N-(α-Chloroalkyloxycarbonyl)pyrrolidines as a Source of Oxygenated $d^{\hat{1}}$ -Reagents

Javier Ortiz,^[a] Albert Guijarro,^[a] and Miguel Yus*^[a]

Dedicated to Prof. Dr. José Elguero on the occasion of his 65th birthday

Keywords: Organolithium compounds / d¹-Reagents / Lithiation / Carbamates / 1,2-Diols

Reaction of the N-(α -chloroalkyloxycarbonyl)pyrrolidines 1 with lithium powder and a catalytic amount of 4,4'-di-tertbutylbiphenyl (DTBB, 2.5 mol-%) in the presence of different electrophiles [iBuCHO, tBuCHO, PhCHO, Et₂CO, (CH₂)₅CO, PhCOMe, Ph₂CO, Me₃SiCl], in THF at temperatures ranging

Introduction

Functionalized organolithium compounds^[1] are interesting intermediates in synthetic organic chemistry because, in a reaction with electrophiles, they are able to transfer their functionality to the other reagent giving polyfunctionalized molecules in only one reaction step. Among these lithium compounds, the α -oxygenated alkyl derivatives of type I (R = alkyl: α -alkoxy carbanionic building blocks of the type $RO-C^{-}$) belong to the family of so-called d^{1} -reagents, following Seebach's nomenclature,^[2] and can be prepared by four different routes: (1) Direct deprotonation of ethers of type II (only in special cases *e.g.* alkyl benzyl ethers^[3a] or *tert*-butyl methyl ether^[3b]) with an alkyllithium and a coreagent [tetrametylethylenediamine (TMEDA) or potassium tert-butoxide]; (2) Tin-lithium transmetallation of compounds of type III with *n*-butyllithium;^[4] (3) Sulfur-lithium exchange in compounds of type IV with activated lithium (e.g. lithium naphthalenide);^[5] (4) Chlorine-lithium exchange in chloroethers of type V with lithium and either a stoichiometric^[6] or a catalytic^{[7][8]} amount of an arene, naphthalene or 4,4'-di-tert-butylbiphenyl (DTBB) being the most commonly used^[9] (Scheme 1). To the best of our knowledge the alcohol derivatives of type I (R = H, Me or COX: α-hydroxy carbanion building blocks of the type $HO-C^{-}$)have only been prepared following routes (1)^[10] and (2)^[11] with, in the first case, very hindered arylic esters^[10a] or *O*-benzyl carbamates.^[10b,10c,11] In the last few years we have applied the above-mentioned arene-catalyzed lithiation^[8] (route 4) for the generation of organolithium reagents starting from nonhalogenated materials,^[13] very reactive functionalized organolithium compounds from chlorinated precursors^[14] and heterocycles^[15] or polylithiated building blocks^[16] from polychlorinated materials and

[a] Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain Fax: (internat.) +34-96/5903549 E-mail: yus@ua.es

between -78 and -60°C leads, after hydrolysis with water, to the expected functionalized carbamates 2. Deprotection of compounds 2, derived from carbonyl compounds, with lithium hydroxide in a mixture of ethanol and water at 80°C affords the correponding 1,2-diols 3.

working under Barbier-type reaction conditions.^[17] In this paper we apply this methodology to the transformation of O-chloroalkyl carbamates into the corresponding α -functionalized organolithium compounds, which have been trapped in situ with different electrophilic reagents.^[18]

Scheme 1. Preparation of d^1 -reagents I

Results and Discussion

The reaction of O-(α -chloroalkyl) carbamates 1a-c with an excess of lithium powder (ca. 1:7 molar ratio) and a catalytic amount of DTBB (1:0.05 molar ratio; 2.5 mol-%) in the presence of different electrophiles [iBuCHO, tBuCHO, PhCHO, Et₂CO, (CH₂)₅CO, PhCOMe, Ph₂CO, Me₃SiCl] in THF, under the reaction conditions (temperature and reaction time) given in Table 1 gave, after hydrolysis, the corresponding reaction products 2aa-cf (Scheme 2 and Table 1).

It should be noted that the process shown in Scheme 1 has to be performed under Barbier-type reaction conditions

Scheme 2. a: Li, DTBB cat. (2.5 mol%), $E^+ = iBuCHO$, tBuCHO, PhCHO, Et₂CO, (CH₂)₅CO, PhCOMe, Ph₂CO, Me₃SiCl, THF; b: H_2O

Eur. J. Org. Chem. 1999, 3005-3012

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999

Table 1. Preparation of carbamates 2

Entry	Starting material	Electrophile E+	Conditions[a] T (°C) / t	Product ^[b]			
				No.	R	Ē	Yield(%)[c]
1	1a	iBuCHO	-78 to -60 / 2 h	2aa	н	iBuCHOH	68
2	1a	tBuCHO	-78 to -60 / 2 h	2ab	Н	tBuCHOH	63
3	1a	PhCHO	-78 / 1 h	2ac	н	PhCHO	72
4	1a	Et ₂ CO	-78 to -60 / 2 h	2ad	Н	Et ₂ COH	80
5	1a	(CH ₂) ₅ CO	-78 to -60 / 2 h	2ae	Н	(CH ₂) ₅ COH	73
6	1a	PhCOMe	-78 / 1 h	2af	Н	PhC(OH)Me	64
7	1a	Ph ₂ CO	-78 / 1 h	2ag	Н	Ph ₂ COH	64
8	1a	Me ₃ SiCl	-78 to -60 / 2 h	2ah	н	Me ₃ Si	81
9	1 b	tBuCHO	-78 / 40 min	2bb	Me	tBuCHOH	57[d]
10	1 b	Et ₂ CO	-78 / 40 min	2bd	Me	Et ₂ COH	62
11	1 b	(CH ₂) ₅ CO	-78 / 40 min	2be	Me	(CH ₂) ₅ COH	50
12	1 b	PhCOMe	-78 / 40 min	2bf	Me	PhC(OH)Me	61[e]
13	1 c	Et ₂ CO	-78 / 2 h	2cd	Cy[f]	Et ₂ COH	64
14	1 c	(CH ₂) ₅ CO	-78 / 2 h	2ce	Cy[f]	(CH ₂) ₅ COH	61
15	1 c	PhCOMe	-78 / 2 h	2cf	Cy[f]	PhC(OH)Me	45[g]

^[a] Corresponding to the lithiation step in the presence of the electrophile. — ^[b] All products 2 were \geq 95% pure (300 MHz ¹H NMR and/or GLC). — ^[c] Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting material 1. — ^[d] A 3.5:1 diastereomeric mixture was obtained (300 MHz ¹H NMR). — ^[e] A 1.8:1 diastereomeric mixture was obtained (300 MHz ¹H NMR). — ^[f] Cyclohexyl. — ^[g] A 1.2:1 diastereomeric mixture was obtained (300 MHz ¹H NMR).

in order to avoid decomposition of the intermediate of type VI, generated in situ, even at low temperature. This intermediate, which can decompose either by reaction with the excess lithium or by nucleophilic addition to the amide moiety, is stabilized by intramolecular coordination of the lithium atom to the carbonylic oxygen, through the so-called CIPE ("complex-induced polarity effect").^[19] Once the intermediates VI are formed, they react mainly with the electrophile present in the reaction medium to give the expected reaction products. As a confirmation of the low stability of this type of intermediate, we performed the step-by-step process starting from the chlorocarbamate 1b and carrying out the DTBB-catalyzed lithiation at -90°C followed by deuterolysis with deuterium oxide, obtaining a very poor yield (<10%) of the expected product 2a (R = Me, E =D) with a very low deuterium content (<5%, from mass spectrometry). Unexpectedly, when the same two-step process was carried out with the starting material 1c, the corresponding product 2c (R = c-C₆H₁₁, E = D) was isolated in 81% yield and with 70% deuterium incorporation (mass spectrometry). The starting chlorocarbamates 1 were prepared from the corresponding chlorinated chloroformates and pyrrolidine in the presence of pyridine.

3006

In the last part of this study we performed the deprotection of carbamates **2** derived from carbonyl compounds. Although this process could be carried out by reduction with DIBAL in refluxing THF for 6 h (Table 2, entry 6 and footnote [c]),^[18] we found that hydrolysis with lithium hydroxide at 80 °C for 1.5 h worked just as well, so we used this methodology to obtain the corresponding 1,2-diols **3** (Scheme 3 and Table 2). After this deprotection it is apparent that we can use the methodology described in this paper to introduce the nucleophilic HOCH(R)⁻ unit into carbonyl compounds, which act as electrophilic components.

Scheme 3. a: LiOH, EtOH/H2O, 80°C, 1.5 h

Conclusions

From the results described in this paper we can conclude that this methodology is a new and versatile way to generate a synthetic equivalent of α -lithiated alcohols. They readily trap electrophiles in situ to give functionalized alcohols, mainly 1,2-diols.

