© 1983 by: Schweizerische Chemische Gesellschaft, Basel, Société suisse de chimie, Bâle – Società svizzera di chimica, Basilea

ISSN 0018-019X

Nachdruck verboten - Tous droits réservés - Printed by Birkhäuser AG, Basel, Switzerland Erscheint 9mal jährlich - Paraît 9 fois par an

69. Synthesis and Photochemical Behaviour of 2-Amino-1,3-cyclohexadienes

by Ralf Kilger¹) and Paul Margaretha

Institut für Organische Chemie und Biochemie, Universität Hamburg, D-2000 Hamburg 13

(23.II.83)

Summary

The reaction of the 4,4-dialkylated 2-cyclohexenones 1 or 2 with a twofold excess of a secondary amine 3 affords the 2-amino-1,3-cyclohexadienes 4 and 5, respectively. Irradiation ($\lambda \ge 300$ nm) of the morpholino derivative 4a yields a mixture of the isomeric 3-morpholino-6-methyl-1,3,5-heptatrienes 6 and 7, while 5 gives only one corresponding product 8. The reaction of enone 1 with an equimolar amount of pyrrolidine (3c) affords the bis-enamine 9 which is converted to the unsaturated diketone 10 by oxidative hydrolysis.

Light induced electrocyclic conversion of 1,3-cyclohexadienes to 1,3,5-hexatrienes and further transformation of the primary photoproduct has become a preparative useful photochemical reaction [1] [2]. Some time ago we had reported [3] that a 2-amino-1,3-cyclohexadienecarbonitrile rearranges selectively to the tEt-hexatriene²). We now present results on the synthesis and the photochemical behaviour of simple 2-amino-1,3-cyclohexadienes.

Usually the reaction of 2-cyclohexenones with an excess of a secondary amine affords 1-amino-1,3-cyclohexadienes [4] [5]. A shift of the double bonds can be avoided by using 4,4-dialkylated 2-cyclohexenones. Thus the reaction of 4,4-di-

¹⁾ Part of the planned doctoral thesis, University of Hamburg.

This nomenclature for 1,3,5-hexatrienes describes the configuration of the single bonds C(2)-C(3) and C(4)-C(5) (small letters) and the double bond C(3)-C(4) (capital letter) [1].

Table 1. Spectroscopic data of compounds 4 and 5a)

	UV.b)	IR.	¹ H-NMR. ^c)	¹³ C-NMR. ^d)	MS.
		(liquid film)	(CDCl ₃)	(CDCl ₃)	(70 eV)
43	218 (3.94) 283 (3.28)	3030	$5.70 (d \times d, J = 10.1 \text{ and } 2.0, \text{H-C}(3))$ 5.57 (d, J = 10.1, H-C(4))	144.2 (s, C(2)), 139.8 (d, C(3)), 121.4 (d, C(4)), 98.7 (d, C(1)),	193 (M ⁺) 178
		0601	4.62 $(d \times t, J = 4.7, 4.7 \text{ and } 2.0, H - C(1))$ 2.08 $(m, 2 H, 2 H - C(6))$ 0.95 $(s, 6 H)$	37.3 (t, C(6)), 31.0 (s, C(5)), 27.5 (qa, CH ₃)	(+)(1)(1)
4	223 (3.93)	3035	5.73	145.1 (s, C(2)), 139.1 (d, C(3)), 122.7 (d, C(4)), 98.4 (d, C(1)),	191 (M ⁺) 176
	286 (3.24)	1645 1585	5.55 4.62 °) 2.00	37.5 (t, C(6)), 30.9 (s, C(5)), 27.5 (qa, 2 CH ₃)	
			2.09 0.97		$177 (M^+)$
4c ^f)		3040	5.90		707
		1645	5.55		
		1580	4.25 °)		
			2.13 1.00		
S	238 (3.66)	3030	5.87 (d, J = 10.1, H-C(3))		
	270 (sh)	1650 1590	5.46 (d, J = 10.1, H-C(4)) 2.02 (m. 2 H. 2 H-C(6))	138.3 (s, C(2)), 136.9 (d, C(3)), 123.2 (s, C(1)), 118.6 (d, C(4))	$207 (M^+)$
			1.74 (s, 3 H) 0.94 (s, 6 H)	44.6 (t, C(6)), 31.1 (s, C(5)), 27.8 and 17.8 (2 qa, 3 CH ₃)	
చి	Satisfactory elemental analyses were obtained for 4a, 4b and 5. In cyclohexane.	nalyses were obtaine	d for 4a, 4b and 5.		
્દ્રન	Proton signals of amino component not given. C-signals of amino component not given.	component not given	ú		
`G`	Assignement and coupling constants as above.	ing constants as abov	ú		
ر ا	Data for crude product; attempts to purify 4c were unsuccessful	attempts to purify 4	c were unsuccessful.		

