J. CHEM. SOC., CHEM. COMMUN., 1988

Novel Ring-opening Reaction of Norbornadiene(tricarbonyl)iron: Synthesis and Crystal Structure of $C_7H_8(CO)_2FeC(OEt)Ar$

Jiabi Chen,*a Guixin Lei,a Meicheng Shao,b Xiaojie Xu,b and Zeying Zhangb

^a Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, China
^b Department of Chemistry, Peking University, Beijing, China

Reaction of norbornadiene(tricarbonyl)iron with aryl-lithium reagents at low temperature, followed by alkylation of the intermediate acylmetallates with Et_3OBF_4 in aqueous solution at 0 °C gives novel ring-opened diallyl complexes, $C_7H_8(CO)_2FeC(OC_2H_5)Ar$.

In continuation of work on diene co-ordinated metal carbene complexes, a series of isomerized butadiene- and isoprene-(dicarbonyl)[ethoxy(aryl)carbene]iron complexes^{1,2} have been synthesized and identified. Cyclic polyenes such as cyclo-octatetraene³ and cycloheptatriene⁴ can also be activated by iron, and a series of interesting, isomerized products of olefin-metal-carbene complexes were obtained by the reaction of cyclo-octatetraene- and cycloheptatriene-(tricarbonyl)iron with aryl-lithium reagents at low temperature and subsequent alkylation with Et_3OBF_4 , respectively. We have now extended our studies to the activation of nonconjugated cyclic polyene ligands like norbornadiene, and report a novel ring-opening reaction of norbornadiene(tricarbonyl)iron (1) with aryl-lithium at low temperature, followed by alkylation with Et_3OBF_4 , which leads to cleavage of the norbornadiene ring and formation of a new C–C bond.

Scheme 1

Reaction of (1) with equimolar quantities of aryl-lithium (ArLi; Ar = p-,o-CH₃C₆H₄, p-CF₃C₆H₄) in ether at -60 °C and subsequent alkylation of the acylmetallates formed with Et₃OBF₄ in aqueous solution at 0 °C gave orange-red crystalline complexes (2–4)† with compositions C₇H₈(CO)₂FeC(OC₂H₅)Ar in moderate yield (Scheme 1).

Figure 1. ORTEP drawing of $C_{19}H_{20}O_3Fe$ (3). Fe–C(1), 1.76(1); Fe–C(2), 1.78(1); Fe–C(10), 2.19(1); Fe–C(11), 2.03(1); Fe–C(12), 2.11(1); Fe–C(15), 2.19(1); Fe–C(16), 2.08(1); Fe–C(17), 2.23(1); C(10)–C(11), 1.41(1); C(11)–C(12), 1.42(1); C(12)–C(13), 1.50(1); C(13)–C(14), 1.53(1); C(13)–C(17), 1.52(1); C(14)–C(15), 1.50(1); C(15)–C(16), 1.44(1); C(16)–C(17), 1.38(1); C(10)–O(3), 1.41(1)Å. C(9)–C(10)–O(3), 115.1(5)°; C(9)–C(10)–C(11), 121.3(6)°; C(11)–C(10)–O(3), 117.8(6)°.

A possible mechanism for the formation of these novel complexes (Scheme 1) might involve an unstable alkoxycarbene complex (b) and a 16e metallacyclobutane intermediate (c) which on homolysis involving the σ -bond shown gives the 18e species, (2-4).

The complexes (2-4) are highly sensitive to air and temperature. Their structures were determined by elemental analyses, spectroscopic analyses and single-crystal X-ray diffraction of (3).

[†] Satisfactory elemental analyses were obtained for the compounds described. (2): m.p. 99 °C (dec.); i.r. (ν_{CO} , cm⁻¹): 1970vs, 1906vs (CH₂Cl₂); ¹H n.m.r (δ, CD₃COCD₃): 7.32, 7.10 (m, 4H, C₆H₄CH₃), 4.46 (m, 1H, C₇H₈), 3.90 (q, 2H, OCH₂CH₃), 3.64 (m, 1H, C₇H₈), $3.18 (m, 1H, C_7H_8), 2.98 (m, 1H C_7H_8), 2.76 (m, 1H, C_7H_8), 2.28 (s, 1)$ 3H, CH₃C₆H₄), 1.32 (t, 3H, OCH₂CH₃), 1.16 (s, 2, C₇H₈), 0.96 (m, 1H, C₇H₈); m/z 352(M^+). (3): m.p. 105–106 °C (decomp.); i.r.(ν_{CO} , cm⁻¹): 1972vs, 1915vs (CH₂Cl₂); ¹H n.m.r.(δ, CD₃COCD₃): 7.20, 7.08 (m, 4H, $C_6H_4CH_3$), 4.52 (m, 1H, C_7H_8), 3.84 (q, 2H, OCH₂CH₃), 3.60 (m, 1H, C₇H₈), 3.20 (m, 1H, C₇H₈), 2.96 (m, 1H, C_7H_8), 2.78 (m, 1H, C_7H_8), 2.58 (s, 3H, $CH_3C_6H_4$), 1.30 (t, 3H, OCH_2CH_3), 1.18 (s, 2H, C_7H_8), 0.95 (m, 1H, C_7H_8); m/z 352(M^+). (4): m.p. 90–91 °C (decomp), i.r.(v_{CO} , cm⁻¹): 1973vs, 1912vs (CH₂Cl₂); ¹H n.m.r.(δ, CD₃COCD₃): 7.60 (m, 4H, C₆H₄CH₃), 4.50 (m, 1H, C₇H₈), 3.92 (q, 2H OCH₂CH₃), 3.26–3.18 (m, 1H, C₇H₈), 3.12-3.08 (m, 2H, C_7H_8), 2.95 (m, 1H, C_7H_8), 1.33 (t, 3H, OCH_2CH_3 , 1.20 (s, 2H, C₇H₈), 0.95 (m, 1H, C₇H₈); m/z 406(M^+). (5): m.p. 91.5–92 °C; i.r.(v_{CO} , cm⁻¹): 2046vs, 1975vs, br (CH₂Cl₂); ¹H n.m.r. (δ , CD₃COCD₃): 7.76, 7.66 (m, 4*H*, C₆*H*₄CF₃), 6.46 (m, 1H, C₇H₈), 5.80 (m, 1H, C₇H₈), 5.60 (m, 1H, C₇H₈), 5.40 (m, 1H, C₇H₈), 3.98 (q, 2H, OCH₂CH₃), 2.94(m, 1H, C₇H₈), 2.32 (t, 1H, C₇H₈), 1.83 (m, 1H, C₇H₈), 1.35 (t, 3H, OCH₂CH₃), 0.82 (m, 1H, C_7H_8 ; m/z 434(M^+).