Table 2. Preparation of diols 3

Entry	Starting material	Product[a] No.	R	R1		R ²	Yield (%)[b]
				···· ···			
1	2aa	3 a a	Н	н		iBu	92
2	2ab	3ab	Н	н		tBu	80
3	2ac	3ac	Н	Н		Ph	91
4	2ad	3ad	Н	Et		Et	86
5	2ae	3ae	Н	((CH ₂)5		86
6	2af	3af	н	Ph		Me	88 (96[c])
7	2ag	3ag	Н	Ph		Ph	95
8	2bb[d]	3bb	Me	н		<i>t</i> Bu	85[d]
9	2bd	3bd	Me	Et		Et	81
10	2be	3be	Me	(CH ₂) ₅	77	
11	2bf[d]	3bf	Me	Ph		Me	91[d]
12	2bf'[e]	3bf'	Me	Ph		Me	88 [e]
13	2cd	3cd	Cy[f]	Et		Et	86
14	2ce	3ce	Cy[f]	(CH ₂)5		90
15	2cf[e]	3cf	Cy[f]	Ph		Me	95[d]
16	2cf'[0]	3cf'	Cy[f]	Ph		Me	88[e]

[a] All products 2 were \geq 92% pure (300 MHz ¹H NMR and/or GLC). — ^[b] Isolated crude yield based on the starting material 2. — ^[c] Yield corresponding to the deprotection of compound 2af using DIBAL (see text). — ^[d] The major diastereomer was used. — ^[e] The minor diastereomer was used.

Experimental Section

General: All reactions were performed in oven-dried glassware under an argon atmosphere. - Melting points: Reichert Thermovar Apparatus. - ¹H- and ¹³C-NMR spectroscopy: Bruker AC-300 with CDCl₃ as a solvent; chemical shifts are quoted relative to TMS as internal standard; δ in ppm, J in Hz. – FTIR: Nicolet Impact 400D spectrophotometer recorded on films between NaCl plates and reported in cm⁻¹. - GC-LRMS: Shimazu QP-5000 Mass Spectrometer at 70 eV using electronic impact; relative intensities for signals $\geq 10\%$ in parentheses. – GC: Hewlett Packard HP-5890 instrument equipped with a flame ionization detector and a 12 m HP-1 capillary column (0.2 mm diam., 0.33 mm film thickness), with nitrogen (2 mL/min) as the carrier gas, $T_{injector} = 275 \,^{\circ}C$, $T_{detector} = 300 \,^{\circ}\text{C}, T_{column} = 60 \,^{\circ}\text{C}$ (3 min) and $60-270 \,^{\circ}\text{C}$ (15 $^{\circ}\text{C}/$ min). - TLC: Schleicher & Schuell F1400/LS 254 plates coated with a 0.2 mm layer of silica gel; $R_{\rm f}$ values are given under these conditions. - Column chromatography: Merk silica gel 60 of 63-200 mesh. - HRMS: Finigan MAT 955. - Microanalysis: Microanalysis Service at the University of Alicante. - Commercially available reagents were purchased (Aldrich, Acros) of the highest grade and used without further purification. Chloromethyl (Fluka) and a-chloroethyl (Aldrich) chloroformates are commercially available. α -Chloro- α -cyclohexylmethyl chloroformate was prepared from cyclohexanecarboxaldehyde and triphosgene following the literature procedure.^[20] [CAUTION: α -Chloroalkyl chloroformates are toxic and should be handled carefully]. Solvents were dried by standard procedures.[21]

Preparation of the Chlorocarbamates 1: To a stirred solution of pyrrolidine (1.42 g, 20 mmol), and pyridine (1.58 g, 20 mmol), in dichloromethane (15 mL) was added dropwise a solution of the corresponding chloroformate (20 mmol) in dichloromethane (5 mL)

Eur. J. Org. Chem. 1999, 3005-3012

for 15 min at 0°C under an argon atmosphere. The resulting mixture was allowed to warm to room temperature (2 h for **1a,b** and 40 min for **1c**) and then dichloromethane (100 mL) was added. The resulting solution was successively washed with 0.2 M HCl (3×10 mL), water (3×10 mL) and brine (2×10 mL). The organic layer was dried with Na₂SO₄, the solvent evaporated, and the resulting residue distilled at reduced pressure to give the title compounds **1b** (65% yield; b.p. 50°C/0.1 Torr) and **1c** (60% yield; b.p. 140°C/0.1 Torr). Compound **1a** was used without purification for the lithiation reaction ($\approx 100\%$ crude yield).

N-(Chloromethyloxycarbonyl)pyrrolidine (1a): oil. – IR (film): $\tilde{v} = 1732$ (C=O), 1121, 1093 (CO) cm⁻¹. – ¹H NMR: $\delta = 1.85-1.95$ (m, 4 H, CH₂CH₂CH₂N), 3.40–3.50 (m, 4 H, CH₂NCH₂), 5.79 (s, 2 H, CH₂Cl). – ¹³C NMR: $\delta = 24.7$, 25.55 (CH₂CH₂CH₂CH₂N), 46.4, 46.9 (CH₂NCH₂), 70.55 (CH₂Cl), 152.0 (CO₂). – GC-LRMS: *mlz* (%) = 165 (M⁺ + 2, 8), 163 (M⁺, 24), 114 (80), 98 (10), 70 (50), 69 (10), 56 (56), 55 (70), 43 (32), 42 (100). – HRMS: *mlz* = 163.0399 (M⁺); calcd. for C₆H₁₀ClNO₂: 163.0400.

N-[(1-Chloro)ethyloxycarbonyl]pyrrolidine (1b): oil. − IR (film): \tilde{v} = 1731 (C=O), 1100, 1071 (CO) cm⁻¹. − ¹H NMR: δ = 1.81 (d, *J* = 5.8 Hz, 3 H, CH₃), 1.85−1.95 (m, 4 H, CH₂CH₂CH₂N), 3.40−3.50 (m, 4 H, CH₂NCH₂), 6.61 (q, *J* = 5.8 Hz, 1 H, CH). − ¹³C NMR: δ = 24.7, 25.5 (CH₂CH₂CH₂N), 25.45 (CH₃), 45.8, 46.25 (CH₂NCH₂), 82.8 (CH), 151.85 (CO₂). − GC-LRMS: *m/z* (%) = 179 (M⁺ + 2, 1.4), 177 (M⁺, 4.2), 114 (39), 98 (61), 87 (11), 70 (55), 65 (35), 63 (100), 56 (53), 55 (68), 44 (18), 43 (71), 42 (53), 41 (62). − HRMS: *m/z* = 177.0537 (M⁺); calcd. for C₇H₁₂ClNO₂: 177.0556.

 $\label{eq:loss} \begin{array}{l} \textit{N-[(Chlorocyclohexyl)methyloxycarbonyl]pyrrolidine (1c): oil. - IR} \\ (film): \tilde{\nu} = 1728 \ (C=O), \ 1100, \ 1080 \ (CO) \ cm^{-1}. \ - \ ^1H \ NMR: \ \delta = 1.10 - 1.35 \ (m, \ 4 \ H, \ 4 \times CH \ cyclohexyl \ ring), \ 1.63 - 2.05 \ (m, \ 11 \ 11) \end{array}$

H, $7 \times \text{CH}$ cyclohexyl ring, $CH_2CH_2CH_2N$), 3.30-3.50 (m, 4 H, CH_2NCH_2), 6.32 (d, J = 4.8 Hz, 1 H, CHCl). $- {}^{13}\text{C}$ NMR: $\delta = 24.8$, 25.6 (3C), 26.1 (5 × CH₂ cyclohexyl ring), 27.85, 28.25 (CH₂CH₂CH₂CH₂N), 44.95 (CHCH₂), 45.85, 46.3 (CH₂NCH₂), 90.25 (CHCl), 152.2 (CO₂). - GC-LRMS: m/z (%) = 209 (M⁺ - HCl, 6), 99 (5), 98 (100), 56 (23), 55 (76). - HRMS: m/z = 209.1404 (M⁺ - HCl); calcd. for C₁₂H₁₉NO₂: 209.1416.

Preparation of Compounds 2 by DTBB-Catalyzed Lithiation of Chlorocarbamates 1 under Barbier Conditions: To a blue suspension of lithium powder (100 mg, 14 mmol) and DTBB (26 mg, 0.1 mmol) in THF (6 mL) was slowly added (*ca.* 15 min) a solution of the starting material 2 (2 mmol) and the corresponding electrophile (2 mmol) in THF (4 mL) at -78 °C under an argon atmosphere. The reaction mixture was stirred for 40 min or 2 h (see Table 1) at temperatures ranging between -78 and -60 °C (see Table 1), and was then hydrolyzed with water (10 mL). After warming to room temperature the crude mixture was extracted with diethyl ether (3 × 20 mL), the organic layer was dried with Na₂SO₄ and the solvents evaporated. The residue was purified by column chromatography [silica gel (flash chromatography for compounds 2bb, bf, cf), hexane/ethyl acetate] to give pure compounds 2. Yields are reported in Table 1.

N-[(2-Hydroxy-4-methyl)pentyloxycarbonyl]pyrrolidine (2aa): oil, *R*_f = 0.31 (hexane/ethyl acetate, 1:1). − IR (film): \tilde{v} = 3430 (OH), 1683 (C=O), 1181, 1130, 1101 (CO) cm⁻¹. − ¹H NMR: δ = 0.86 (t, *J* = 6.7 Hz, 6 H, 2 × CH₃), 1.70−1.79 [m, 5 H, CH₂CH₂CH₂N, (CH₃)₂C*H*], 2.90 (br s, 1 H, OH), 3.26- 3.40 (m, 4 H, CH₂NCH₂), 3.78−3.88 (m, 1 H, *CH*OH), 3.92 (dd, *J* = 11.3, 7.0 Hz, 1 H, C*H*HO), 4.07 (dd, *J* = 11.3, 3.1 Hz, CHHO). − ¹³C NMR: δ = 21.9, 23.2 (2 × CH₃), 24.2 [*C*H(CH₃)₂], 24.8, 25.55 (*C*H₂CH₂CH₂N), 42.2 [*C*H₂CH(CH₃)₂], 45.7, 46.15 (CH₂NCH₂), 68.5 (CHOH), 69.8 (CH₂O), 155.35 (CO₂). − GC- LRMS: *m*/*z* (%) = 215 (M⁺, 0.2), 158 (12), 129 (16), 116 (65), 114 (100), 98 (75), 70 (33), 56 (33), 55 (80). − HRMS: *m*/*z* = 215.1534 (M⁺); calcd. for C₁₁H₂₁NO₃: 215.1521.

