

Journal of Alloys and Compounds 316 (2001) 264-268



www.elsevier.com/locate/jallcom

# Structural and thermochemical studies on Cr<sub>2</sub>TeO<sub>6</sub> and Fe<sub>2</sub>TeO<sub>6</sub>

K. Krishnan, K.D. Singh Mudher\*, G.A. Rama Rao, V. Venugopal

Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Received 3 July 2000; accepted 14 November 2000

# Abstract

 $Cr_2TeO_6$  and  $Fe_2TeO_6$  were prepared by the solid-state reaction route. The crystal structure was derived for both compounds from X-ray powder diffraction data.  $Cr_2TeO_6$  and  $Fe_2TeO_6$  are isostructural and have the trirutile structure. The Gibbs free energy of formation  $(\Delta_f G^\circ)$  for  $Cr_2TeO_6$  and  $Fe_2TeO_6$  was obtained from vapor pressure data employing the Knudsen Effusion Mass Loss technique (KEML) and is given by the relation

 $\Delta_{\rm f} G^{\circ} {\rm Cr}_2 {\rm TeO}_6({\rm s}) = (-1651.6 + 0.5683T) \pm 15 \, {\rm kJ/mol} \, (1014 - 1100 \, {\rm K})$ 

 $\Delta_{\rm f} G^{\circ} {\rm Fe}_{2} {\rm TeO}_{6}({\rm s}) = (-1234.3 + 0.4729T) \pm 15 \, {\rm kJ/mol} \, (979 - 1052 \, {\rm K}).$ 

© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Oxide materials; Crystal structure; Thermodynamic properties; Nuclear reactor materials; Solid-state reactions

# 1. Introduction

The structure and thermochemistry of binary and ternary oxides of uranium, plutonium and fission products formed during the irradiation of oxide fuels is important in evaluating their performance in a reactor [1]. Tellurium is one of the highly reactive fission products, which embrittles the stainless steel cladding components [2] containing Cr, Fe, Ni, Zr, Nb, etc. used in Fast Breeder Reactors (FBR). The binary phase diagram of M-Te systems (M=Fe, Cr, Ni, Mo, Nb, Zr, La, Ru and Ag) have been compiled and evaluated in the literature [3]. In the transition metal-tellurium-oxygen system, the formation of several compounds, through the solid-state reaction route, such as Cr<sub>2</sub>Te<sub>3</sub>O<sub>9</sub>, Fe<sub>2</sub>Te<sub>3</sub>O<sub>9</sub>, CoTeO<sub>3</sub>, CoTe<sub>6</sub>O<sub>13</sub>, NiTeO<sub>3</sub>, NiTe<sub>2</sub>O<sub>5</sub> and Ni<sub>2</sub>Te<sub>3</sub>O<sub>8</sub>, has been reported by Sokolov et al. [4]. Thermal and structural studies of the phase transformations of the tellurites of trivalent chromium and iron have been carried out by Gospodinov and Gjurova [5]. Recently, we reported the preparation, characterization and vaporization behavior of compounds in the Ni-Te-O system [6]. In continuation of our earlier investigations on the M-Te-O system, we report here a study of the crystal structure and measurement of the thermodynamic quantities of the tellurates of chromium and iron, namely  $Cr_2TeO_6$  and  $Fe_2TeO_6$ . The crystal structure was derived from X-ray powder diffraction data, whereas thermodynamic quantities such as enthalpy of vaporization and the standard Gibbs energy of formation were calculated from vapor pressure measurements over  $Cr_2TeO_6(s)$  and  $Fe_2TeO_6(s)$ .

# 2. Experimental

#### 2.1. Preparation and characterization of the compounds

 $Cr_2TeO_6$  and  $Fe_2TeO_6$  were prepared by the solid-state reaction route by heating well-ground mixtures of  $Cr_2O_3$ and  $Fe_2O_3$  with  $TeO_2$  in their respective molar ratios of 1:1 in the form of pressed pellets in an alumina boat in air at 975 K for 24 h. Samples were reground and refired twice to obtain single-phase compounds. The formation of the compounds was confirmed from their X-ray diffraction patterns recorded on a Diano X-ray diffractometer using graphite monochromatized Cu K $\alpha_1$  radiation ( $\lambda = 0.15406$ nm). The step-scanned intensity data was obtained in the  $2\theta$  range of 15 to 100° with a step of 0.02°, by counting for 5 s at each step. Refinement of the structure was carried

<sup>\*</sup>Corresponding author. Fax: +91-22-550-5150.

