystallogr., Sect. B 1982, 38, 748–751. ^[32d] M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1984, 106, 1495–1496. ^[32e] J. Chatt, P. B. Hitchcock, A. Pidcock, C. P. Warrens, K. R. Dixon, J. Chem. Soc., Chem. Commun. 1982, 932–933. ^[32f] A. H. Cowley, J. E. Kilduff, J. G. Lasch, N. C. Norman, M. Pakulski, F. Ando, T. C. Wright, Organomet. 1984, 3, 1044–1050. ^[32g] S. Kurz, E. Hey-Hawkins, J. Organomet. Chem. 1993, 462, 203–207.
- [33] M. Baudler, J. Hahn, H. Dietsch, G. Fürstenberg, Z. Naturforsch., Teil B 1976, 31, 1305-1310.
- ^[34a] M. Baudler, B. Carlsohn, W. Böhm, G. Z. Reuschenbach, *Z. Naturforsch.*, *Teil B* 1976, *31*, 558–564.
 ^[34b] M. Baudler, G. Reuschenbach, *Z. Anorg. Allg. Chem.* 1980, 464, 9–16.
- [^{35]} M. Baudler, B. Carlson, D. Koch, P. K. Medda, *Chem. Ber.* 1978, 111, 1210–1216.
- ^[36] [^{36a]} G. Becker, M. Rössler, E. Schneider, Z. Anorg. Allg. Chem. 1978, 439, 121–133. [^{36b]} C. Frenzel, Dissertation, Universität Leipzig, 1999.
- [37] SHELXTL PLUS, Siemens Analyt. X-ray Inst. Inc., 1990, XS: Program for Crystal Structure Solution, XL: Program for Crystal Structure Determination, XP: Interactiv Molecular Graphics.
- ^[38] R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33-38.
- ^[39] S. Kurz, *Dissertation*, Universität Leipzig, 1994.
- ^[40] D. Feitler, G. M. Whitesides, Inorg. Chem. 1976, 15, 466-469.
- ^[41] A. Cowley, N. C. Norman, M. Pakulski, *Inorg. Syn.* **1990**, 27, 235–240.

Received March 15, 2002 [I02138]