N-[(3,3-Dimethyl-2-hydroxy)butyloxycarbonyl]pyrrolidine (2ab): oil, *R*_f = 0.44 (hexane/ethyl acetate, 1:1). − IR (film): \tilde{v} = 3447 (OH), 1684 (C=O), 1132, 1113, 1095 (CO) cm⁻¹. − ¹H NMR: δ = 0.96 [s, 9 H, (CH₃)₃C], 1.80−1.95 [m, 4 H, CH₂CH₂CH₂N], 2.84 (br d, *J* = 3 Hz, 1 H, OH), 3.22−3.35 (m, 4 H, CH₂NCH₂), 3.45 (m, 1 H, *CH*OH), 4.08 (dd, *J* = 11.6, 8.5 Hz, 1 H, *CH*HCH), 4.28 (dd, *J* = 11.6, 2.0 Hz, CHHCH). − ¹³C NMR: δ = 24.9, 25.7 (CH₂CH₂CH₂N), 25.85 [(CH₃)₃C], 33.9 [(CH₃)₃C], 45.8, 46.25 (CH₂NCH₂), 67.3 (CH₂O), 78.0 (CH), 155.65 (CO₂). − GC-LRMS: *m*/*z* (%) = 158 [M⁺ − (CH₃)₃C, 27], 116 (53), 114 (67), 98 (100), 70 (31), 57 (32), 56 (40), 55 (70), 44 (21). − HRMS: *m*/*z* = 215.1532 (M⁺); calcd. for C₁₁H₂₁NO₃: 215.1521.

N-[(2-Hydroxy-2-phenyl)ethyloxycarbonyl]pyrrolidine (2ac): white solid (m.p. 79−80°C, toluene), $R_{\rm f} = 0.29$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3411$ (OH), 1681 (C=O), 1131, 1111, 1066, 1028 (CO) cm⁻¹. – ¹H NMR: $\delta = 1.70-1.93$ [m, 4 H, CH₂CH₂CH₂N], 3.20−3.33 (m, 4 H, CH₂NCH₂), 3.70 (br s, 1 H, OH), 4.10−4.16 (m, 2 H, CH₂CH), 4.85 (dd, J = 6.5, 4.4 Hz, 1 H, CHOH), 7.18−7.30 (m, 5 H, ArH). – ¹³C NMR: $\delta = 24.8, 25.55$ (CH₂CH₂CH₂N), 45.75, 46.15 (CH₂NCH₂), 70.35 (CH₂O), 73.0 (CHO), 126.1, 127.7, 128.25, 140.35 (4 × ArC), 155.45 (CO₂). – GC-LRMS: m/z (%) = 217 [M⁺ – H₂O, 3], 129 (21), 116 (23), 114 (56), 98 (80), 91 (35), 79 (12), 77 (27), 71 (10), 70 (28), 65 (14), 56 (45), 55 (100). – C₁₃H₁₇NO₃ (235.28): calcd. C 66.36, H 7.28, N 5.95; found C 66.43, H 7.35, N 5.79.

N-**[(2-Ethyl-2-hydroxy)butyloxycarbonyl]pyrrolidine (2ad)**: oil, $R_{\rm f} = 0.36$ (hexane/ethyl acetate, 1:1). – IR (film): $\tilde{\nu} = 3435$ (OH), 1684

(C=O), 1182, 1130, 1110 (CO) cm⁻¹. $^{-1}$ H NMR: $\delta = 0.90$ (t, J = 7.4 Hz, 6 H, 2 × CH₃CH₂), 1.53 (q, J = 7.4 Hz, 4 H, 2 × CH₃CH₂), 1.80–1.95 (m, 4 H, CH₂CH₂CH₂N), 2.50 (s, 1 H, OH), 3.35–3.45 (m, 4 H, CH₂NCH₂), 4.03 (s, 2 H, CH₂O). $^{-13}$ C NMR: $\delta = 7.57$ (2 × CH₃CH₂), 24.85, 25.65 (CH₂CH₂CH₂N), 28.5 (2 × CH₃CH₂), 45.75, 46.2 (CH₂NCH₂), 69.75 (CH₂O), 73.85 (COH), 155.35 (CO₂). $^{-13}$ C GC-LRMS: m/z (%) = 186 (M⁺ – CH₃CH₂, 8), 129 (21), 114 (100), 98 (82), 71 (10), 70 (33), 57 (14), 56 (37), 55 (71), 45 (29), 44 (12), 43 (36).

N-[(1-Hydroxycyclohexyl)methyloxycarbonyl]pyrrolidine (2ae): oil, *R*_f = 0.24 (hexane/ethyl acetate, 1:1). − IR (film): \tilde{v} = 3421 (OH), 1683 (C=O), 1130, 1107, 1071 (CO) cm⁻¹. − ¹H NMR: δ = 1.40−1.70 (m, 10 H, 5 × CH₂ cyclohexyl ring), 1.83−1.95 (m, 4 H, CH₂CH₂CH₂N), 2.53 (br s, 1 H, OH), 3.35−3.45 (m, 4 H, CH₂NCH₂), 4.01 (s, 2 H, CH₂O). − ¹³C NMR: δ = 21.6, 25.7 (2 C), 34.25 (2 C) (5 × CH₂ cyclohexyl ring), 24.8 (CH₂CH₂CH₂N), 45.7, 46.15 (CH₂NCH₂), 70.6 (CH₂O) 72.15 (COH), 155.25 (CO₂). − GC-LRMS: *m/z* (%) = 227 (M⁺, 0.7), 130 (13), 129 (31), 114 (100), 98 (48), 81 (13), 70 (29), 56 (22), 55 (52), 44 (10), 43 (52), 42 (20), 41 (40). − HRMS: *m/z* = 227.1512 (M⁺); calcd. for C₁₂H₂₁NO₃: 227.1521.

N-[(2-Hydroxy-2-phenyl)propyloxycarbonyl]pyrrolidine (2af): oil, *R*_f = 0.36 (hexane/ethyl acetate, 1:1). − IR (film): \tilde{v} = 3427 (OH), 1683 (C=O), 1181, 1129, 1108 (CO) cm⁻¹. − ¹H NMR: δ = 1.56 (s, 3 H, CH₃), 1.80−1.90 (m, 4 H, CH₂CH₂CH₂N), 3.22−3.38 (m, 4 H, CH₂NCH₂), 3.53 (s, 1 H, OH), 4.22, 4.30 (2 d, *J* = 11.6 Hz, 2 H, CH₂O), 7.20−7.50 (m, 5 H, ArH). − ¹³C NMR: δ = 24.85, 25.6 (CH₂CH₂CH₂N), 26.35 (CH₃), 45.7, 46.2 (CH₂NCH₂), 72.85 (CH₂O), 74.0 (COH), 125.15, 126.95, 128.1, 144.8 (4 × ArC), 155.35 (CO₂). − GC-LRMS; *m/z* (%): = 234 (M⁺ − CH₃, 0.2), 129 (32), 121 (20), 115 (10), 114 (100), 98 (30), 77 (16), 71 (11), 70 (36), 56 (31), 55 (48), 44 (17), 43 (68). − HRMS: *m/z* = 234.1146 (M⁺ − CH₃); calcd. for C₁₃H₁₆NO₃: 234.1130.

N-[(2,2-Diphenyl-2-hydroxy)ethyloxycarbonyl]pyrrolidine (2ag): white solid (m.p. 153−155°C, hexane), $R_{\rm f} = 0.48$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3486$ (OH), 1683 (C=O), 1216, 1185, 1129 (CO) cm⁻¹. – ¹H NMR: $\delta = 1.75-1.85$ (m, 4 H, CH₂CH₂CH₂N), 3.10−3.20, 3.30−3.40 (2 m, 4 H, CH₂NCH₂), 3.90 (s, 1 H, OH), 4.69 (s, 2 H, CH₂O), 7.20−7.50 (m, 10 H, ArH). – ¹³C NMR: $\delta = 24.8$, 25.5 (CH₂CH₂CH₂N), 45.7, 46.25 (CH₂NCH₂), 70.9 (CH₂O), 77.95 (COH), 126.55, 127.25, 128.1, 143.95 (4 × ArC), 155.15 (CO₂). – GC-LRMS: *m*/*z* (%) = 294 (M⁺ − H₂O, 1.4), 196 (25), 184 (11), 183 (74), 165 (14), 114 (50), 105 (70), 98 (98), 77 (44), 72 (10), 70 (16), 56 (44), 55 (100). – C₁₉H₂₁NO₃ (311.38): calcd. C 73.29, H 6.80, N 4.50; found C 73.05, H 6.84, N 4.46.