E-mail address: kdsingh@apsara.barc.ernet.in (K.D. Singh Mudher).

Table 2

out by the Rietveld profile method using the computer program DBWS-9411 [7] for deriving the structure.

#### 2.2. Thermal and vapor pressure measurements

The thermal stability of  $Cr_2TeO_6$  and  $Fe_2TeO_6$  was studied by recording the thermogravimetric (TG) patterns in air in a Mettler thermoanalyser at a heating rate of 10 K/min. The experiments were carried out in platinum cups in flowing dry air up to 1673 K.

Mass loss measurements were carried out in a Cahn Vacuum microbalance by the Knudsen Effusion Mass Loss (KEML) technique. A boron nitride cell with a knife edge orifice of approximately 1.0 mm diameter at the center of the lid was used as the Knudsen cell. The vapor pressures of  $TeO_2(g)$  over  $Cr_2TeO_6(s)$  and  $Fe_2TeO_6(s)$  were measured in the temperature range 1014–1100 and 979–1052 K respectively. The experimental conditions were similar to those reported in our earlier studies on the Ni–Te–O system [6].

## 3. Results and discussion

## 3.1. X-ray studies

The X-ray diffraction data for these compounds were indexed on a tetragonal cell and the least squares refined values of the lattice parameters are given in Table 1. The X-ray powder diffraction data for  $Cr_2TeO_6$  and  $Fe_2TeO_6$  are in good agreement with the data reported in the literature [8]. The similarity in the X-ray powder patterns suggests that both the compounds are isostructural.

Oxides with the general formula  $A_2BO_6$  are known to exist in the trirutile structure [9]. The crystal structure parameters for  $Cr_2TeO_6$  and  $Fe_2TeO_6$  were refined on the

Table 1

Rietveld refinement data for Cr<sub>2</sub>TeO<sub>6</sub> and Fe<sub>2</sub>TeO<sub>6</sub><sup>a</sup>

| Cr <sub>2</sub> TeO <sub>6</sub> | Fe <sub>2</sub> TeO <sub>6</sub>                                                                                                                                                              |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 327.6                            | 335.3                                                                                                                                                                                         |
| P4/mnm                           | P4/mnm                                                                                                                                                                                        |
| 0.45453(1)                       | 0.46057(2)                                                                                                                                                                                    |
| 0.45453(1)                       | 0.46057(2)                                                                                                                                                                                    |
| 0.90119(3)                       | 0.90923(4)                                                                                                                                                                                    |
| 2                                | 2                                                                                                                                                                                             |
| -                                | -                                                                                                                                                                                             |
| 15-100                           | 15 - 100                                                                                                                                                                                      |
| 0.02                             | 0.02                                                                                                                                                                                          |
| 0.15406                          | 0.15406                                                                                                                                                                                       |
| 4250                             | 4250                                                                                                                                                                                          |
| Pseudo-Voigt                     | Pseudo-Voigt                                                                                                                                                                                  |
| 8.79                             | 10.45                                                                                                                                                                                         |
| 11.15                            | 8.53                                                                                                                                                                                          |
| 8.64                             | 7.81                                                                                                                                                                                          |
| 1.29                             | 1.33                                                                                                                                                                                          |
|                                  | Cr <sub>2</sub> 1eO <sub>6</sub><br>327.6<br>P4/mnm<br>0.45453(1)<br>0.45453(1)<br>0.90119(3)<br>2<br>-<br>15-100<br>0.02<br>0.15406<br>4250<br>Pseudo-Voigt<br>8.79<br>11.15<br>8.64<br>1.29 |

 ${}^{a}R_{p} = 100 \times \Sigma |y_{obs} - y_{cal}| / \Sigma |y_{obs}|; \quad R_{wp} = 100 \times \{ [\Sigma w (y_{obs} - y_{cal})^{2}] / [\Sigma w (y_{obs})^{2}] \}^{1/2}.$ 