methyl- or 4,4,6-trimethyl-2-cyclohexenone with a twofold excess of morpholine, piperidine or pyrrolidine gives the 2-amino-1,3-cyclohexadienes 4 and 5 in acceptable to good yields (Scheme 1). Dienamines 4a, 4b and 5 can be stored at -15° under N_2 for long periods while 4c decomposes relatively fast. The spectroscopic data of compounds 4 and 5 are summarized in Table 1.

Irradiation ($\lambda \ge 300$ nm) of the morpholino compounds 4a and 5, as monitored by ¹H-NMR. spectroscopy, leads to complete conversion of starting material. While 4a affords a 2:1 mixture of 6 and 7, 5 is converted selectively to one new product 8. Photoproducts 6-8 have a 1,3,5-hexatriene structure as deduced from their UV.- and ¹H-NMR. spectra. The configuration of trienes 6-8 was assigned by ¹H-NMR. analysis (Scheme 2, Table 2).

Table 2. Spectroscopic data of compounds 6, 7 and 8

	UV.a)	¹ H-NMR. ^b)	
6	259 (3.74)°) 303 (3.69)	6.43 ($d \times d$, $J = 17.2$ and 10.8, $H - C(2)$) 6.23 ($d \times m$, $J = 11.1$, $H - C(5)$) 5.57 ($d \times d$, $J = 11.1$ and 1.2, $H - C(4)$) 5.47 ($d \times d$, $J = 17.2$ and 2.5, $H_a - C(1)$) 5.12 ($d \times d \times d$, $J = 10.8$, 2.5 and 1.2, $H_b - C(1)$) 1.67 and 1.62 (m , 2 CH ₃)	3.47 (<i>m</i> , 4 H–C(2')) 2.59 (<i>m</i> , 4 H–C(3'))
7		6.37 $(d \times m, J = 11.4, H-C(5))$ 6.17 $(d \times d, J = 16.9 \text{ and } 10.8, H-C(2))$ 5.93 $(d, J = 11.4, H-C(4))$ 5.45 $(d \times d, J = 16.9 \text{ and } 1.9, H_a-C(1))$ 4.93 $(d \times d, J = 10.8 \text{ and } 1.9, H_b-C(1))$ 1.66 and 1.58 $(m, 2 \text{ CH}_3)$	3.47 (<i>m</i> , 4 H–C(2')) 2.80 (<i>m</i> , 4 H–C(3'))
8	265 (3.77)	6.30 ($d \times m$, $J = 10.8$, $H - C(5)$) 5.38 (d , $J = 10.8$, $H - C(4)$) 5.15 ($d \times qa$, $J = 2.5$ and 1.5, $H_a - C(1)$) 5.07 ($d \times qa$, $J = 2.5$ and 1.0, $H_b - C(1)$) 1.79 and 1.77 (m , 2 $H_3C - C(6)$ and $H_3C - C(2)$)	3.47 (<i>m</i> , 4 H-C(2')) 2.59 (<i>m</i> , 4 H-C(3'))

a) In cyclohexane. b) In hexadeuteriobenzene. c) Corresponds to a 2:1 mixture of 6 and 7.

Table 3. Spectroscopic data of compounds 9 and 10a)

