Synthesis of New 1-Aryl-4-(biarylmethylene)piperazine Ligands, Structurally Related to Adoprazine (SLV313)

Nisar Ullah
Chemistry Department \& Centre of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Reprint requests to Professor Nisar Ullah. Fax: + 9663860 4277. E-mail: nullah@kfupm.edu.sa

Z. Naturforsch. 2012, 67b, 75-84; received November 26, 2011

A series of new 1-aryl-4-(biarylmethylene)piperazines has been synthesized. These ligands are structurally related to SLV-313, a potential atypical antipsychotic having potent D_{2} receptor antagonist and $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist properties. Buchwald-Hartwig coupling reactions of 1 -boc-piperazine with appropriate aryl halides and subsequent removal of the boc group rendered arylpiperazines. The reductive amination of the latter with suitable biarylaldehydes accomplished the synthesis of these ligands.

Key words: Schizophrenia, Aryl-(biarylmethylene)piperazines, Buchwald-Hartwig Amination, Reductive Amination

Introduction

Schizophrenia is a lifelong, chronic, complex neuropsychiatric illness, afflicting approximately 1% of the world population [1]. In general, schizophrenia involves alterations in cognitive and emotional functioning, and the symptoms can be grouped as positive and negative. The typical antipsychotic drugs such as haloperidol or chlorpromazine block D_{2} receptors. However, although the blockade of D_{2} receptors improves the positive symptoms, it also accounts for side effect that undermines compliance, in particular extrapyramidal side effects (EPS) [2,3]. Various atypical or second-generation antipsychotics, such as clozapine, have been discovered that combine D_{2} receptor antagonism with activity at other receptors, on the premise that a suitable balance of pharmacological activity should broaden the spectrum of therapeutic efficacy and reduce EPS. It is evident that the therapeutic window, side-effect profile and therapeutic efficacy of antipsychotic agents, could be improved by the combination of a dopamine D_{2} receptor antagonist with $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist properties [4]. Consequently adoprazine (1) (SLV-313) and bifeprunox (2), having potent D_{2} receptor antagonist and $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist properties, were developed [5]. However, $\mathbf{1}$ and 2 failed to oppose phencyclidine-induced social interaction deficits, suggesting that an appropriate 'balance' of activity at these sites is necessary for activity in this model [4]. There is a growing need to develop com-
pounds having varying ratios of D_{2} and $5-\mathrm{HT}_{1 A}$ activities [6]. This report describes the synthesis of a series of new 1-aryl-4-(biarylmethylene)piperazines 3a-3f, $\mathbf{4 a}-\mathbf{4 f}$ and $\mathbf{5 a}-\mathbf{5 f}$, structurally related to $\mathbf{1}$ (Fig. 1).

Results and Discussion

The synthesis of compounds $\mathbf{3 a}-\mathbf{3 f}, \mathbf{4 a}-\mathbf{4 f}$ and $\mathbf{5 a}-\mathbf{5 f}$ required the preparation of aldehydes $\mathbf{6 b}$ 6f. Suzuki coupling of 4-bromobenzaldehyde with 4-fluoroboronic acid yielded 6b in a high yield (95%) [7]. Bromination of aldehyde 7 with bromine in acetic acid to the known bromoaldehdye $\mathbf{8}$ [8], followed by Suzuki coupling of the latter with the appropriate boronic acid, rendered the desired aldehydes $\mathbf{6 c}$ [9] and 6d [10], respectively. The known aldehydes $6 \mathbf{e}$ and $\mathbf{6 f}$ were synthesized from their corresponding bromides $\mathbf{1 0}$ and $\mathbf{1 1}$ by employing literatureknown procedures [11] (Scheme 1).

The synthesis of the required arylpiperazines was accomplished as depicted in Scheme 2. Acetylation of 2-bromoaniline (12) with cinnamoyl chloride afforded 14 which was reacted with AlCl_{3} at $125{ }^{\circ} \mathrm{C}$ to afford 48% isolated yield of the quinolin-2-one $\mathbf{1 5}$. The latter was transformed to bromochloroquinoline $\mathbf{1 6}$ in high yield by refluxing it with POCl_{3} [12]. Condensation of $\mathbf{1 6}$ with sodium methoxide in refluxing methanol afforded quinoline 17 [13]. The Buchwald-Hartwig coupling of $\mathbf{1 7}$ with 1-boc-piperazine in toluene at $110{ }^{\circ} \mathrm{C}$, using cesium carbon-

1

3 ($\mathrm{R}=\mathrm{H}$)
3a-3f(R=a-f)

a
$R=$

d

4 (R = H)
4a-4f (R = a-f)

b

e

2

Fig. 1. 1-Aryl-4-(biarylmethylene)piperazines $\mathbf{3 a}-\mathbf{3 f}, \mathbf{4 a}-\mathbf{4 f}$, and $\mathbf{5 a}-\mathbf{5 f}$.
ate as a base, rendered the arylpiperazine adduct 18 in $\mathbf{7 2} \%$ yield. Exposure of $\mathbf{1 8}$ to trifluoroacetic acid at r.t. smoothly afforded the required arylpiperazine salt 3 [14]. Attempts to convert compound 18 into the intermediate 4 proved to be unsuccessful; treating it with HCl at r.t. resulted in the formation of $\mathbf{3}$ only, whereas at higher temperature the reaction was sluggish and yielded fewer side products (Scheme 2).