Atomic parameters for  $Cr_2TeO_6$  and  $Fe_2TeO_6$ . Estimated standard deviations are given in parentheses

| Atom                             | Site       | x          | у          | Z          | B<br>(Å <sup>2</sup> ) |
|----------------------------------|------------|------------|------------|------------|------------------------|
| Cr. TeO.                         |            |            |            |            |                        |
| Cr                               | 4e         | 0          | 0          | 0.3338(3)  | 0.67(6)                |
| Те                               | 2a         | 0          | 0          | 0          | 1.03(4)                |
| 01                               | 4f         | 0.3058(13) | 0.3058(13) | 0          | 1.01(16)               |
| O2                               | 8 <i>j</i> | 0.3082(8)  | 0.3082(8)  | 0.3359(8)  | 1.41(31)               |
| Fe <sub>2</sub> TeO <sub>6</sub> |            |            |            |            |                        |
| Fe                               | 4e         | 0          | 0          | 0.3368(5)  | 0.74(7)                |
| Те                               | 2a         | 0          | 0          | 0          | 0.96(5)                |
| 01                               | 4f         | 0.2937(24) | 0.2937(24) | 0          | 1.11(18)               |
| O2                               | 8 <i>j</i> | 0.3097(15) | 0.3097(15) | 0.3346(16) | 1.32(29)               |

basis of the trirutile structure by Rietveld profile analysis of the step-scanned X-ray intensity data. The variables include a scale factor, six background parameters, three half-width parameters defining the pseudo-Voigt profile peak shape, the unit cell dimensions, atomic positions, thermal parameters for chromium (or iron) and tellurium atoms. Details of refinement and agreement factors are given in Table 1. The structural parameters including fractional atomic coordinates and the isotropic thermal parameters of the atoms and selected inter-atomic distances for  $Cr_2TeO_6$  and  $Fe_2TeO_6$  are given in Tables 2 and 3, respectively. The observed, calculated and difference Xray powder diffraction pattern for Cr<sub>2</sub>TeO<sub>6</sub> is shown in Fig. 1. The structures of Cr<sub>2</sub>TeO<sub>6</sub> and Fe<sub>2</sub>TeO<sub>6</sub> are similar and the structure of  $Cr_2 TeO_6$  is shown in Fig. 2. In the structure, each Cr and Te atom is surrounded by six oxygen atoms in an octahedral coordination. The cation oxygen octahedra form edge-sharing chains which are occupied alternately by TeO<sub>6</sub> and CrO<sub>6</sub> octahedra in the ratio of 1:2.

#### 3.2. Thermal studies

The TG curves in Figs. 3 and 4 show that both  $Cr_2TeO_6$ and  $Fe_2TeO_6$  are stable in air up to 1123 K.  $Cr_2TeO_6$ decomposes rapidly in the range 1250–1350 K and the mass loss is complete at 1623 K. The decomposition of  $Fe_2TeO_6$  takes place over a wider temperature range, 1200–1550 K, and is complete at 1673 K. The slow

| Table | 3           |          |     |     |                                 |        |        |    |     |
|-------|-------------|----------|-----|-----|---------------------------------|--------|--------|----|-----|
| Main  | interatomic | distance | (Å) | for | M <sub>2</sub> TeO <sub>6</sub> | (where | M = Cr | or | Fe) |

|                    | Cr <sub>2</sub> TeO <sub>6</sub> | Fe <sub>2</sub> TeO <sub>6</sub> |
|--------------------|----------------------------------|----------------------------------|
| $Te-O_1 \times 2$  | 1.966 (6)                        | 1.913 (11)                       |
| $Te-O_2 \times 4$  | 1.925 (6)                        | 1.949 (11)                       |
| $M - O_1 \times 2$ | 1.950 (4)                        | 2.002 (8)                        |
| $M-O_2 \times 2$   | 1.964 (6)                        | 1.991 (8)                        |
| $M - O_2 \times 2$ | 1.981 (4)                        | 2.017 (8)                        |
| M–M                | 2.996 (5)                        | 2.968 (9)                        |
| M-Te               | 3.008 (3)                        | 3.062 (5)                        |



Two-Theta (degrees)

Fig. 1. Observed ( $\cdot$ ) and calculated (----) X-ray diffraction Rietveld plot for Cr<sub>2</sub>TeO<sub>6</sub>. The difference curve is shown at the bottom of the plot.

decomposition of  $Fe_2TeO_6$  in comparison to that of  $Cr_2TeO_6$  suggests that the activation energy associated with the decomposition of  $Fe_2TeO_6$  is more than that of



Fig. 2. Structure of Cr<sub>2</sub>TeO<sub>6</sub> showing the coordination around Cr and Te.