	UV.	IR.	¹ H-NMR. ^b)	13C-NMR. ^c)	MS.
	(C_6H_{12})	(KBr)	$(CDCl_3)$	(CDCl ₃)	(70 eV)
9	244 (3.10)	3040	4.41 $(d \times d, J = 7.1 \text{ and } 2.2, H-C(3))$	146.9 (s, C(2))	$354 (M^+)$
		1675	3.11(d, J=7.1, H-C(4))	130.4 (s, C(5))	242
		1610	2.70 (m, J = 2.8, 2.8 and 2.2, H-C(1))	129.5(s, C(4a))	
			$2.09 (m, J = 16.8, 1.8 \text{ and } 1.8, H_a - C(6))$	94.1 (d, C(3))	
			$1.98 (m, J = 16.8, 8.7 \text{ and } 7.2, H_b - C(6))$	49.3 (d), 44.9 (d), 44.8 (t)	
			1.89 (m, H-C(8a))	39.2 (t), 35.7 (d)	
			1.40 $(m, J = 12.8, 8.7 \text{ and } 1.8, H_a - C(7))$	33.3 (s), 31.8 (s)	
			1.31 (m, $J = 12.8$, 7.2 and 1.8, $H_b - C(7)$)	31.3 (qa), 31.2 (qa)	
			1.28 $(d \times d, J = 12.1 \text{ and } 2.8, 2 \text{ H} - \text{C}(10))$	29.5 (qa), 20.1 (t, C(10))	
			1.19 $(d \times d, J = 12.1 \text{ and } 2.8, 2 \text{ H} - \text{C}(10))$	18.2 (qa)	
			0.96, 0.94, 0.86, 0.49 (4 s, 4 CH ₃)		
10		1720	3.28 (t, J = 2.3, H - C(1))	210.7 (s, C(2))	$246(M^{+})$
	254 (3.98)	1660	3.14 $(d \times d, J = 3.2 \text{ and } 2.4, H-C(4))$	194.3 (s, C(5))	
	246 (3.97)	1610	2.48 (m, 2 H-C(6))	161.3 (s, C(8a))	
			2.42 $(d \times d, J = 19.2 \text{ and } 2.4, \text{ H}_a - \text{C}(3))$	139.1 (s, C(4a))	
			1.89 (m, 2 H-C(7))	51.9 (d, C(1))	
			1.83 $(d \times d, J = 19.2 \text{ and } 3.2, \text{ H}_b - \text{C}(3))$	39.9 (d, C(4))	
			1.74 $(d \times d, J = 13.5 \text{ and } 2.3, 2 \text{ H} - \text{C}(10))$	39.3 (t), 37.5 (t), 36.2 (t)	
			$1.40 (d \times d, J = 13.5 \text{ and } 2.3, 2 \text{ H} - \text{C}(10))$	34.4 (s), 33.9 (t), 33.7 (s)	
			1.15, 1.12, 0.84 (3 s, 4 CH ₃)	31.1 (qa), 28.2 (qa)	
			•	26.1 (qa), 25.3 (qa)	İ
l æ	Both compounds gave sa	atisfactory elemen	ntal analyses.		
۾`	Proton signals of amino	component not i	indicated.		
6	Carbon signals of amino component not indicated.	component not	indicated.		

The tZt-configuration of 6 was assigned on the basis of the magnitude of the vicinal and long-range coupling constants of H-C(4) with H-C(5) and H_b-C(1) respectively [6]. The cEt-configuration of the minor product 7 was determined basing on: a) an upfield shift of 0.25 ppm for H-C(2), and downfield shifts of 0.35 ppm for H-C(4), of 0.15 ppm for H-C(5) and of 0.20 ppm for the H-C(3') of the amino component as compared to 6; such differences in chemical shifts being typical for a (Z)- and (E)-enamine couple [4]; b) the magnitude of the vicinal coupling constant between H-C(4) and H-C(5).

The assignment of the tEt-configuration for **8** is more tentative, being based in part on the fact that 2,3-disubstituted 1,3,5-hexatrienes will adopt this thermodynamically most stable configuration [7], although a cZt-configuration cannot be completely excluded. The same *all-trans*-configuration had been assigned to 3-N- and 3-O-substituted 2-cyano-1,3,5-hexatrienes [3].

In order to compare the relative rate of formation of 6 and 7 on the one side and 8 on the other side, solutions of 4a and 5 (10^{-3} M in cyclohexane) were irradiated ($\lambda \ge 305$ nm) in a *merry-go-round* apparatus. The increase in absorbance at $\lambda = 340$ or 350 nm indicates that 4a is converted to trienes twice as fast as 5.

The reaction of 1 with an equivalent amount of pyrrolidine (3c) affords the bisenamine 9 as already described in the literature [8]. Compound 9 is possibly formed by [4+2]cycloaddition of 4c to 1 followed by reaction of the intermediate carbonylenamine with a second molecule of pyrrolidine to give selectively the product with the tetrasubstituted double bond.

Hydrolysis of 9 under acidic conditions afforded moderate yields of the corresponding tricyclic diketone [8]. Oxydative hydrolysis of 9 in our hands gave the unsaturated diketone 10 in good yields (Scheme 3, Table 3). The photochemical behaviour of 10, a compound containing an a, β - and β, γ -enone moiety, will be described elsewhere.