Thus, to obtain the required intermediate 4 , bromochloroquinoline 16 was condensed with sodium phenylmethanolate, derived from the reaction of benzyl alcohol with sodium hydride, to produce bromoquinoline 19. The Buchwald-Hartwig coupling of 19 with 1-boc-piperazine in toluene at $110{ }^{\circ} \mathrm{C}$ yielded the arylpiperazine adduct $\mathbf{2 0}$ in 82% yield. Hydrogenation of intermediate 20 in a pressure vessel in a Parr apparatus at 50 psi for 3 h afforded compound 21, which in turn was subjected to further hydrogenation at 65 psi for 20 h to obtain compound 22 in a high yield (96%) [14]. Exposure of both compounds 21 and 22 to
trifluoroacetic acid at r.t. produced the required intermediates 4 and 5, respectively (Scheme 3).

Having the desired arylpiperazines $(\mathbf{4}-\mathbf{5})$ and biarylaldehydes ($\mathbf{b}-\mathbf{f}$) in hand, we next performed the reductive amination of arylpiperazines and aldehydes in 1,2-dichloroethane, using $\mathrm{NaBH}(\mathrm{OAc})_{3}$ as a reducing agent to accomplish the final ligands ($\mathbf{3 a}-\mathbf{3 f}, \mathbf{4 a}-$ 4f and 5a-5f).

Conclusion

In conclusion we have accomplished the synthesis of a series of new 1-aryl-4-(biarylmethylene)piperazine ligands $\mathbf{3 a}-\mathbf{3 f}, \mathbf{4 a}-\mathbf{4 f}$ and 5a-5f, structurally related to SLV313.

Experimental Section

5-Phenylnicotinaldehyde ($\boldsymbol{\sigma c}$)
5-Bromonicotinaldehyde (8) ($2.77 \mathrm{~g}, 14.92 \mathrm{mmol}$) was dissolved in toluene (100 mL) and an aqueous $2.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$R=H(6 \mathbf{c}, 82 \%)$ $R=F(6 d, 86 \%)$

Scheme 1. Synthesis of aldehydes $\mathbf{6 c}-\mathbf{6 f}$.
Scheme 2. Synthesis of arylpiperazine 3.

Scheme 3. Synthesis of arylpiperazines 4 and 5 .
solution (47 mL) and an ethanolic solution (47 mL) of the phenylboronic acid ($2.18 \mathrm{~g}, 17.86 \mathrm{mmol}$) were added. The mixture was deoxygenated under reduced pressure and flushed with nitrogen. After repeating this cycle several times, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.69 \mathrm{~g}, 0.6 \mathrm{mmol})$ was added, and the resulting suspension was heated under reflux for 8 h . After cooling ethyl acetate (20 mL) and water (20 mL) were added, and the organic phase was separated. The water phase was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered over a short plug of celite and evaporated under reduced pressure. Column chromatography on silica gel, eluting with ethyl acetate-hexanes $=3: 7$ gave $2.24 \mathrm{~g}(82 \%)$ of the title compound as a light-yellow solid. M.p. $51-52{ }^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3054,2844,2737,1701$, 1587, $1443 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.45(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.51(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$)$, $7.62(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 8.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}), 9.04$ ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$), 9.07 ($\mathrm{s}, 1 \mathrm{H}, 6-\mathrm{H}$), 10.18 (s , $1 \mathrm{H}, \mathrm{CHO}$). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=127.28$ (C-3', C-5'), 128.98 (C-4'), $129.44\left(\mathrm{C}-2^{\prime}, \mathrm{C}^{\prime} 6^{\prime}\right), 131.48$ (C-3), 133.78 (C-4), 136.38 (C-5), 137.38 (C-1'), 150.86 (C-2), 153.41 (C-6), 191.23 (CHO). - $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}$ (183.21): calcd. C 78.67, H 4.95, N 7.65; found C 78.60, H 5.00, N 7.58 .

5-(4-Fluorophenyl)nicotinaldehyde (6d)
According to the procedure of the synthesis of compound $\mathbf{6 c}$, the Suzuki reaction of 5-bromonicotinaldehyde (8) and 4-fluorophenylboronic acid gave $\mathbf{6 d}$ as a light-yellow solid (86%). M. p. $78-79^{\circ} \mathrm{C}$. - IR (neat): $v=3029,2840$, 2736, 1697, 1588, $1453 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.21\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.57\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\right.$ H, $6^{\prime}-\mathrm{H}$), 8.34 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 9.04 (s, $2 \mathrm{H}, 2-\mathrm{H}$, $6-\mathrm{H}), 10.18$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$). $-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=116.49\left(\mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right), 129.25\left(\mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right), 131.61\left(\mathrm{C}-1^{\prime}\right)$, 133.68 (C-4), 138.21 (C-5), 151.01 (C-2), 153.32 (C-6), 164.72 (C-4'), 191.19 (CHO). - $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FNO}$ (201.20): calcd. C 71.64, H 4.01, N 6.96; found C 71.60, H 4.05, N 6.90 .

8-Bromo-2-methoxyquinoline (17)

To a solution of 8 -bromo-2-chloroquinoline 16 (4.85 g , 20 mmol) in methanol (90 mL) was added $\mathrm{NaOMe}(2.4 \mathrm{~g}$, 100 mmol) and the mixture refluxed for 5 h . The solvent was evaporated under reduced pressure, and ethyl acetate $(150 \mathrm{~mL})$ was added. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to obtain compound 17 as a light-violet solid ($4.33 \mathrm{~g}, 91 \%$). M. p. 55$56^{\circ} \mathrm{C}$. - IR (neat): $v=3062,2980,1610,1493,1270 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.15$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.94
(d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, 7.68 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.95(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR matched to the reported values [12].
tert-Butyl 4-(2-methoxyquinolin-8-yl)piperazine-1-carboxylate (18)