 $Cr_2TeO_6$ . The final products of the decomposition of  $Cr_2TeO_6$  and  $Fe_2TeO_6$ , due to the combined loss of 1 mol of  $TeO_2$  and 0.5 mol of  $O_2$ , were identified by XRD as  $Cr_2O_3$  and  $Fe_2O_3$ , respectively. During decomposition, the observed mass losses of 53.9% for  $Cr_2TeO_6$  and 52.8% for  $Fe_2TeO_6$  are in good agreement with the expected losses of 53.6 and 52.4% as represented by Eqs. (1) and (2):

$$Cr_2TeO_6(s) \to Cr_2O_3(s) + TeO_2(g) + \frac{1}{2}O_2(g)$$
 (1)

$$\operatorname{Fe}_{2}\operatorname{TeO}_{6}(s) \to \operatorname{Fe}_{2}\operatorname{O}_{3}(s) + \operatorname{TeO}_{2}(g) + \frac{1}{2}\operatorname{O}_{2}(g)$$
(2)



Fig. 3. Thermogravimetric curve for the decomposition of  $Cr_2TeO_6(s)$  under non-isothermal conditions in air at a heating rate of 10 K/min.



Fig. 4. Thermogravimetric curve for the decomposition of  $Fe_2TeO_6(s)$  under non-isothermal conditions in air at a heating rate of 10 K/min.

## 3.3. Vapor pressure measurements

#### 3.3.1. $Cr_2TeO_6$

The equilibrium pressures of  $\text{TeO}_2(g)$  and  $\frac{1}{2}\text{O}_2(g)$ measured in the temperature range 1014 to 1100 K over  $\text{Cr}_2\text{TeO}_6(s)$  and  $\text{Cr}_2\text{O}_3(s)$  were due to the combined loss of the gaseous products as represented in Eq. (1). The total mass loss due to  $\text{TeO}_2(g)$  and  $\frac{1}{2}\text{O}_2(g)$  was apportioned in terms of their individual masses using their mole fractions for the reaction given in Eq. (1). The mathematical derivation for the rate of mass loss (in g/s) is similar to that adopted for  $\text{Ni}_3\text{TeO}_6$  [6] and is

$$dw/dt = dw_1/dt + dw_2/dt$$
(3)

$$dw_2/dt = (dw_1/dt)(32/159.6n)$$
(4)

where "dw/dt" is the experimentally measured combined rate of mass loss of TeO<sub>2</sub>(g) and O<sub>2</sub>(g), " $dw_1/dt$ " and " $dw_2/dt$ " are the individual rates of mass loss of TeO<sub>2</sub>(g) and O<sub>2</sub>(g), respectively, and "*n*" is the ratio of number of moles of TeO<sub>2</sub>(g) to O<sub>2</sub>(g), which is equal to 2 in the present study. Substituting the value of " $dw_2/dt$ " in Eq. (3) and rearranging, we obtain

$$dw_1/dt = (dw/dt)(159.6/175.6) = (dw/dt)0.9089$$
(5)

By substituting the individual mass loss of  $TeO_2(g)$  and  $O_2(g)$  in the rate mass equation:

$$p (Pa) = dw/dt [1/kA] (2.28 \times 10^{-3}) \sqrt{T/M}$$
(6)

the individual partial pressures contributed by  $\text{TeO}_2(g)$  and  $O_2(g)$  were determined and are given in Table 4. The corresponding least squares fit between log *p* and 1/T for  $\text{TeO}_2$  is shown in Fig. 5 and can be represented by the relation

| Table 4                                                      |            |
|--------------------------------------------------------------|------------|
| Gibbs energy of formation of $Cr_2TeO_6(s)$ at different ten | nperatures |

| Temp.<br>(K) | $p(\text{TeO}_2)$<br>(Pa) | $p^{\circ}(\text{TeO}_2)$<br>(Pa) | $p(O_2)$<br>(Pa) | $\Delta_{\rm f}G^{\circ}{ m Cr}_{2}{ m TeO}_{6}({ m s})$<br>(kJ/mol) |
|--------------|---------------------------|-----------------------------------|------------------|----------------------------------------------------------------------|
| 1014         | 0.447                     | 18.226                            | 0.100            | -1076.9                                                              |
| 1021         | 0.627                     | 21.695                            | 0.140            | -1071.8                                                              |
| 1028         | 0.771                     | 25.764                            | 0.173            | -1068.3                                                              |
| 1034         | 1.003                     | 29.799                            | 0.224            | -1064.2                                                              |
| 1040         | 1.294                     | 34.408                            | 0.290            | -1060.2                                                              |
| 1048         | 1.719                     | 41.573                            | 0.385            | -1055.4                                                              |
| 1053         | 2.093                     | 46.722                            | 0.460            | -1052.2                                                              |
| 1059         | 2.700                     | 53.672                            | 0.605            | -1048.0                                                              |
| 1066         | 3.152                     | 62.973                            | 0.706            | -1045.0                                                              |
| 1072         | 3.951                     | 72.098                            | 0.884            | -1041.2                                                              |
| 1079         | 4.881                     | 84.268                            | 1.093            | -1037.3                                                              |
| 1092         | 5.739                     | 111.980                           | 1.284            | -1033.2                                                              |
| 1100         | 7.657                     | 132.950                           | 1.714            | -1028.1                                                              |