N-(Trimethylsilylmethyloxycarbonyl)pyrrolidine (2ah): oil, $R_f = 0.68$ (hexane/ethyl acetate, 1:1). − IR (KBr): $\tilde{v} = 1705$ (C=O), 1178, 1128, 1102 (CO), 857 (CSi) cm⁻¹. − ¹H NMR: $\delta = 0.04$ [s, 9 H, (CH₃)₃Si], 1.75−1.85 (m, 4 H, CH₂CH₂CH₂N), 3.25−3.40 (m, 4 H, CH₂NCH₂), 3.68 (s, 2 H, CH₂Si). − ¹³C NMR: $\delta = -3.2$ [(CH₃)₃Si], 24.95, 25.7 (CH₂CH₂CH₂N), 46.2, 45.6 (CH₂NCH₂), 57.9 (CH₂O), 156.35 (CO₂). − GC-LRMS: m/z (%) = 201 (M⁺, 0.2), 186 (40), 142 (10), 114 (50), 98 (30), 73 (100), 56 (45), 55 (78), 45 (27). − HRMS: m/z = 201.1188 (M⁺); calcd. for C₉H₁₉NO₂Si: 201.1185.

N-[(2-Hydroxy-1,3,3-trimethyl)butyloxycarbonyl]pyrrolidine (2bb), First diastereomer: white solid (m.p. 65–66°C, hexane), $R_{\rm f} =$ 0.38 (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3455$ (OH), 1678 (C=O), 1129, 1106 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.98$ [s, 9 H, (CH₃)₃C], 1.29 (d, J = 6.5 Hz, 3 H, CH₃CH), 1.75–1.92 (m, 4 H, CH₂CH₂CH₂N), 2.15 (s, 1 H, OH), 3.25–3.40 (m, 4 H,

Eur. J. Org. Chem. **1999**, 3005-3012

CH₂NCH₂), 3.47 (d, *J* = 3.1 Hz, 1 H, CHOH), 4.97 (qd, *J* = 6.5, 3.1 Hz, 1 H, CH₃CH). $- {}^{13}$ C NMR: $\delta = 16.0$ (CH₃CH), 25.55, 25.65 (CH₂CH₂CH₂N), 26.6 [(CH₃)₃C], 34.3 [(CH₃)₃C], 45.95, 46.1 (CH₂NCH₂), 72.75 (CH₃CH), 80.75 (CHOH), 154.5 (CO₂). - GC-LRMS: m/z (%) = 172 [M⁺ - (CH₃)₃C, 8], 143 (11), 116 (52), 114 (70), 99 (20), 98 (100), 71 (11), 70 (18), 57 (50), 56 (25), 55 (51), 44 (20), 43 (36). – $C_{12}H_{23}NO_3$ (229.32): calcd. C 62.85, H 10.11, N 6.11; found C 62.53, H 9.86, N 5.98. Second diastereomer: IR (KBr): $\tilde{v} = 3486$ (OH), 1678 (C=O), 1180, 1132, 1109 (CO) cm⁻¹. $- {}^{1}$ H NMR: $\delta = 0.94$ [s, 9 H, (CH₃)₃C], 1.34 (d, J = 6.4 Hz, 3 H, CH₃CH), 1.80-1.95 (m, 4 H, CH₂CH₂CH₂N), 2.12 (br s, 1 H, OH), 3.23-3.45 (m, 5 H, CH₂NCH₂, CHOH), 5.10 (qd, J = 6.4, 1.2 Hz, 1H, CH₃CH). - ¹³C NMR: δ = 19.5 (CH₃CH), 24.75, 24.8 (CH₂CH₂CH₂N), 26.25 [(CH₃)₃C], 35.0 [(CH₃)₃C], 45.5, 45.6 (CH₂NCH₂), 69.75 (CH₃CH), 81.15 (CHOH), 153.8 (CO₂). - GC-LRMS: m/z (%) = 172 [M⁺ - (CH₃)₃C, 16], 116 (15), 114 (37), 98 (175), 70 (26), 57 (100), 56 (21), 55 (47), 44 (40), 43 (56).

N-[(2-Ethyl-2-hydroxy-1-methyl)butyloxycarbonyl]pyrrolidine (2bd): white solid (m.p. 85−86 °C, hexane), $R_f = 0.40$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3475$ (OH), 1675 (C=O), 1131, 1100 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.91$ (t, J = 7.5 Hz, 6 H, $2 \times CH_3CH_2$), 1.23 (d, J = 6.4 Hz, 3 H, CH_3CH), 1.35−1.68 (m, 4 H, $2 \times CH_3CH_2$), 1.80−1.95 (m, 4 H, $CH_2CH_2CH_2N$), 1.98 (s, 1 H, OH), 3.30−3.45 (m, 4 H, CH_2NCH_2), 4.84 (q, J = 6.4 Hz, 1 H, CH). – ¹³C NMR: $\delta = 7.45$, 7.5 ($2 \times CH_3CH_2$), 14.95 (CH₃CH), 24.85, 25.65 (CH₂CH₂CH₂N), 26.65, 28.1 ($2 \times CH_3CH_2$), 45.75, 46.2 (CH₂NCH₂), 75.1 (CH), 75.8 (COH), 154.85 (CO₂). – GC-LRMS: m/z (%) = 200 (M⁺ – CH₃CH₂, 4), 143 (19), 116 (16), 114 (10), 98 (70), 71 (14), 70 (23), 57 (27), 56 (28), 55 (50), 45 (29), 44 (12), 43 (36). – C₁₂H₂₃NO₃ (229.32): calcd. C 62.85, H 10.11, N 6.11; found C 63.26, H 10.34, N 6.04.

N-[1-(1'-Hydroxycyclohexyl)ethyloxycarbonyl]pyrrolidine white solid (m.p. 72–74°C, hexane), $R_{\rm f} = 0.38$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{\nu}$ = 3448 (OH), 1681 (C=O), 1129, 1104 (CO) cm⁻¹. - ¹H NMR: $\delta = 1.23$ (d, J = 6.1 Hz, 3 H, CH₃), 1.16-1.78 (m, 11 H, 5 × CH₂ cyclohexyl ring, OH), 1.82-1.94 (m, 4 H, $CH_2CH_2CH_2N$), 3.30–3.45 (m, 4 H, CH_2NCH_2), 4.71 (q, J =6.1 Hz, 1 H, CH). - ¹³C NMR: δ = 14.4 (CH₃), 21.25, 21.4, 25.7, 34.05 $(5 \times CH_2 \text{ cyclohexyl ring})$, 24.8, 32.5. 25.55 (CH₂CH₂CH₂N), 45.6, 46.05 (CH₂NCH₂), 72.6 (COH), 76.8 (CH), 154.7 (CO₂). – GC-LRMS: m/z (%) = 212 (M⁺ – CH₃CH₂, 0.1), 143 (22), 115 (11), 114 (100), 99 (15), 98 (52), 81 (17), 71 (26), 70 (41), 69 (10), 57 (12), 56 (42), 55 (83), 53 (11), 45 (25), 44 (18), 43 (52), 42 (26), 41 (56). – $C_{13}H_{23}NO_3$ (241.33): calcd. C 64.70, H 9.61, N 5.80; found C 64.67, H 9.79, N 5.72.

N-[(2-Hydroxy-1-methyl-2-phenyl)propyloxycarbonyl]pyrrolidine (2bf), First diastereomer: white solid (m.p. 123-125°C, hexane), $R_{\rm f} = 0.40$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3436$ (OH), 1667 (C=O), 1198, 1095 (CO) cm⁻¹. - ¹H NMR: $\delta = 1.04$ (d, J =6.4 Hz, 3 H, CH₃CH), 1.58 (s, 3 H, CH₃C), 1.80-1.93 (m, 4 H, CH₂CH₂CH₂N), 2.62 (s, 1 H, OH), 3.30-3.45 (m, 4 H, CH_2NCH_2), 5.05 (q, J = 6.4 Hz, 1 H, CH), 7.15–7.47 (m, 5 H, ArH). $- {}^{13}C$ NMR: $\delta = 15.1$ (CH₃CH), 24.9, 25.65 (CH₂CH₂CH₂N), 27.55 (CH₃C), 45.75, 46.25 (CH₂NCH₂), 76.0 (COH), 77.4 (CH₃CH), 125.35, 126.8, 127.95, 144.2 (4 × ArC), 154.7 (CO₂). – GC-LRMS: m/z (%) = 246 (M⁺ – OH, 0.1), 143 (37), 121 (28), 115 (10), 114 (88), 99 (14), 98 (72), 77 (18), 71 (38), 70 (33), 56 (44), 55 (77), 44 (15), 43 (100), 42 (14), 41 (23). C15H21NO3 (263.34): calcd. C 68.42, H 8.04, N 5.32; found C 68.63, H 8.15, N 5.28. Second diastereomer: white solid (m.p. 96-98°C, hexane), $R_{\rm f} = 0.36$ (hexane/ethyl acetate, 1:1). - IR (KBr): $\tilde{v} = 3427$ (OH), 1678 (C=O), 1129, 1104 (CO) cm⁻¹. - ¹H

Eur. J. Org. Chem. 1999, 3005-3012

NMR: $\delta = 1.16$ (d, J = 6.1 Hz, 3 H, CH_3CH), 1.55 (s, 3 H, CH_3C), 1.75–1.90 (m, 4 H, $CH_2CH_2CH_2N$), 3.10–3.35 [m, 5 H, CH_2NCH_2 , OH], 5.05 (q, J = 6.1 Hz, 1 H, CH), 7.18–7.57 (m, 5 H, ArH). – ¹³C NMR: $\delta = 15.4$ (CH_3CH), 24.1 (CH_3C), 24.7, 25.5 ($CH_2CH_2CH_2N$), 45.55, 46.0 (CH_2NCH_2), 76.2 (COH), 77.3 (CH_3CH), 125.5, 126.8, 127.85, 145.2 (4 × ArC), 154.7 (CO₂). – GC-LRMS: m/z (%) = 246 (M⁺ – OH, 0.2), 143 (47), 121 (42), 115 (13), 114 (99), 99 (20), 98 (90), 77 (24), 72 (12), 70 (45), 56 (57), 55 (95), 44 (20), 43 (100), 42 (24), 41 (29). – $C_{15}H_{21}NO_3$ (263.34): calcd. C 68.42, H 8.04, N 5.32; found C 68.75, H 8.22, N 5.26.