To an oven-dried flask, 1-boc-piperazine (3.19 g, $17.1 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(5.82 \mathrm{~g}, 17.86 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($1.44 \mathrm{~g}, 1.57 \mathrm{mmol}$), rac-2,2' bis(diphenylphosphino)- $1,1^{\prime}$ binaphthyl ($0.89 \mathrm{~g}, 1.43 \mathrm{mmol}$), toluene (8 mL) and compound $17(3.4 \mathrm{~g}, 14.28 \mathrm{mmol})$ were added. While stirring the reaction mixture at r.t., the air in the flask was removed and replaced by N_{2}. This process was repeated three times. The reaction temperature was brought to $110^{\circ} \mathrm{C}$ and the mixture stirred for 8 h . Ethyl acetate was added to the mixture at r.t., washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The brown oily material was chromatographed on a silica column eluting with hexanes-ethyl acetate ($3: 7$), and then changing to ($1: 1$), yielding compound $\mathbf{1 8}$ as a darkbrown thick oil ($3.53 \mathrm{~g}, 72 \%$). - IR (neat): $v=3054,2978$, 1710, 1604, 1490, 1276, $1185 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 500 MHz): $\delta=1.49$ (s, $\left.9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.36$ (br. s, 4 H , piperazine H), 3.70 (br. s, 4 H , piperazine H), 4.06 (s, 3 H , OCH_{3}), $6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, 7.97 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (125.7 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=28.4\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 51.41\left(\mathrm{C}_{\text {piper }}\right), 52.63\left(\mathrm{C}_{\text {piper }}\right)$,
 (C-5), 124.10 (C-6), 126.11 (C-10), 139.50 (C-4), 139.66 (C-9), $146.95(\mathrm{C}-8), 154.91\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 160.70(\mathrm{C}-2)$. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$ (343.42): calcd. C 66.45, H 7.34, N 12.24; found C 66.40, H 7.38, N 12.18.

2-Methoxy-8-(piperazin-1-yl)quinoline (3)

To a solution of compound $\mathbf{1 8}(3 \mathrm{~g}, 8.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added trifluoroacetic acid (10 mL) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 6 h at r.t. Solvents were evaporated under reduced pressure, and triturating with diethyl ether gave the trifluoroacetic acid salt of the title compound 3 as a grey solid ($2.68 \mathrm{~g}, 90 \%$). M. p. $138-139^{\circ} \mathrm{C}$. - IR (neat): $v=3034,2978,1616,1445$, $1200 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=3.34$ (br. s, 4 H , piperazine H), 3.50 (br. s, 4 H , piperazine H), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.15$ (m, $1 \mathrm{H}, 6-\mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 8.17$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 8.93 (br. s, $2 \mathrm{H}, \mathrm{NH}$) $-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=$ $43.77\left(\mathrm{C}_{\text {piper }}\right), 48.11\left(\mathrm{C}_{\text {piper }}\right), 53.33\left(\mathrm{OCH}_{3}\right), 112.79(\mathrm{C}-3)$, 117.28 (C-5), 122.29 (C-7), 124.63 (C-6), 126.13 (C-10), 139.46 (C-4), 140.40 (C-9), 145.98 (C-8), 160.47 (C-2). $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ (357.33): calcd. C 53.78, H 5.08, N 11.76; found C 53.73, H 5.13, N 11.69 .

2-(Benzyloxy)-8-bromoquinoline (19)

To a solution of benzyl alcohol ($3.57 \mathrm{~g}, 33.0 \mathrm{mmol}$) in DMF (30 mL) kept at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(0.95 \mathrm{~g}$, $39.6 \mathrm{mmol})$, and after stirring for 10 min at r.t., compound 16 $(4 \mathrm{~g}, 16.5 \mathrm{mmol})$ was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h . The reaction was diluted with ethyl acetate (100 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Column chromatography on a silica column eluting with hexanes-ethyl acetate ($1: 1$) yielded the title compound $\mathbf{1 9}$ as a colorless crystalline solid ($4.67 \mathrm{~g}, 90 \%$). M. p. $38-39^{\circ} \mathrm{C} .-\operatorname{IR}($ neat): $v=3052$, 3038, 2970, 1611, 1490, $1256 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta=5.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.32(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), $7.37-7.40(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.62(\mathrm{~m}, 6 \mathrm{H}$, aromatic H), 7.67 (dd, $J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.93-7.97$ (m, $2 \mathrm{H}, 4-\mathrm{H}, 7-\mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $68.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 114.05(\mathrm{C}-3), 122.56(\mathrm{C}-8), 124.47(\mathrm{C}-6)$, 126.29 (C-10), 127.10 (C-5), 128.01 ($\mathrm{C}_{\text {arom }}$), 128.41 ($\mathrm{C}_{\text {arom }}$), 128.89 ($\mathrm{C}_{\text {arom }}$), 133.10 (C-7), 137.10 ($\mathrm{C}_{\text {arom }}$), 139.29 (C-4), 143.63 (C-9), 162.25 (C-2). - $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}$ (314.18): calcd. C 61.17, H 3.85, N 4.46; found C 61.10, H 3.89, N 4.39 .
tert-Butyl 4-(2-(benzyloxy)quinolin-8-yl)piperazine-1-carboxylate (20)

Following the same procedure as adopted for the synthesis of 18, the title compound was obtained from compound 19 as a light-yellow semi-solid (80%). - IR (neat): $v=3042$, 3032, 2971, 1708, 1607, 1485, 1260, $1192 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.28(\mathrm{br}$. s, 4 H, piperazine H), 3.69 (br. s, 4 H, piperazine H), 5.55 (s, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.10(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.33(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$, aromatic H$), 7.37(\mathrm{~m}, 3 \mathrm{H}$, $5-\mathrm{H}$, aromatic H), $7.46(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}$, aromatic H$), 8.00(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.41\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 51.53\left(\mathrm{C}_{\text {piper }}\right), 67.28\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $79.71\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 112.75(\mathrm{C}-3), 116.85(\mathrm{C}-5), 121.81}\right.$ (C-7), 124.25 (C-6), 126.32 (C-10), 127.58 (Carom), 127.80 (Carom), 128.47 (Carom), 137.09 (C-9), 139.86 (C-4), 147.04 $(\mathrm{C}-8), 154.85\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 160.36(\mathrm{C}-2) .-\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$ (419.52): calcd. C 71.57, H 6.97, N 10.02; found C 71.50, H 7.01, N 9.97.
tert-Butyl 4-(2-oxo-1,2-dihydroquinolin-8-yl)piperazine-1carboxylate (21)