log 
$$p$$
 (kPa) = (-15920.14/T  
+ 12.408)±0.04 (1014-1100 K) (7)

The standard Gibbs free energy of the reaction shown in Eq. (1) can be represented as

$$\Delta_{\rm r}G^{\circ} = \Delta_{\rm f}G^{\circ}{\rm Cr}_2{\rm O}_3({\rm s}) + \Delta_{\rm f}G^{\circ}{\rm TeO}_2({\rm g}) + \frac{1}{2}\Delta_{\rm f}G^{\circ}{\rm O}_2({\rm g}) - \Delta_{\rm f}G^{\circ}{\rm Cr}_2{\rm TeO}_6({\rm s})$$
(8)

Substituting  $\Delta_{\rm r}G^{\circ} = -RT \ln K$  and rearranging Eq. (8), we obtain

$$\Delta_{f}G^{\circ}Cr_{2}TeO_{6}(s) = \Delta_{f}G^{\circ}Cr_{2}O_{3}(s) + \Delta_{f}G^{\circ}TeO_{2}(l) + \frac{1}{2}RT \ln pO_{2}(g) + RT \ln(pTeO_{2}/p^{\circ}TeO_{2})$$
(9)

where  $p^{\circ}\text{TeO}_2$  is the partial pressure of  $\text{TeO}_2(g)$  over  $\text{TeO}_2(1)$ . The values of the Gibbs free energy of formation for  $\text{Cr}_2\text{O}_3(s)$  and  $\text{TeO}_2(1)$  are taken from the literature [10,11]. Using the above values, the Gibbs free energy of formation of  $\text{Cr}_2\text{TeO}_6$  was calculated and is given in Table 4, and can be represented by the relation



Fig. 5. Temperature dependence of the vapor pressure of  $TeO_2(g)$  over  $Cr_2TeO_6(s)$  and  $Cr_2O_3(s)$ .

Table 5 Gibbs energy of formation of  $\text{Fe}_2\text{TeO}_6(s)$  at different temperatures

| Temp. | $p(\text{TeO}_2)$ | $p^{\circ}(\text{TeO}_2)$ | $p(O_2)$ | $\Delta_{\rm f} G^{\circ} {\rm Fe}_{2} {\rm TeO}_{6}({\rm s})$ |
|-------|-------------------|---------------------------|----------|----------------------------------------------------------------|
| (K)   | (Pa)              | (Pa)                      | (Pa)     | (kJ/mol)                                                       |
| 979   | 1.218             | 7.346                     | 0.273    | -769.8                                                         |
| 983   | 1.427             | 8.177                     | 0.319    | -767.4                                                         |
| 992   | 1.490             | 10.372                    | 0.333    | -765.9                                                         |
| 998   | 1.766             | 12.126                    | 0.395    | -763.1                                                         |
| 1002  | 1.819             | 13.443                    | 0.407    | -762.2                                                         |
| 1006  | 2.187             | 14.890                    | 0.489    | -760.4                                                         |
| 1011  | 2.450             | 16.902                    | 0.549    | -757.4                                                         |
| 1020  | 3.197             | 21.165                    | 0.716    | -752.9                                                         |
| 1028  | 3.948             | 25.764                    | 0.884    | -749.2                                                         |
| 1032  | 6.115             | 28.394                    | 1.370    | -743.1                                                         |
| 1043  | 7.204             | 36.949                    | 1.612    | -739.5                                                         |
| 1052  | 7.646             | 45.648                    | 1.712    | -737.6                                                         |

$$\Delta_{f}G^{\circ}Cr_{2}TeO_{6}(s) = (-1651.6 + 0.56833T)$$
  

$$\pm 15 \text{ kJ/mol} (1014 - 1100 \text{ K})$$
(10)