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental Part

General. Absorptions in the UV. spectra are given in nm(log ε) and in the IR. spectra in cm⁻¹. Chemical shifts in the ¹H- (400 MHz) and ¹³C- (20.17 MHz) NMR, spectra are given in ppm relative to TMS (=0 ppm) as internal standard.

Starting materials. Enones 1 [9] and 2 [10] were synthesized according to the references indicated. Amines 3 were purified by distillation.

Preparation of 2-amino-1, 3-cyclohexadienes 4 and 5. A solution of the enone (4.10^{-2} mol) and amine (8.10^{-2} mol) in 30 ml toluene is refluxed under N_2 for 15-35 h until all the water has separated on a Dean-Stark trap. After evaporation of the solvent the residue is distilled at reduced pressure: 4a (66%, b.p. 108°/6 Torr), 4b (68%, b.p. 43°/0.01 Torr), 4c (35%, b.p. 70-80°/0.01 Torr), 5 (34%, b.p. 110°/4 Torr).

Photolyses. a) Ar-degassed solutions of 2.10^{-4} mol 4a or 5 in 0.4 ml C_6D_6 were irradiated (λ = 300 nm) in a quartz NMR, tube in a Rayonet photoreactor for 10 h. The degree of conversion as measured by ¹H-NMR, was > 90%.

b) Ar-degassed solutions of 4a or 5 (10^{-5} m in cyclohexane) were irradiated ($\lambda > 305$ nm) in an UV. cell on an optical bench using a 250 W-Hg lamp and a SnCl₂ filter solution [11]. The formation of 6-8 was monitored by UV. spectroscopy.

c) Ar-degassed solutions of 4a and 5 $(1.7 \cdot 10^{-3} \text{ m})$ in cyclohexane) were irradiated as under b) using a merry-go-round set-up for the UV. cells. The relative rates of formation of 6 and 7 and of 8 were monitored by UV. spectroscopy at $\lambda = 340$ and 350 nm.

Preparation of 2,5-dipyrrolidino-8,8,9,9-tetramethyl-1,4-ethano-1,4,6,7,8,8a-hexahydronaphthalene (9). A solution of 1 (12.4 g, 0.1 mol) and 3c (7.1 g, 0.1 mol) in toluene (50 ml) is refluxed under N_2 for 3 h until all the water has separated on a Dean-Stark trap. Evaporation of the solvent and recrystallization of the residue from AcOEt affords 15.7 g (88%) 9, m.p. 125-126° ([8]: 119°).

Preparation of 8,8,9,9-tetramethyl-1,4-ethano-1,3,4,6,7,8-hexahydro-2,5-naphthalenedione (10). A solution of 9 (3.54 g, 0.01 mol) in benzene (30 ml) is added dropwise at 0° to 8.95 g sodium dichromate in a mixture of 70 ml acetic acid/benzene 4:3. Stirring is then continued for 3 h. After addition of 30 ml MeOH and further stirring for 30°, an excess of 2N NaOH is added, the benzene layer separated, and the alcaline aqueous phase extracted four times with 50 ml benzene. The combined organic phases are washed with H₂O and with a sat. aq. NaCl-solution and dried. Evaporation of the solvent and recrystallization of the residue from ether/pentane affords 1.3 g (53%) 10, m.p. 97-99°.

REFERENCES

- [1] W. G. Dauben, E. L. McInnis & D. M. Michno, in 'Rearrangements in Ground and Excited States', Vol.3 (P. de Mayo, editor), Academic Press 1980, p.91.
- [2] P. Margaretha, Topics in Current Chem. 103, 1 (1982).
- [3] P. Margaretha, Helv. Chim. Acta 58, 929 (1975).
- [4] P. W. Hickmott, Tetrahedron 38, 1975 & 3363 (1982).
- [5] G. Opitz & W. Merz, Liebigs Ann. Chem. 652, 139 (1962).
- [6] J. W. Laing, M. G. Sceats, S.A. Rice & R. M. Gavin, Chem. Phys. Letters 41, 419 (1976).
- [7] J. C. Tai & N. L. Allinger, J. Amer. Chem. Soc. 98, 7928 (1976).
- [8] J. W. Lewis & P. L. Myers, J. Chem. Soc. C 1971, 753.
- [9] M. E. Flaugh, T.A. Crowell & D. S. Farlow, J. Org. Chem. 45, 5399 (1980).
- [10] C. Paris, S. Geribaldi, G. Torri & M. Azzaro, Bull. Soc. Chim. Fr. 1973, 997.
- [11] H.E. Zimmerman, Mol. Photochem. 3, 281 (1971).