CATIONIC CYCLIZATION OF AN IRON CARBENE COMPLEX Pascale Seutet and Paul Helquist*

Department of Chemistry, University of Notre Dame Notre Dame, Indiana 46556 U.S.A.

Summary: A cationic iron carbene complex has been found to undergo intramolecular cationic olefinic cyclization, resulting in formation of a six-membered carbocyclic ring.

Carbene complexes of the structure $[n^5-C_5H_5(CO)(L)Fe=CR^1R^2]^+$ have proven to be very useful intermediates, especially in alkene cyclopropanations, whereas other reactions of these species have received much less attention.¹ Herein, we report a new cyclization reaction of one of these complexes. The substrate 1 was prepared by the straightforward sequence of reactions shown in Scheme 1.

SCHEME 1

Under our standard conditions for sulfonium salt formation and carbene complex formation, 1b the cyclization product 2 (eq 1) was obtained as a mixture of diastereomers in an overall yield of 60% from the Grignard reaction in Scheme 1. We could not detect any products of intramolecular cyclopropanation.² The structure of 2 was indicated by detailed high-field NMR analysis and appropriate homonuclear decoupling experiments and by ozonolysis to give the ketoaldehyde 3 (eq 2) as again identified by high-field NMR analysis.

4921

We rationalize the formation of 2 by either of the pathways shown in Scheme 2 involving cationic olefinic cyclizations.³ The intermediacy of carbocationic adducts such as 5 or 6 is consistent with Brookhart's evidence for related intermediates in certain cyclopropanation reactions of iron carbene complexes.⁴

In closing, the formation of **2** suggests the possibility of employing iron carbene complexes as initiators for cationic cyclizations in general. In the present example, the overall reaction of carbene complex 4 is synthetically equivalent to the use of a simple cationic methylene group as the initiator. Further studies of this new reaction are being pursued in our laboratory.

Acknowledgements. We thank James Carey, Christopher Knors, Mary Mader, and Shi-Kai Zhao for technical assistance. We also thank the National Science Foundation and the Petroleum Research Fund, administered by the American Chemical Society, for the support of this work.

Literature References

- For a recent review and summaries of work in this area, see: (a) Brookhart, M.; 1. Studabaker, W.B. Chem. Rev. 1987, 87, 411. (b) O'Connor, E.J.; Brandt, S.; Helguist, P. J. Am. Chem. Soc. 1987, 109, 3739.
- 2.
- 3.
- 4.
- 5.
- Mu. Chem. Soc. 1987, 109, 3739.
 Tyer, R.S.; Kuo, G.-H.; Helquist, P. J. Org. Chem. 1985, 50, 5898.
 Johnson, W.S.; Telfer, S.J.; Cheng, S.; Schubert, U. J. Am. Chem. Soc. 1987, 109, 2517.
 Brookhart, M.; Kegley, S.E.; Husk, G.R. Organometallics 1984, 3, 650.
 Eaton, P.E.; Cooper, G.F.; Johnson, R.C. J. Org. Chem. 1972, 37, 1948.
 (a) Dauben, W.G.; Michno, D.M. J. Org. Chem. 1977, 42, 682. (b) Corey, E. J.; Schmidt, G. 6. Tetrahedron Lett. 1979, 399.
- Knors, C.; Kuo, G.-H.; Lauher, J.W.; Eigenbrot, C.; Helquist, P. Organometallics 1987, 6, 7. 988.

(Received in USA 6 July 1988)