To a solution of compound $\mathbf{2 0}(4 \mathrm{~g}, 9.53 \mathrm{mmol})$ in a mixture of THF and ethanol $(1: 3,40 \mathrm{~mL})$ in a pressure vessel was added Pd-C ($10 \% \mathrm{w} / \mathrm{w}$ wet basis; 0.4 g). The mixture was subjected to hydrogenation in a Parr apparatus at 50 psi for 3 h . The solution was filtered through a pad of celite and evaporated under reduced pressure. Column chromatography
on a silica column, eluting with ethyl acetate-hexanes ($8: 2$) and then changing to ethyl acetate (100%) yielded the title compound 21 as a light-yellow amorphous solid (2.99 g , 95%). M. p. $123-125^{\circ} \mathrm{C}$. - IR (neat): $v=3054,3032,2978$, 2972, 1710, 1680, 16010, 1475, $1190 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.89$ (br. s, 4 H , piperazine H), 3.18 (br. s, 2 H , piperazine H), 4.18 (br. s, 2 H , piperazine H), 6.70 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), $7.20(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.38$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, 9.56 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.39\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 52.52\left(\mathrm{C}_{\text {piper }}\right), 80.11\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right)$, 120.43 (C-7), 122.67 (C-9, C-5), 124.56 (C-6, C-3), 133.56 (C-10), $138.76(\mathrm{C}-4), 140.94(\mathrm{C}-8), 154.62\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 162.25 (C-2). - $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ (329.39): calcd. C 65.63, H 7.04, N 12.76; found C 65.57, H 7.10, N 12.70.

8-(Piperazin-1-yl)quinolin-2(1H)-one (4)

Following the same procedure as adopted for the synthesis of $\mathbf{3}$, the title compound was obtained from compound 21 as a light-yellow solid (85%). M. p. $246-247^{\circ} \mathrm{C}$. - IR (neat): $v=$ 3050, 3036, 2982, 2970, 1682, 1618, $1478 \mathrm{~cm}^{-1} . \mathrm{I}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=3.02$ (br. s, 4 H , piperazine H), 3.41 (br. s, 4 H , piperazine H), 6.54 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), $7.18(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.92$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 8.91 (br. s, 1 H, NHCO). $-{ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=$ $42.85\left(\mathrm{C}_{\text {piper }}\right), 49.06\left(\mathrm{C}_{\text {piper }}\right), 120.42(\mathrm{C}-9), 122.44(\mathrm{C}-3)$, 122.81 (C-7), 122.97 (C-5), 125.23 (C-6), 134.37 (C-10), 138.62 (C-8), 141.08 (C-4), $162.47(\mathrm{C}-2) .-\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ (343.30): calcd. C 52.48 , H $4.70, \mathrm{~N} 12.24$; found C 52.52 , H 4.75, N 12.17.
tert-Butyl 4-(2-oxo-1,2,3,4-tetrahydroquinolin-8-yl)piperaz-ine-1-carboxylate (22)

To a solution of compound $21(1.6 \mathrm{~g}, 4.83 \mathrm{mmol})$ in a mixture of THF and ethanol $(1: 3,20 \mathrm{~mL})$ in a pressure vessel was added Pd-C ($10 \% \mathrm{w} / \mathrm{w} ; 0.6 \mathrm{~g}$). The mixture was subjected to hydrogenation in a Parr apparatus at 65 psi for 20 h . The solution was filtered through a pad of celite and evaporated under reduced pressure. Column chromatography on a silica column, eluting with ethyl acetate-hexanes: $(8: 2)$ and then changing to ethyl acetate (100%) produced $1.54 \mathrm{~g}(96 \%)$ of compound 22 as an off-white amorphous solid. M. p. $165-166^{\circ} \mathrm{C}$. - IR (neat): $v=3044,3030,2978$, 2972, 1711, 1678, 16010, 1475, $1178 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.64$ (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), 2.80 (br. s, 4 H , piperazine H), 2.98 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}$), 3.89 (br. s, 4 H , piperazine H), 6.96 (m, $2 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 8.15$ (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). - ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 25.58 (C-4), $28.42\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.71(\mathrm{C}-3), 39.21\left(\mathrm{C}_{\text {piper }}\right)$,
$52.19\left(\mathrm{C}_{\text {piper }}\right), 80.01\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 119.51(\mathrm{C}-7), 122.93}\right.$ (C-5), 124.17 (C-9), 124.51 (C-6), 132.25 (C-10), 138.49 (C-8), $154.63\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 170.52(\mathrm{C}-2) .-\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$ (331.41): calcd. C 65.23, H 7.60, N 12.68; found C 65.19 , H 7.66, N 12.60.