N-**[(Deuterocyclohexyl)methyloxycarbonyl]pyrolidine (2c, E = D):** oil, $R_f = 0.63$ (hexane/ethyl acetate, 1:1). – IR (film): $\tilde{v} = 1703$ (C=O), 1132, 1115, 1099 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.80-2.00$ [m, 15 H, 11 H cyclohexyl ring, $CH_2CH_2CH_2N$], 3.32–3.42 (m, 4 H, CH₂NCH₂), 3.89 (d, J = 6.4 Hz, 1 H, CHD). – ¹³C NMR: $\delta = 24.9, 25.7$ (3 C), 26.45 (5 × CH₂ cyclohexyl ring), 29.65 (2 C, $CH_2CH_2CH_2N$), 37.4 (CHCH₂), 45.65, 46.0 (CH₂NCH₂), 69.75 (t, J = 22 Hz, 1 C, CHD), 155.35 (CO₂). – GC-LRMS: m/z (%) = 212 (M⁺, 0.1), 116, (90), 98 (12), 70 (23), 68 (13), 67 (16), 56 (58), 55 (100), 54 (12).

N-[(1-Cyclohexyl-2-ethyl-2-hydroxy)butyloxycarbonyl]pyrrolidine (2cd): white solid (m.p. 96−98 °C, hexane), $R_f = 0.49$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3462$ (OH), 1676 (C=O), 1130, 1127, 1115 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.88$, 0.90 (2 t, J = 7.5, 7.5 Hz, 6 H, 2 × CH₃), 1.05−2.10 (m, 20 H, 11 H cyclohexyl ring, 2 × CH₂CH₃, CH₂CH₂CH₂N, OH), 3.35- 3.50 (m, 4 H, CH₂NCH₂), 4.64 (d, J = 2.4 Hz, 1 H, CHO). – ¹³C NMR: $\delta =$ 7.65 (2 C, 2 × CH₃), 24.85, 25.65 (CH₂CH₂CH₂N), 26.2, 26.3, 26.6, 26.85, 27.7, 28.8, 32.25 (5 × CH₂ cyclohexyl ring, 2 × CH₂CH₃), 38.45 (CHCH₂), 45.7, 46.25 (CH₂NCH₂), 76.95 (COH), 80.95 (CHO), 155.2 (CO₂). – GC-LRMS: *m*/*z* (%) = 268 (M⁺ – CH₃CH₂, 1), 211 (11), 116 (63), 115 (21), 114 (100), 98 (55), 71 (16), 70 (14), 57 (24), 56 (18), 55 (58), 45 (14), 43 (18). – C₁₇H₃₁NO₃ (297.44): calcd. C 68.65, H 10.51, N 4.71; found C 68.30, H 10.57, N 4.55.

N-[Cyclohexyl-(1'-hydroxycyclohexyl)methyloxycarbonyl]pyrrolidine (2ce): white solid (m.p. 113–115 °C, hexane), $R_{\rm f}$ = 0.51 (hexane/ethyl acetate, 1:1). − IR (KBr): \tilde{v} = 3505 (OH), 1682 (C= O), 1177, 1134, 1107 (CO) cm⁻¹. − ¹H NMR: δ = 1.02–2.05 (m, 26 H, 10 × CH₂ cyclohexyl ring, CH₂CH₂CH₂N, CHCHO, OH), 3.30- 3.50 (m, 4 H, CH₂NCH₂), 4.53 (d, *J* = 3.0 Hz, 1 H, CHCHO). − ¹³C NMR: δ = 21.5 (2 C), 24.85, 25.7 (2 C), 26.2, 26.3, 26.55, 27.55, 32.3, 33.25, 35.5 (12 C, CH₂CH₂CH₂N, 10 × CH₂ cyclohexyl rings), 38.4 (CHCHO), 45.65, 46.25 (CH₂NCH₂), 73.8 (COH), 82.85 (CHCHO), 155.2 (CO₂). − GC-LRMS: *m/z* (%) = 211 [M⁺ − (CH₂)₅CO, 20], 116 (63), 115 (27), 115 (27), 114 (100), 99 (18), 98 (51), 71 (20), 70 (17), 56 (20), 55 (62).

N-**[(1-Cyclohexyl-2-hydroxy-2-phenyl)propyloxycarbonyl]**pyrrolidine (2cf), First diastereomer: white solid (m.p. 160−162°C, hexane), $R_{\rm f}$ = 0.42 (hexane/ethyl acetate, 1:1). – IR (KBr): \tilde{v} = 3443, 3129 (OH), 1685 (C=O), 1128, 1108, 1067 (CO) cm⁻¹. – ¹H NMR: δ = 0.97–1.93 [m, 16 H, 11 H cyclohexyl ring, CH₂CH₂CH₂N, OH], 1.51 (s, 3 H, CH₃), 3.40–3.55 (m, 4H, CH₂NCH₂), 4.91 (d, *J* = 3.3 Hz, 1 H, CHO), 7.24–7.51 (m, 5 H, ArH). – ¹³C NMR: δ = 24.9, 25.75 (CH₂CH₂CH₂N), 26.1 (2 C), 26.3, 27.65, 31.95 (5 × CH₂ cyclohexyl ring), 29.4 (CH₃), 38.45 (CHCH₂), 45.8, 46.4 (CH₂NCH₂), 77.1 (COH), 83.25 (CHO), 125.15, 126.7, 128.0, 144.55 (4 × ArC), 155.15 (CO₂). – GC-LRMS: *m/z* (%) = 211 (M⁺ – CH₃COPh, 15), 121 (30), 116 (31), 115 (15), 144 (60), 99 (13), 98 (97), 71 (23), 70 (14), 56 (27), 55 (76), 43 (100). – C₂₀H₂₉NO₃ (331.46): calcd. C 72.47, H 8.82, N

4.23; found C 72.40, H 8.91, N 4.34. **Second diastereomer:** white solid (m.p. 143–145°C, hexane), $R_{\rm f} = 0.34$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{\nu} = 3410$ (OH), 1678 (C=O), 1139, 1120, 1111, (CO) cm⁻¹. – ¹H NMR: $\delta = 1.07$ –1.90 [m, 15 H, 11 H cyclohexyl ring, $CH_2CH_2CH_2N$], 1.58 (s, 3 H, CH₃), 2.99 (s, 1 H, OH), 3.35–3.50 (m, 4 H, CH₂NCH₂), 4.85 (d, J = 4.0 Hz, 1 H, CHO), 7.26–7.51 (m, 5 H, ArH). – ¹³C NMR: $\delta = 24.8$, 25.65 (CH₂CH₂CH₂N), 25.05 (CH₃), 26.1, 26.2, 26.3, 27.85, 32.3 (5 × CH₂ cyclohexyl ring), 38.5 (CHCH₂), 45.65, 46.25 (CH₂NCH₂), 76.9 (COH), 84.05 (CHO), 125.6, 126.9, 127.9, 145.35 (4 × ArC), 155.35 (CO₂). – GC-LRMS: m/z (%) = 211 (M⁺ – CH₃COPh, 13), 121 (27), 116 (28), 115 (13), 99(12), 98 (90), 71 (21), 70 (13), 56 (24), 55 (74), 43 (100). – C₂₀H₂₉NO₃ (331.46): calcd. C 72.47, H 8.82, N 4.23; found C 72.82, H 8.84, N 4.31.

Preparation of 1,2-Diols 3 by Hydrolysis of Carbamates 2: A mixture of the corresponding compound **2** (0.5 mmol) in ethanol (5 mL) and 3 M LiOH aqueous solution (2.5 mL) was warmed at 80 °C for 1.5 h. The resulting mixture was cooled to room temperature, acidified with 2 M hydrochloric acid and extracted with ethyl acetate (4 × 10 mL). The organic layer was neutralized with saturated aqueous NaHCO₃, dried with Na₂SO₄ and the solvents evaporated. The resulting residue contained essentially pure (>95% from NMR spectroscopy) 3. For analytical purposes they were distilled (kugelrohr) at reduced pressure (0.1 Torr). Yields are reported in Table 2.

4-Methyl-1,2-pentanediol (3aa):^[22] oil, $R_{\rm f} = 0.29$ (hexane/ethyl acetate, 3:7). – IR (film): $\tilde{v} = 3385$ (OH), 1076, 1025 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.91$, 0.93 [2 d, J = 5.5, 5.5 Hz, 6 H, (CH₃)₂CH], 1.16–1.37, 1.70–1.84 [2 m, 2 H, CH₂CHC(CH₃)₂], 1.71–1.84 [m, 1 H, (CH₃)₂CH], 2.50, 3.28 (2 × br s, 2 H, 2 × OH), 3.39 (dd, J = 11.6, 7.9 Hz, 1 H, CHHOH), 3.61 (dd, J = 11.6, 2.4 Hz, 1 H, CHHOH), 3.77 (m, 1 H, CHOH). – ¹³C NMR: $\delta = 22.05$, 23.3 [(CH₃)₂CH], 24.4 [(CH₃)₂CH], 41.95 [(CH₃)₂CHCH₂], 67.1 (CH₂OH), 70.4 (CHOH). – GC-LRMS: *m/z* (%) = 118 (M⁺, 0.4), 87 (30), 69 (82), 61 (28), 57 (14), 45 (67), 43 (100), 41 (69).