The X-ray structure of (3) (Figure 1)‡ shows that a five-membered ring of the norbornadiene ligand is opened with breaking of the σ -bond in the norbornadiene moiety corresponding to C(11)-C(15), and carbon atom C(11) is now linked to the carbene carbon atom C(10) forming a new σ -bond C(11)-C(10). Along with the formation of the new σ -bond, the atomic chains C(15)-C(16)-C(17) and C(10)-C(11)-C(12) are co-ordinated to the orbitals of the iron atom in an η^3 allyl-type π -bonding to satisfy the 18-electron rule.

When an orange-red benzene solution of (4) was heated in a sealed tube at 95–99 °C for 75 h, a new acyclic 1,3-diene-tricarbonyliron complex (5)† and an unidentified polymer (practically insoluble in all organic solvents) were obtained (Scheme 2).

‡ (3): C₁₉H₂₀O₃Fe, triclinic, $P\overline{1}$, a = 7.824(3), b = 8.229(3), c = 13.597(4) Å, $\alpha = 83.18(3)$, $\beta = 87.12(3)$, $\gamma = 71.79(3)^\circ$, V = 825.52 Å³, Z = 2, $D_c = 1.42$ g/cm³. Of 2154 unique reflections, 1822 [$I \ge 3\sigma(I)$] were observed, collected within the range 0° ≤ 20 ≤ 45° (radiation Mo- K_{α} : 0.71069 Å), and used in structural analysis by Patterson-Fourier method and refinement to R = 0.0652 and $R_w = 0.0646$. (5): C₂₀H₁₇O₄F₃Fe, monoclinic, $C_{2n}^2 - P2_1/n$, a = 10.804(5), b = 12.044(9), c = 15.056(9) Å, $\beta = 98.91^\circ$; V = 1959.10 Å³, Z = 4, $D_c = 1.47$ g/cm³. Of 3843 unique reflections, 1755 [$I \ge 3\sigma(I)$] were observed, collected within the range 3° ≤ 20 ≤ 50°, and used in the structure solution (direct methods) and refinement (block-diagonal matrix least-squares) to R = 0.129 and $R_w = 0.108$. For both structures, atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic

The structure of (5) has also been characterized by X-ray analysis.[‡] Because the crystal of (5) is too small to get good reflection data we have obtained just a preliminary structure with R = 0.129 and $R_w = 0.108$. However, it is clear that on heating of (4), another five-membered ring of the norbornadiene ligand was opened with breaking of the C-C σ -bond and formation of an $\eta^4 \pi$ -bond with the iron atom. To satisfy the 18-electron rule, one CO generated by thermal decomposition of (4) is co-ordinated to the iron atom.

The reaction described above implies that the σ -bonds of a cyclic polyene ligand in this kind of complex can be activated by the iron atom, resulting in the breaking of a C–C σ -bond and formation of a new one.

We thank the Science Foundation of the Chinese Academy of Sciences and the National Science Foundation of China for financial support of this work.

Received, 28th March 1988; Com. 8/01238E

References

- 1 J.-B. Chen, G.-X. Lei, W.-H. Xu, X.-L. Jin, M.-C. Shao, and Y.-Q. Tang, J. Organomet. Chem., 1985, 286, 55.
- 2 T.-L. Wang, J.-B. Chen, W.-H. Xu, S.-W. Zhang, Z.-H. Pan, and Y.-Q. Tang, Acta Chim. Sinica, 1987, 45, 636; Acta Chim. Sinica, Engl. Ed., 1987, 1, 85.
- 3 J.-B. Chen, G.-X. Lei, W.-H. Xu, Z.-H. Pan, S.-W. Zhang, Z.-Y. Zhang, and Y.-Q. Tang, *Organometallics*, 1987, **6**, 2461.
- 4 J.-B. Chen, G.-X. Lei, Z.-H. Pan, S.-W. Zhang, and Y.-Q. Tang, J. Chem. Soc., Chem. Commun., 1987, 1273.