8-(Piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5)

Following the same procedure as adopted for the synthesis of $\mathbf{3}$, the trifluoroacetic acid salt of the title compound was obtained from compound 22 as an off-white solid (88%). M. p. $235-236{ }^{\circ} \mathrm{C} .-\operatorname{IR}$ (neat): $v=3024$, 1672, 1614, 1487, $1408 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (400 MHz , [D_{6}]DMSO): $\delta=2.45$ (m, 2 H, 3-H), 2.86 (m, $2 \mathrm{H}, 4-\mathrm{H}$), 2.94 (br. s, 4 H , piperazine H), 3.32 (br. s, 4 H , piperazine H), 6.93-7.00 (m, 3H, 5-H, 6-H, 7-H), 8.95 (br. s, $1 \mathrm{H}, N H), 9.11(\mathrm{~s}, 1 \mathrm{H}, N H C O) .-{ }^{13} \mathrm{C}$ NMR (125.7 MHz , [D_{6}]DMSO): $\delta=25.05$ (C-4), 30.58 (C-3), 42.99 ($\mathrm{C}_{\text {piper }}$), 48.73 ($\mathrm{C}_{\text {piper }}$), 119.52 (C-7), 122.95 (C-5), 124.80 (C-6), 125.49 (C-9), 133.20 (C-10), 138.77 (C-8), 170.91 (C-2). $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ (342.32): calcd. C 52.17, H 5.25, N 12.17; found C 52.21, H 5.29, N 12.11 .

8-(4-(Biphenyl-4-ylmethyl)piperazin-1-yl)-2-methoxyquinoline (3 a)

To a solution of compound $3(0.15 \mathrm{~g}, 0.42 \mathrm{mmol})$ and biphenyl-4-carbaldehyde $6 \mathrm{a}(0.1 \mathrm{~g}, 0.55 \mathrm{mmol})$ in 1,2 -dichloroethane (5 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}$, $0.97 \mathrm{mmol})$. After stirring for 10 min at r.t., $\mathrm{NaBH}(\mathrm{OAc})_{3}$ $(0.11 \mathrm{~g}, 0.53 \mathrm{mmol})$ was added, and the reaction mixture was stirred for 6 h . A saturated NaHCO_{3} solution (10 mL) was added and the mixture stirred for 15 min , followed by the addition of ethyl acetate (30 mL). The organic layer was separated and washed with sat. NaHCO_{3} and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification of the brown oily material on a silica column, eluting with ethyl acetate-hexanes ($6: 4$) and then changing to ethyl acetate (100%) yielded $0.126 \mathrm{~g}(70 \%)$ of the title compound $\mathbf{3 a}$ as a light-yellow solid. M. p. 110$111{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3060,3034,2972,1616,1580,1445$, $1210 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.84$ (br. s, 4 H , piperazine H), 3.47 (br. s, 4 H , piperazine H), 3.69 (s, $2 \mathrm{H}, \mathrm{NCH} 2 \mathrm{Ar}), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 7.11(\mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.29(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.34-7.36(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.42-7.48(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.57-7.61(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), $7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=51.42\left(\mathrm{C}_{\text {piper }}\right), 53.00\left(\mathrm{C}_{\text {piper }}\right)$, $53.54\left(\mathrm{OCH}_{3}\right), 62.71\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 112.40,116.56,121.28$, 124.19, 126.12, 126.92, 126.96, 127.10, 127.12, 128.67, 128.72, 129.63, 129.67, 137.06, 139.50, 139.69, 139.98, 140.1, 140.94, 147.23, 160.56 (all Carom). $-\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ (409.52): calcd. C 79.19, H 6.65, N 10.26; found C 79.15, H 6.70, N 10.20 .

8-(4-((4'-Fluorobiphenyl-4-yl)methyl)piperazin-1-yl)-2methoxyquinoline ($\mathbf{3 b}$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a light-yellow solid from the reductive amination of compound $\mathbf{3}$ in combination with $\mathbf{6 b}(68 \%)$. M. p. $136-137{ }^{\circ} \mathrm{C}$. -IR (neat): $v=$ 3058, 3044, 2988, 2972, 1626, 1574, 1465, $1240 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.83$ (br. s, 4 H , piperazine H), 3.48 (br. s, 4 H , piperazine H), 3.68 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar)}$, $4.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.07-$ $7.14(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$), 7.27(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 7.34 (dd, $J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.46-7.48$ $(\mathrm{m}, 2 \mathrm{H}$, aromatic H$), 7.51-7.57(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.93$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}$): $\delta=51.46\left(\mathrm{C}_{\text {piper }}\right), 53.11\left(\mathrm{C}_{\text {piper }}\right), 53.56\left(\mathrm{OCH}_{3}\right), 62.83$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 112.40,115.49,115.66,116.50,121.32,124.19$, 126.11, 126.85, 128.51, 128.57, 129.71, 137.05, 137.25, 139.06, 139.60, 139.98, 147.24, 161.40, 163.36 (all Carom). $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}$ (427.51): calcd. C 75.85, H 6.13, N 9.83 ; found C 75.79, H 6.17, N, 9.76.

2-Methoxy-8-(4-((5-phenylpyridin-3-yl)methyl)piperazin-1yl)quinoline (3c)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained as an off-white solid from compounds $\mathbf{3}$ and $\mathbf{6 c}(63 \%)$. M. p. 131-132 ${ }^{\circ} \mathrm{C}$. IR (neat): $v=3068,3045,2982,2976,1636,1570,1455$, $1242 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.86$ (br. s, 4 H , piperazine H), 3.48 (br. s, 4 H , piperazine H), 3.73 (s, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 7.08(\mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 1 H , aromatic H), 7.34 (dd, $J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic $\mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), 7.61 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), 7.93 (d, $J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 7.98$ (br. s, 1H, 4'-H), 8.59 (d, $J=1.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.77\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=51.42\left(\mathrm{C}_{\text {piper }}\right), 52.69\left(\mathrm{C}_{\text {piper }}\right)$, $53.54\left(\mathrm{OCH}_{3}\right), 59.74\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 112.33,116.05,116.22$, 116.49, 121.40, 124.10, 126.05, 127.13, 128.13, 129.02, $133.42,135.55,136.54,137.54,139.62,139.94,146.88$, 147.04, 148.89, 160.73, 164.23 (all Carom). $-\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}$ (410.51): calcd. C 76.07, H 6.38, N 13.65; found C 76.00, H 6.42, N 13.60.