3,3-Dimethyl-1,2-butanediol (3ab):^[11b] oil, $R_f = 0.26$ (hexane/ethyl acetate, 3:7). – IR (film): $\tilde{v} = 3404$ (OH), 1090, 1044, 1020 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.92$ [s, 9 H, (CH₃)₃C], 3.36 (dd, J = 10.0, 2.4 Hz, 1 H, CHHOH), 3.44 (br s, 1 H, OH), 3.48 (t, J = 10.0 Hz, 1 H, CHHOH), 3.73 (dd, J = 10.0, 2.4 Hz, 1 H, CHHOH). – ¹³C NMR: $\delta = 25.9$ [(CH₃)₃C], 33.5 [(CH₃)₃C], 63.1 (CH₂OH), 79.7 (CHOH). – GC-LRMS: m/z (%) = 100 (M⁺ – H₂O, 0.9), 87 (67), 69 (33), 61 (11), 57 (85), 56 (27), 55 (13), 44 (27), 43 (50).

1-Phenyl-1,2-ethanediol (3ac):^[11a] white solid (m.p. 64°C, toluene), $R_{\rm f} = 0.26$ (hexane/ethyl acetate, 3:7). – IR (KBr): $\tilde{v} = 3315$ (OH), 1110, 1088, 1077, 1054, 1026 (CO) cm⁻¹. – ¹H NMR: $\delta = 3.36$ (br s, 2 H, 2 × OH), 3.55–3.76 (m, 2 H, CH₂O), 4.72–4.78 (m, 1 H, CHO), 7.20–7.30 (m, 5 H, ArH). – ¹³C NMR: $\delta = 67.95$ (CH₂OH), 74.65 (CHOH), 126.0, 127.85, 128.45, 140.45 (4 × ArC). – GC-LRMS: *m/z* (%) = 138 (M⁺, 6.5), 107 (100), 79 (80), 77 (54), 51 (20).

2-Ethyl-1,2-butanediol (3ad):^[23] white solid (m.p. 42–43 °C, toluene), $R_{\rm f} = 0.29$ (hexane/ethyl acetate, 3:7). – IR (KBr): $\tilde{v} = 3404$ (OH), 1073, 1055 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.87$ (t, J = 7.6 Hz, 6 H, 2 × CH₃CH₂), 1.51 (2 q, J = 7.3 Hz, 4 H, 2 × CH₂CH₃), 2.17, 2.35 (s, br s, 2 H, 2 × OH), 3.46 (s, 2 H, CH₂O). – ¹³C NMR: $\delta = 7.6$ (2 × CH₃CH₂), 27.55 (2 × CH₂CH₃), 67.3 (CH₂OH), 75.05 (COH). – GC-LRMS: m/z (%) = 101 (M⁺ – OH, 0.3), 87 (45), 71 (125), 69 (13), 57 (15), 45 (100), 43 (83), 41 (60). **1-Hydroxymethylcyclohexanol** (3ae):^[11a] white solid (m.p. 75°C, toluene), $R_{\rm f} = 0.25$ (hexane/ethyl acetate, 3:7). – IR (KBr): $\tilde{v} = 3287$ (OH), 1081, 1044 (CO) cm⁻¹. – ¹H NMR: $\delta = 1.20-1.70$ (m, 10 H, 5×CH₂ cyclohexyl ring), 1.95, 2.15 (2×br s, 2 H, 2×OH), 3.45 (s, 2 H, CH₂O). – ¹³C NMR: $\delta = 21.8$ (2 C), 25.85, 34.0 (2 C) (5×CH₂ cyclohexyl ring), 70.0 (CH₂OH), 71.9 (COH). – GC-LRMS: *m/z* (%) = 130 (M⁺, 0.4), 99 (100), 87 (10), 81(79), 79 (17), 69 (10), 57 (16), 55 (40), 53 (11), 43 (44).

2-Phenyl-1,2-propanediol (3af):^[24] white solid (m.p. 106–108 °C, toluene), $R_{\rm f} = 0.30$ (hexane/ethyl acetate, 3:7). – IR (KBr): $\tilde{v} = 3398$ (OH), 1603, 1493 (Ph), 1069, 1044, 1027 (CO) cm⁻¹. – ¹H NMR: $\delta = 1.42$ (s, 3 H, CH₃C), 1.96, 2.68 (2 s, 2 H, 2 × OH), 3.51 (d, J = 11.3 Hz, 1 H, CHHO), 3.67 (d, J = 11.3 Hz, 1 H, CHHO), 7.15–7.40 (5 H, m, ArH). – ¹³C NMR: $\delta = 25.95$ (CH₃), 70.95 (CH₂), 74.8 (COH), 125.05, 127.05, 128.15, 145.05 (4 × ArC). – GC-LRMS: m/z (%) = 152 (M⁺, 0.4), 121 (47), 105 (21), 77 (14), 51 (12), 43 (100).

1,1-Diphenyl-1,2-ethanediol (3ag):^[25] white solid (m.p. 120–121 °C, toluene), $R_{\rm f} = 0.55$ (hexane/ethyl acetate, 3:7). – IR (KBr): $\tilde{v} = 3377$, 3311 (OH), 3083, 3057, 3023 (Ph), 1104, 1070, 1044 (CO) cm⁻¹. – ¹H NMR: δ (CD₃OD) = 4.14 (s, 2 H, CH₂), 7.23–7.48 (m, 10 H, ArH). – ¹³C NMR: $\delta = 70.75$ (CH₂), 80.35 (COH), 128.65, 128.7, 129.75, 147.3 (8 × ArC). – GC-LRMS: *m/z* (%) = 196 (M⁺ – H₂O, 3.2), 168 (77), 167 (15), 166 (36), 165 (43), 152 (27), 82 (15), 82 (11), 51 (10).

4,4-Dimethyl-2,3-pentanediol (3bb).^[26] First diastereomer: white solid (m.p. 71–72 °C, hexane), $R_{\rm f} = 0.34$ (hexane/ethyl acetate, 1:1). - IR (KBr): $\tilde{v} = 3381$ (OH), 1073, 1040, 1013, 1001 (CO) cm⁻¹. $- {}^{1}$ H NMR: $\delta = 0.97$ [s, 9 H, (CH₃)₃C], 1.23 (d, J = 6.1 Hz, 3 H, CH₃CH), 1.96, 2.10 (2 br s, 2 H, $2 \times OH$), 3.40 [d, J = 3.1 Hz, 1 H, $CHC(CH_3)_3$], 3.95 (qd, J = 6.1, 3.1 Hz, 1 H, $CHCH_3$). $- {}^{13}C$ NMR: $\delta = 18.55$ (CH₃CH), 26.65 [(CH₃)₃C], 34.0 [(CH₃)₃C], 68.5 $[CHC(CH_3)_3]$, 82.55 (CHCH₃). – GC-LRMS: m/z (%) = 114 (M⁺ - H₂O, 0.15), 87 (40), 75 (16), 73 (13), 69 (41), 57 (100), 45 (37), 43 (42), 41 (60). Second diastereomer: oil, R_f 0.31 (hexane/ethyl acetate, 1:1). – IR (film): $\tilde{v} = 3416$ (OH), 1132, 1067, 1016 (CO) cm^{-1} . - ¹H NMR: $\delta = 0.95$ [s, 9 H, (CH₃)₃C], 1.25 (d, J = 6.1Hz, 3 H, CH₃CH), 2.50–2.90 (br s, 2 H, 2 × OH), 2.98 [d, J = 1.2Hz, 1 H, $CHC(CH_3)_3$], 3.98 (qd, J = 6.1, 1.2 Hz, 1 H, $CHCH_3$). $- {}^{13}C$ NMR: $\delta = 22.55$ (CH₃CH), 25.8 [(CH₃)₃C], 33.5 [(CH₃)₃C], 65.2 [CHC(CH₃)₃], 80.9 (CHCH₃). - GC-LRMS: m/z (%) = 114 $(M^+ - H_2O, 0.2), 87 (36), 75 (26), 73 (14), 69 (37), 57 (100), 45$ (55).

3-Ethyl-2,3-pentanediol (3bd):^[27] oil, $R_f = 0.33$ (hexane/ethyl acetate, 1:1). – IR (film): $\tilde{v} = 3486$ (OH), 1100, 1086 (CO) cm⁻¹. – ¹H NMR: $\delta = 0.88$ (t, J = 7.6 Hz, 6 H, $2 \times CH_3CH_2$), 1.15 (d, J = 6.1 Hz, 3 H, CH_3CH), 1.31–1.69 (m, 4 H, $2 \times CH_2$), 2.44 (br s, 2 H, $2 \times OH$), 3.73 (q, J = 6.1 Hz, 1 H, CH_3CH). – ¹³C NMR: $\delta = 7.5$, 7.6 ($2 \times CH_3CH_2$), 17.1 (CH_3CH), 25.95, 27.5 ($2 \times CH_2$), 70.95 (CH), 76.25 (COH). – GC-LRMS: m/z (%) = 117 (M⁺ – CH₃, 0.16), 103 (15), 87 (57), 85 (13), 69 (31), 57 (75), 55 (15), 45 (100), 43 (99), 41 (61).