3.3.2. Fe<sub>2</sub>TeO<sub>6</sub>

The individual mass loss of  $\text{TeO}_2(g)$  and  $\frac{1}{2}\text{O}_2(g)$  over  $\text{Fe}_2\text{TeO}_6$  and  $\text{Fe}_2\text{O}_3(s)$  was obtained by the method adopted for  $\text{Cr}_2\text{TeO}_6(s)$ . The individual partial pressures of  $\text{TeO}_2(g)$  and  $\text{O}_2(g)$  are given in Table 5, and the corresponding least squares fit between "log *p*" and 1/T for  $\text{TeO}_2$  is shown in Fig. 6, and can be represented by the relation

$$\log p \text{ (kPa)} = (-12283.9/T + 9.582) \pm 0.06 (979 - 1052 \text{ K})$$
(11)

The standard Gibbs free energy of the reaction shown in Eq. (2) is given by the relation

$$\Delta_{\rm r}G^{\circ} = \Delta_{\rm f}G^{\circ}{\rm Fe}_2{\rm O}_3({\rm s}) + \Delta_{\rm f}G^{\circ}{\rm TeO}_2({\rm g}) + \frac{1}{2}\Delta_{\rm f}G^{\circ}{\rm O}_2({\rm g}) - \Delta_{\rm f}G^{\circ}{\rm Fe}_2{\rm TeO}_6({\rm s})$$
(12)



Fig. 6. Temperature dependence of the vapor pressure for  $TeO_2(g)$  over  $Fe_2TeO_6(s)$  and  $Fe_2O_3(s)$ .

Substituting  $\Delta_r G^\circ = -RT \ln K$  and rearranging the above equation:

$$\Delta_{f}G^{\circ}Fe_{2}TeO_{6}(s) = \Delta_{f}G^{\circ}Fe_{2}O_{3}(s) + \Delta_{f}G^{\circ}TeO_{2}(l) + \frac{1}{2}RT \ln pO_{2}(g) + RT \ln(pTeO_{2}/p^{\circ}TeO_{2})$$
(13)

where  $p^{\circ}\text{TeO}_2$  is the partial pressures of  $\text{TeO}_2(g)$  over  $\text{TeO}_2(1)$ . The values of the Gibbs free energy of formation for  $\text{Fe}_2\text{O}_3(s)$  and  $\text{TeO}_2(1)$  are taken from the literature [10,11]. The values of the Gibbs free energy of formation for  $\text{Fe}_2\text{TeO}_6$  are given in Table 5 and can be represented by the relation

$$\Delta_{\rm f} G^{\circ} {\rm Fe}_{2} {\rm TeO}_{6}({\rm s}) = (-1234.3 + 0.47286T)$$
  
±15 kJ/mol (979–1052 K). (14)

# Acknowledgements

The authors thank Shri D.S.C. Puroshotham, Director, Nuclear Fuels Group, and Shri R. Prasad, Head, Fuel Development Chemistry Section, for their keen interest in this work.

## References

- [1] E.H.P. Cordfunke, R.J.M. Konings, J. Nucl. Mater. 152 (1988) 301.
- [2] H. Kleykamp, J. Nucl. Mater. 132 (1985) 221.
- [3] G. Chattopadhyay, S.R. Bhardwaj, Evaluated phase diagrams of binary metal-tellurium systems of the D block transition elements, BARC Report No. 1449, 1989.
- [4] N. Sokolov, K.K. Samplavskaia, M.H. Karapetianz, Deposited manuscript, VINITI No. 3795-7b, Dep., 1976.
- [5] G.G. Gospodinov, K.M. Gjurova, Thermochim. Acta 210 (1992) 321.
- [6] K. Krishnan, G.A. Rama Rao, K.D. Singh Mudher, V. Venugopal, J. Alloys Comp. 288 (1999) 96.
- [7] R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paivaa-Santos, Program DBWS-9411, Georgia Institute of Technology, Atlanta, GA, 1994.
- [8] G. Bayer, Ber. Dtsch. Keram. Ges. 39 (1962) 535, quoted in JCPDS-ICDD, X-ray diffraction file (1995), Card Nos. (15-696) and (15-686).
- [9] M. Saes, N.P. Raju, J.E. Greedan, J. Solid State Chem. 140 (1998) 7.
- [10] O. Kubachewski, C.B. Alcock (Eds.), Metallurgical Thermochemistry, 5th Edition, Pergamon, New York, 1979.
- [11] E.H.P. Cordfunke, R.J.M. Konings (Eds.), Thermochemical Data For Reactor Materials and Fission Products, North-Holland, Amsterdam, 1990.