8-(4-((5-(4-Fluorophenyl)pyridin-3-yl)methyl)piperazin-1-yl)-2-methoxyquinoline (3d)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained as a light-brown solid from compounds $\mathbf{3}$ and $\mathbf{6 d}(54 \%)$. M. p. $160-161^{\circ} \mathrm{C}$. IR (neat): $v=3058,3040,2988,2973,1646,1572,1448$, $1238 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.86$ (br. s,

4 H , piperazine H), 3.48 (br. s, 4 H , piperazine H), 3.74 (s, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), $7.28(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.34 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.57(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.93 (m, $\left.2 \mathrm{H}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}\right), 8.60\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{I} \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.73$ (d, $\left.J=2.0 \mathrm{~Hz}, \mathrm{I} \mathrm{H}, 6^{\prime}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right):$ $\delta=50.94\left(\mathrm{C}_{\text {piper }}\right), 52.86\left(\mathrm{C}_{\text {piper }}\right), 53.18\left(\mathrm{OCH}_{3}\right), 59.89$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 112.54,116.05,116.22,116.70,121.64,124.30$, 126.26, 128.99, 129.05, 133.52, 133.85, 135.47, 135.77, 139.82, 140.12, 147.07, 147.19, 149.24, 160.92, 164.23 (all $\mathrm{C}_{\text {arom }}$). $-\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}$ (428.50): calcd. C 72.88, H 5.88, N 13.08; found C 72.81, H 5.94, N 13.02 .

8-(4-(3-Cyclopentenylbenzyl)piperazin-1-yl)-2-methoxyquinoline ($\mathbf{3} \boldsymbol{e}$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a light-yellow solid from compounds 3 and $\mathbf{6 e}(57 \%)$. M. p. $115-116{ }^{\circ} \mathrm{C}$. IR (neat): $v=3047,3032,2982,2976,2970,1631,1545$, $1450,1260 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=$ $2.02(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H$), 2.53(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H$), 2.73$ (m, 2 H, cyclopent H), 2.79 (br. s, 4 H, piperazine H), 3.45 (br. s, 4 H , piperazine H), $3.62\left(\mathrm{~s}, 2 \mathrm{H}, N \mathrm{CH}_{2} \mathrm{Ar}\right.$), 4.05 (s , $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.21(\mathrm{~s}, 1 \mathrm{H}$, cyclopent H$), 6.86(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 7.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.24-7.29(\mathrm{~m}$, 3 H , aromatic H), $7.32(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), 7.46 (br. s, 1 H , $\left.3^{\prime}-\mathrm{H}\right), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125.7 \mathrm{MHz}): \delta=23.33$ ($\mathrm{C}_{\text {cyclopent }}$), 33.23 ($\mathrm{C}_{\text {cyclopent }}$), 33.30 $\left(\mathrm{C}_{\text {cyclopent }}\right), 51.48\left(\mathrm{C}_{\text {piper }}\right), 53.09\left(\mathrm{C}_{\text {piper }}\right), 53.55\left(\mathrm{OCH}_{3}\right)$, $63.29\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 112.34$ (C-3), 116.49 ($\mathrm{C}_{\text {cyclopent }}$), 121.21, 124.15, 124.32, 126.09, 126.17, 126.31, 127.74, 128.15, 136.74, 138.20, 139.54, 139.97, 142.40, 147.31, 160.51 (all $\mathrm{C}_{\text {arom }}$). - $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}$ (399.53): calcd. C 78.16, H 7.32, N 10.52; found C 78.11, H 7.37, N 10.47.

8-(4-((5-Cyclopentenylpyridin-3-yl)methyl)piperazin-1-yl)-2-methoxyquinoline ($3 f$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a lightyellow semi-solid from compounds 3 and $\mathbf{6 f}(47 \%)$. - IR (neat): $v=3062,3042,2980,2976,2964,1636,1546,1451$, $1261 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.05(\mathrm{~m}$, 2 H , cyclopent H), 2.56 (m, 2 H , cyclopent H), 2.73 (m, 2 H , cyclopent H), 2.80 (br. s, 4 H , piperazine H), 3.46 (br. s, 4 H , piperazine H), $3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.31(\mathrm{~m}, 1 \mathrm{H}$, cyclopent H), $6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, 7.08 (dd, $J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), 7.35 (dd, $J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 7.76 (br. s, $1 \mathrm{H}, 4^{\prime}$ H), 7.96 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 8.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 8.59\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125.7 \mathrm{MHz}): \delta=23.20$ ($\mathrm{C}_{\text {cyclopent }}$), 32.95 ($\mathrm{C}_{\text {cyclopent }}$), 33.40
$\left(\mathrm{C}_{\text {cyclopent }}\right), 51.34\left(\mathrm{C}_{\text {piper }}\right), 53.10\left(\mathrm{C}_{\text {piper }}\right), 53.46\left(\mathrm{OCH}_{3}\right)$, $60.30\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 112.42(\mathrm{C}-3), 116.55$ ($\mathrm{C}_{\text {cyclopent }}$), 121.38, 124.16, 126.11, 128.43, 132.10, 133.04, 133.47, 139.42, $139.58,139.96,145.91,147.11,148.11,160.58$ (all C arom). $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}$ (400.52): calcd. C 74.97, H 7.05, N 13.99; found C 74.91, H 7.10, N 13.93.