1-(1'-Hydroxyethyl)-1-cyclohexanol (3be):^[28] oil, $R_{\rm f} = 0.29$ (hexane/ ethyl acetate, 1:1). – IR (film): $\tilde{v} = 3404$ (OH), 1097, 1075, 1048 (CO) cm⁻¹. – ¹H NMR: $\delta = 1.16$ (d, J = 6.7 Hz, 3 H, CH₃), 1.20–1.70 (m, 10 H, $5 \times$ CH₂), 2.00–2.45 (2 × br s, 2 H, 2 × OH), 3.57 (q, J = 6.7 Hz, 1 H, CH). – ¹³C NMR: $\delta = 16.95$ (CH₃), 21.4, 21.6, 25.85, 31.25, 34.15 (5 × CH₂), 73.4 (COH), 73.75 (CH). – GC-LRMS: m/z (%) = 126 (M⁺ – H₂O, 0.2), 99 (77), 81 (100), 79 (15), 57 (20), 55 (65), 45 (19), 43 (70), 42 (18), 41 (39).

Eur. J. Org. Chem. 1999, 3005-3012

2-Phenyl-2,3-butanediol (3bf):^[26] white solid (m.p. 46°C, hexane), $R_{\rm f} = 0.30$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3416$ (OH), 1602, 1493, 1447 (Ph), 1080, 1067, 1058, 1050 (CO) cm⁻¹. - ¹H NMR: $\delta = 0.94$ (d, J = 6.1 Hz, 3 H, CH₃CH), 1.59 (s, 3 H, CH₃C), 2.50 (s, 2 H, 2 × OH), 3.87 (q, J = 6.1 Hz, 1 H, CH), 7.21–7.44 (m, 5H, ArH). $- {}^{13}$ C NMR: $\delta = 17.6$ (CH₃CH), 26.6 (CH₃C), 74.25 (CH), 76.45 (COH), 125.35, 126.8, 128.05, 144.54 (4 × ArC). - GC-LRMS: m/z (%) = 148 (M⁺ - H₂O, 0.25), 122 (18), 121 (43), 104 (12), 77 (23), 51 (19), 45 (11), 43 (100).

2-Phenyl-2,3-butanediol (3bf'):^[26] oil, $R_f = 0.36$ (hexane/ethyl acetate, 1:1). – IR (film): $\tilde{v} = 3420$ (OH), 1606, 1499 (Ph), 1034, 1112 (CO) cm⁻¹. - ¹H NMR: $\delta = 1.09$ (d, J = 6.1 Hz, 3 H, CH₃CH), 1.48 (s, 3 H, CH₃C), 2.74, 3.25 (2 s, 2 H, $2 \times OH$), 3.93 (q, J =6.1 Hz, 1 H, CH), 7.21–7.44 (m, 5 H, ArH). – ¹³C NMR: δ = 16.6 (CH₃CH), 22.75 (CH₃C), 74.05 (CH), 76.55 (COH), 125.55, 126.85, 128.05, 146.0 (4 × ArC). – GC-LRMS: m/z (%) = 148 $(M^+ - H_2O, 0.3), 121 (18), 105 (6), 77 (8), 43 (100).$

1-Cyclohexyl-2-ethyl-1,2-butanediol (3cd):^[29] white solid (m.p. 144–150°C, hexane), $R_{\rm f} = 0.70$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3421$, 3345 (OH), 1134, 11095, 1086 (CO) cm⁻¹. - ¹H NMR: $\delta = 0.86, 0.89$ (2 t, J = 7.9, 7.9 Hz, 6 H, $2 \times CH_3$), 1.10-2.02 (m, 17 H, 7 × CH₂, CHCHO, 2 × OH), 3.26 (d, J = 4.3Hz, 1 H, CHCHO). $- {}^{13}$ C NMR: $\delta = 7.75$, 7.9 (2 × CH₃), 26.3 (2 C), 26.6 (2 C), 26.85 (5 × CH₂ cyclohexyl ring), 28.5, 32.1 $(2 \times CH_2CH_3)$, 39.0 (CHCHO), 77.1 (COH), 77.95 (CHCHO). – GC-LRMS: m/z (%) = 171 (M⁺ - CH₂CH₃, 1), 87 (100), 86 (18), 69 (14), 57 (45), 55 (28), 45 (78).

1-(Cyclohexylhydroxymethyl)cyclohexanol (3ce): white solid (m.p. 90-92°C, hexane), $R_f = 0.58$ (hexane/ethyl acetate, 1:1). - IR (KBr): $\tilde{v} = 3415$ (OH), 1098, 1085 (CO) cm⁻¹. - ¹H NMR: $\delta =$ 1.05-1.95 (m, 22 H, $10 \times CH_2$, CHCHO, OH), 2.04 (d, J = 6.7Hz, 1 H, OH) 3.26 (dd, J = 6.7, 1.8 Hz, 1 H, CHCHO). $- {}^{13}C$ NMR: $\delta = 21.8, 21.85, 25.75, 26.2, 26.3, 26.55, 26.8, 32.25, 33.0,$ 36.0 (10 × CH₂), 38.75 (CHCHO), 74.0 (COH), 80.6 (CHCHO). - GC-LRMS: m/z (%) = 212 (M⁺, 0.1), 99 (100), 98 (66), 83 (13), 81 (76), 67 (16), 57 (16), 55 (51), 53 (11), 43 (36). – HRMS: *m*/*z* = 212.1774 (M⁺); calcd. for $C_{13}H_{24}O_2$: 212.1776.

1-Cyclohexyl-2-phenyl-1,2-propanediol (3cf): white solid (m.p. 113–115°C, hexane), $R_f = 0.65$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3462$, 3341 (OH), 1603, 1494 (Ph), 1120, 1098, 1063 (CO) cm⁻¹. - ¹H NMR: $\delta = 0.95 - 1.80$ (m, 11 H, 5 × CH₂, CHCHO), 1.62 (s, 3 H, CH₃) 2.07 (d, J = 5.8 Hz, 1 H, OH) 2.37 (s, 1 H, OH), 3.52 (d, J = 5.8 Hz, 1 H, CHCHO), 7.20-7.45 (m, 5 H, ArH). - ¹³C NMR: δ = 25.95, 26.15 (2 C), 26.5, 32.1 (5 × CH₂), 29.1 (CH₃), 39.15 (CHCHO), 77.4 (COH), 81.6 (CHCHO), 124.9, 126.65, 128.1, 145.35 (4 × ArC). - GC-LRMS: m/z (%) = 216 (M⁺ -H₂O, 1.5), 111 (25), 105 (20), 83 (100), 55 (52), 41 (26). – HRMS: $m/z = 216.1517 (M^+ - H_2O)$; calcd. for $C_{15}H_{20}O: 216.1514. - C_{15}H_{22}O_2$ (234.33): calcd. C 76.88, H 9.46; found C, 77.19, H 9.56.

1-Cyclohexyl-2-phenyl-1,2-propanediol (3cf'): white solid (m.p. 90-91°C, hexane), $R_f = 0.66$ (hexane/ethyl acetate, 1:1). – IR (KBr): $\tilde{v} = 3345$ (OH), 1600, 1493 (Ph), 1082, 1074, 1045 (CO) cm^{-1} . - ¹H NMR: $\delta = 1.10-1.78$ (m, 10 H, 5 × CH₂), 1.54 (s, 3 H, CH₃), 1.79 (d, J = 4.2 Hz, 1 H, OH), 1.96 (m, 1 H, CHCHO), 2.71 (s, 1 H, OH), 3.61 (t, J = 3.9 Hz, 1 H, CHCHO), 7.20-7.50 (m, 5 H, ArH). $- {}^{13}$ C NMR: $\delta = 24.35$ (CH₃), 26.2 (2 C), 26.6, 26.8, 32.05 (5 × CH₂), 38.9 (CHCHO), 76.9 (COH), 81.55 (CH*C*HO), 125.35, 126.85, 128.1, 147.05 (4 × ArC). – GC-LRMS: m/z (%) = 216 (M⁺ - H₂O, 0.5), 187 (24), 134 (34), 105 (100), 91 (25), 77 (12), 55 (23), 41 (29). – HRMS: $m/z = 216.1536 (M^+ - M^-)$ H₂O); calcd. for C₁₅H₂₀O: 216.1514.

Acknowledgments

This work was supported by the DGICYT (nos. PB94-1514 and PB97-0133) from the Spanish Ministerio de Educación y Cultura (MEC). A. G. thanks the MEC for a grant.