8-(4-(Biphenyl-4-ylmethyl)piperazin-1-yl)quinolin-2(1H)one (4a)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained as a lightyellow solid from compounds 4 and $\mathbf{6 a}$ (46%). M. p. $141-$ $142{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3052,3038,2980,1681,1618,1535$, $1478 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.52$ (br. $\mathrm{s}, 2 \mathrm{H}$, piperazine H), 2.99 (br. s, 6 H , piperazine H), 3.67 $\left(\mathrm{s}, 2 \mathrm{H}, N \mathrm{CH}_{2} \mathrm{Ar}\right), 6.65(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.17(\mathrm{t}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.34-7.37$ (m, $2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.38$ $(\mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.43-7.46(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.58-7.62(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.74(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 9.47 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=52.29\left(\mathrm{C}_{\text {piper }}\right), 53.28\left(\mathrm{C}_{\text {piper }}\right)$, $62.57\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 120.33,122.53$ (all $\left.\mathrm{C}_{\text {arom }}\right), 122.62(\mathrm{C}-3)$, $124.28,127.26,127.41,128.93,129.93,133.93,139.21$ (all Carom), 140.93 (C-4), 162.70 (C-2). $-\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ (395.50): calcd. C 78.96, H 6.37, N 10.62; found C 78.90, H 6.41 , N 10.56.

8-(4-((4'-Fluorobiphenyl-4-yl)methyl)piperazin-1-yl)quin-olin-2(1H)-one (4b)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained as an offwhite solid from compounds 4 and 6b (44 \%). M. p. 156$157^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3062,3042,2981,1682,1628,1542$, $1479 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.62$ (br. s, 2 H , piperazine H), 2.99 (br. s, 6 H , piperazine H), 3.69 (s, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.65(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.10-7.14$ (m, $2 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.34-7.38(\mathrm{~m}$, 2 H , aromatic H), 7.43-7.45 (m, 2 H , aromatic H), 7.52$7.57(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), $7.74(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, 9.58 (br. s, $1 \mathrm{H}, \mathrm{NHCO}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right)$: $\delta=52.19\left(\mathrm{C}_{\text {piper }}\right), 53.12\left(\mathrm{C}_{\text {piper }}\right), 62.41\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 115.65$, $115.82,120.39,122.48$ (all $\mathrm{C}_{\text {arom }}$), 122.69 (C-3), 124.34 , $127.16,128.77,128.83,130.09,133.92,137.21,139.24$, 139.61 (all $\mathrm{C}_{\text {arom }}$), 141.02 (C-4), 162.81 (Carom), 163.80 (C-2). - $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}$ (413.49): calcd. C 75.52, H 5.85, N 10.16; found C 75.45, H 5.91, N 10.10.

8-(4-((5-Phenylpyridin-3-yl)methyl)piperazin-1-yl)quinolin-2(1H)-one (4c)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as an off-
white solid from compounds 4 and $\mathbf{6 c}(47 \%)$. M. p. $150-$ $151^{\circ} \mathrm{C} .-\mathrm{IR}$ (neat): $v=3057,3040,2979,1683,1621,1540$, $1465 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.63$ (br. s, 2 H , piperazine H), 3.00 (br. s, 2 H , piperazine H), 3.81 (s, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.69(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.21(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.39-7.47(\mathrm{~m}, 3 \mathrm{H}$, aromatic H$)$, $7.53(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.67(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.78(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 8.63\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.84\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, 9.45 (br. s, $1 \mathrm{H}, \mathrm{NHCO}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right)$: $\delta=52.09\left(\mathrm{C}_{\text {piper }}\right), 53.21\left(\mathrm{C}_{\text {piper }}\right), 59.92\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 120.37$, 122.53, 122.64 (all $\mathrm{C}_{\text {arom }}$), 122.71 (C-3), 124.44, 127.39, $128.36,129.27,133.91,135.48,136.70,137.82,138.97$ (all $\mathrm{C}_{\text {arom }}$), 140.94 (C-4), $147.69,149.44$ (all $\mathrm{C}_{\text {arom) }}$), 162.70 (C-2). $-\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$ (396.48): calcd. C 75.73, H 6.10, N 14.13; found C 75.67, H 6.14, N 14.07.

8-(4-((5-(4-Fluorophenyl)pyridin-3-yl)methyl)piperazin-1-yl)quinolin-2(1H)-one (4d)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained by as a lightyellow solid from compounds $\mathbf{4}$ and $\mathbf{6 d}$ (41%). M. p. $151-$ $152{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3068,3043,2989,1681,1623$, $1565,1458 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.72-$ 3.12 (br. s, 8 H , piperazine H), 3.83 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), $6.70(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H}$, aromatic H), $7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.42(\mathrm{~d}, J=$ 8.0 Hz , aromatic H$), 7.59-7.62(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.81$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 8.00\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 8.60(\mathrm{~s}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 8.78$ ((s, $\left.1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 10.12$ (br. s, $\left.1 \mathrm{H}, \mathrm{NHCO}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=51.63\left(\mathrm{C}_{\text {piper }}\right), 52.50$ $\left(\mathrm{C}_{\text {piper }}\right), 59.34\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 116.14,116.31,120.64,121.94$ (all $\mathrm{C}_{\text {arom }}$), 123.03 (C-3), 124.56, 129.02, 129.08, 132.50, 133.37, 133.71, 136.15, 136.37, 139.31 (all C arom), 141.48 (C-4), 146.71, 148.58, 162.37 (all C arom), 164.36 (C-2). $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}$ (414.47): calcd. C 72.45, H 5.59, N 13.52; found C 72.39, H 5.65, N 13.45.