- [1] Reviews: ^[1a] C. Nájera, M. Yus, *Trends Org. Chem.* 1991, 2, 155–181. ^[1b] C. Nájera, M. Yus, *Recent Res. Devel. Org.* Chem. 1997, 1, 67–96.
- ^[2] D. Seebach, Angew. Chem. 1979, 91, 259–278; Angew. Chem.
- ^[15] D. Seebach, Angew. Chem. 1717, 91, 239–216, Angew. Chem. Int. Ed. Engl. 1979, 18, 239–258.
 ^[3] ^[3a] M. K. Yeh, J. Chem. Soc., Chem. Commun. 1981, 1652–1653. ^[3b] E. J. Corey, T. M. Eckrich, Tetrahedron Lett.
- 1983, 24, 3165-3168.
 [4] Leading references: ^[4a] W. C. Still, J. Am. Chem. Soc. 1978, 100, 1481-1487. ^[4b] W. C. Still, A. Mitra, J. Am. Chem. Soc. 1978, 100, 1927-1928. ^[4c] Stereochemical studies: W. C. Still, 2020. ^[4d] C. Sreekumar, J. Am. Chem. Soc. 1980, 102, 1201-1202. - [4d] C. Dickking, J. T. M. Eckrich, *Tetrahedron Lett.* 1983, 24, 3163–3164. – ^[4e] D. K. Hutchison, P. L. Fuchs J. Am. Chem. Soc. 1987, 109, 4930–4939. – ^[4f] C. A. Broka, W. J. Lee, T. Shen, J. Org. Chem. 1988, 53, 1336–1338. – ^[4g] C. R. Johnson, J. R. Medich, J. Org. Chem. 1988, 53, 4131–4133. – ^[4h] R. J. Linderson, 1990, 261 Linderman, J. R. McKencie, J. Organomet. Chem. **1989**, 361, 31–42. –^[4i] P. C.-M. Chan, J. M. Chong, *Tetrahedron Lett.* **1990**, 31, 1985–1988. – ^[4i] P. Lohse, H. Lower, P. Acklin, F. Sternfeld, A. Pfaltz, Tetrahedron Lett. 1991, 32, 615-618. - [4k] Sternfeld, A. Pfaltz, *Tetrahedron Lett.* **1991**, *32*, 015–018. – ¹¹⁴¹ J. A. Soderquist, C. Lopez, *Tetrahedron Lett.* **1991**, *32*, 6305–6306. – ^[41] K. Tomooka, T. Igarashi, M. Watanabe, T. Nakai, *Tetrahedron Lett.* **1992**, *33*, 5795–5798. – ^[4m] O. Frey, M. Hoffmann, V. Wittmann, H. Kessler, P. Uhlmann, A. Va-sella, *Helv. Chim. Acta.* **1994**, *77*, 2060–2069. – ^[4n] M. Hoffmann, H. Kessler, *Tetrahedron Lett.* **1994**, *35*, 6067–6070. – ^[4o] O. Frey, M. Hoffmann, H. Kessler, *Angew. Chem.* **1995**, 107–2194–2195: *Angew. Chem. Int. Ed. Engl.* **1995**, *34*,
- ^{- [40]} O. Frey, M. Hollmann, H. Resslei, Angew. Chem. 2729, 107, 2194–2195; Angew. Chem. Int. Ed. Engl. 1995, 34, 2026–2028. ^[49] M. Hoffmann, F. Burkhart, G. Hessler, H. Kessler, Helv. Chim. Acta. 1996, 79, 1519–1532.
 ^[5] ^[5a] T. Cohen, J. R. Matz, J. Am. Chem. Soc. 1980, 102, 6900–6902. ^[5b] Review: T. Cohen, M. Bhupathy, Acc. Chem. Res. 1989, 22, 152–161. ^[5c] B. Kruse, R. Brükner, Tetrahedron Lett. 1990, 31, 4425–4428. ^[5d] S. D. Rychinovsky, D. J. Skalizky, J. Org. Chem. 1992, 57, 4336–4339.
 ^[6] V Wittmann. H. Kessler, Angew. Chem. 1993, 105, 1138–1140;
- V. Wittmann, H. Kessler, Angew. Chem. 1993, 105, 1138-1140; Angew. Chem. Int. Ed. Engl. **1993**, *32*, 1091–1093. [7] [⁷a] A Guijarro M. N.
- ^[7a] A. Guijarro, M. Yus, *Tetrahedron Lett.* **1993**, *34*, 3484–3490. ^[7b] A. Guijarro, B. Mancheño, J. Ortiz, M. Yus, *Tetrahedron* **1996**, *56*, 1643–1650. ^[7c] J. Ortiz, A. Guijarro, M. Yus, An. Quim. Int. Ed. 1977, 93, 44-48.
- [8] [8a] First account: M. Yus, D. J. Ramón, J. Chem. Soc., Chem. Commun. 1991, 398–400. [8b] Review: M. Yus, Chem. Soc. Rev. 1996, 155–161.
- ^[9] For a comparative study on the use of different arenes as electron carriers: P. K. Freeman, L. L. Hutchinson, J. Org. Chem. 1980, 45, 1924-1930.
- ^[10] [10a] P. Beak, L. G. Carter, J. Org. Chem. 1981, 46, 2363-2373. ^{- [10b]} B. A. Barner, R. S. Mani, *Tetrahedron Lett.* **1989**, *30*, 5413–5416. – ^[10c] W. Guarnieri, M. Grehl, D. Hoppe, *Angew. Chem.* **1994**, *106*, 1815–1818; *Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 1734–1737.
- ^[11] ^[11a] D. Seebach, N. Meyer, Angew. Chem. 1976, 88, 484; Angew. *Chem. Int. Ed. Engl.* **1976**, *15*, 438–439. - [^{11b]} N. Meyer, D. Seebach, *Chem. Ber.* **1980**, *113*, 1290–1303. - [^{11c]} H. Paulsen, E. Sumfleth, V. Sinnwell, N. Meyer, D. Seebach, *Chem. Ber.* **1980**, *113*, 1290–1303. 1980, 113, 2055-2061.
- [12] Indirect routes involving α-lithiated boranes^[12a] or silyl derivatives^[12b]; ^[12a] A. Pelter, L. Williams, J. W. Wilson, *Tetrahedron Lett.* 1983, 24, 627–630. ^[12b] K. Tamao, N. Ishida, M. Kum-
- *Lett.* 193, 24, 027–050. ^[135] K. Tamao, N. Ishida, M. Kumada, J. Org. Chem. 1983, 48, 2120–2122.
 ^[13] [^{13a]} Review: D. Guijarro, M. Yus, *Recent Res. Devel. Org. Chem.* 1998, 2, 713–744. ^[13b] Last paper on this topic from our laboratory: A. Bachki, F. Foubelo, M. Yus, *Tetrahedron Lett.* 1998, 39, 7759–7762.
 ^[14] [^{14a]} Review: ref.^[1] ^[14b] Last paper on this topic from our laboratory. E. Foubelo, M. Yus, *Tetrahedron Lett.* 1000, 40.
- laboratory: F. Foubelo, M. Yus, Tetrahedron Lett. 1999, 40, 743-746
- [15] [15a] Review: M. Yus, F. Foubelo, Rev. Heteroatom Chem. 1997, 17, 73-107. - ^[15b] Last paper on this topic from our labora-

Eur. J. Org. Chem. 1999, 3005-3012

tory: T. Soler, A. Bachki, L. R. Falvello, F. Foubelo, M. Yus,

- *Tetrahedron: Asymmetry* **1998**, *9*, 3939–3943. ^[16] ^[16a] Review: F. Foubelo, M. Yus, *Trends Org. Chem.* **1998**, *7*, 1–26. ^[16b] Last paper on this topic from our laboratory: C. Gómez, F. F. Huerta, M. Yus, Tetrahedron 1998, 54,
- [1853-1866.
 [17] [17a] Monograph: C. Blomberg in *The Barbier Reaction and Related One-Step Processes* (Eds.: K. Hafner, C. W. Rees, B. M. Trost, J.-M. Lehn, P. von R. Schleyer, R. Zahvadnik), Springer-Verlag, Berlin, **1993**. – ^[17b] Review: F. Alonso, M. Yus, *Recent Res. Devel. Org. Chem.* **1997**, *1*, 397–436. – ^[17c] Last paper on this topic from our laboratory: C. Gómez, F. F. Huerta, M. Yus, Tetrahedron 1998, 54, 6177-6184.
- [18] Preliminary communication: A. Guijarro, M. Yus, *Tetrahedron Lett.* 1996, 37, 5593-5596.
 [19] Review: P. Beak, A. I. Meyers, *Acc. Chem. Res.* 1986, 19, 2022
- 356-363.
- ^[20] M. J. Coghlam, B. A. Caley, *Tetrahedron Lett.* 1989, 30, 2033–2036.
 ^[21] D. D. Perrin, W. L. F. Amarego in *Purification of Laboratory Characteristical 2*rd adv. *Decremon Press*, New York, 1988.
- *Chemicals*, 3rd edn., Pergamon Press, New York, **1988**.

- ^[22] G. Egri, E. Baitz-Gacs, L. Poppe, Tetrahedron Asymmetry 1996, ⁷, 1437–1448. ^[23] T. Sato, H. Kaneko, S. Yamaguchi, J. Org. Chem. **1980**, 45,
- 3778-3782.
- ^[24] F. L. Shore, G.U. Yuen, J. Org. Chem. 1972, 37, 3703-3707. ^[25] P. Beak, B. G. McKinnie, J. Am. Chem. Soc. 1977, 99,
- 5213-5215. ^[26] J. A. Katzenellenbogen, S. B. Bowlus, J. Org. Chem. 1973, 38,
- 627-632. ^[27] D. P. G. Hamon, R. A. Massy-Westrop, T. Pipithakul, Aust. J.
- Chem. 1974, 27, 2199; Chem. Abstr. 1975, 82, 31397 g.
 [^{28]} K. Tanino, T. Shimizu, M. Kuwahara, I. Kuwajima, J. Org. Chem. 1998, 63, 2422-2424.
- [29]
- R. M. Kislovets, N. A. Kararanov, I. I. Lapkin, *Izv. Vyssh. Vcheb. Zaved. Khim. Tekhnol.* **1968**, *11*, 666–668; *Chem. Abstr.* 1969, 70, 3408v.

Received March 22, 1999 [099172]