8-(4-(3-Cyclopentenylbenzyl)piperazin-1-yl)quinolin-2(1H)one (4e)

Following the same procedure as adopted for the synthesis of $\mathbf{3 a}$, the title compound was obtained as an off-white solid from compounds 4 and $\mathbf{6 e}(51 \%)$. M. p. $133-135^{\circ} \mathrm{C}$. IR (neat): $v=3060,3034,2989,2968,1680,1612,1535$, $1448 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.99(\mathrm{~m}$, 2 H , cyclopent H$), 2.53(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H$), 2.53(\mathrm{~m}$, 2 H , cyclopent H), 2.94 (br. s, 8 H , piperazine H), 3.60 (s, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, cyclopent H$), 6.66$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, $7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6-\mathrm{H})$, $7.32-7.36\left(\mathrm{~m}, 3 \mathrm{H}\right.$, aromatic H), 7.43 (br. s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, 7.72 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 9.48$ (br. s, $1 \mathrm{H}, N H C O)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=23.26$ ($\mathrm{C}_{\text {cyclopent }}$),
33.15 ($\mathrm{C}_{\text {cyclopent }}$), 33.24 ($\mathrm{C}_{\text {cyclopent }}$), 52.44 ($\mathrm{C}_{\text {piper }}$), 53.38 $\left(\mathrm{C}_{\text {piper }}\right), 63.06\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 120.07$ ($\mathrm{C}_{\text {arom }}$), $122.26(\mathrm{C}-3)$, $122.34,123.95,124.43,126.23,126.33,127.71,128.17$, 133.60, 136.75, 137.55, 138.95 (all Carom), 140.57 (C-4), $142.24\left(\mathrm{C}_{\text {arom }}\right), 162.20(\mathrm{C}-2) .-\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ (385.50): calcd. C 77.89, H 7.06, N 10.90; found C 77.84, H 7.10, N 10.82 .

8-(4-((5-Cyclopentenylpyridin-3-yl)methyl)piperazin-1-yl)quinolin-2(1H)-one (4f)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as an offwhite solid from compounds 4 and $\mathbf{6 f}$ (43%). M. p. 126$127{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3058,3032,2979,2972,1681$, 1610, 1538, $1438 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.04(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H$), 2.57(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), $2.73(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), 2.96 (br. s, 8 H , piperazine H), 3.62 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{Ar}$), 6.32 ($\mathrm{s}, 1 \mathrm{H}$, cyclopent H), 6.66 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, 7.36 (m, 2 H, $5-\mathrm{H}, 6-\mathrm{H}), 7.74$ (m, $2 \mathrm{H}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}$), 8.43 (s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.60$ (s, $\left.1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 9.51$ (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=23.15$ ($\mathrm{C}_{\text {cyclopent }}$), $32.87\left(\mathrm{C}_{\text {cyclopen }}\right), 33.36\left(\mathrm{C}_{\text {cyclopen }}\right), 52.36\left(\mathrm{C}_{\text {piper }}\right), 53.34$ $\left(\mathrm{C}_{\text {piper }}\right), 60.15\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 120.14\left(\mathrm{C}_{\text {arom }}\right), 122.26(\mathrm{C}-3)$, 122.41, 124.11, 128.50, 132.05, 132.59, 133.36, 133.58, 138.80, 139.29 (all Carom), 140.65 (C-4), 145.98, 148.45 (all $\mathrm{C}_{\text {arom }}$), $162.28(\mathrm{C}-2) .-\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}$ (386.49): calcd. C 74.58, H 6.78, N 14.50; found C 74.51, H 6.83, N 14.43.

8-(4-(Biphenyl-4-ylmethyl)piperazin-1-yl)-3,4-dihydroquin-olin-2(1H)-one (5a)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as an off-white solid from compounds 5 and $\mathbf{6 a}(58 \%)$. M. p. $111-112{ }^{\circ} \mathrm{C}$. IR (neat): $v=3051,3044,2989,2976,1682,1611,1548$, $1458 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.62(\mathrm{~m}$, $2 \mathrm{H}, 4-\mathrm{H}$), 2.96 (m, $2 \mathrm{H}, 3-\mathrm{H}$), $2.65-3.38$ (br. s, 8 H , piperazine H$), 3.70\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.95(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.08$ (dd, $J=2.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), $7.42-7.45(\mathrm{~m}, 4 \mathrm{H}$, aromatic H$), 7.57-7.61(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), 8.21 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125.7 \mathrm{MHz}): \delta=25.18(\mathrm{C}-4), 30.39(\mathrm{C}-3), 51.70\left(\mathrm{C}_{\text {piper }}\right)$, $53.11\left(\mathrm{C}_{\text {piper }}\right), 62.39\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 119.71,123.10,124.10$, 127.26, 127.30, 127.43, 128.93, 130.11, 132.42, 139.15, $140.65,141.08$ (all Carom), 171.08 (C-2). $-\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ (397.51): calcd. C 78.56, H 6.85, N 10.57; found C 78.50, H 6.90, N 10.50 .

8-(4-((4'-Fluorobiphenyl-4-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5b)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a light-
yellow solid from compounds 5 and $\mathbf{6 b}$ (56%). M. p. 128 $129{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3055,3042,2984,2973,1683$, 1608, 1538, $1436 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.61(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 2.65-3.08$ (br. s, 8 H , piperazine H), $3.68\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.92-6.97$ (m, $2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.05-7.12(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}$, aromatic H$), 7.40$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), $7.50-7.55(\mathrm{~m}, 4 \mathrm{H}$, aromatic H), $8.23(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), 9.86 (br. s, 1 H , NHCO). - ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=24.86(\mathrm{C}-4)$, $30.07(\mathrm{C}-3), 51.31\left(\mathrm{C}_{\text {piper }}\right), 52.63\left(\mathrm{C}_{\text {piper }}\right), 61.88\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $115.35,115.53,119.38,122.87,123.84,124.00,126.85$, 128.47, 128.53, 129.95, 132.08, 135.74, 136.85, 138.87, 139.35, 163.48 (all Carom), 170.89 (C-2). $-\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}$ (415.50): calcd. C 75.16, H 6.31, N 10.11; found C 75.09, H 6.36, N 10.03.

8-(4-((5-Phenylpyridin-3-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2 $(1 \mathrm{H})$-one ($\mathbf{5 c}$)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a light-yellow gum from compounds 5 and $\mathbf{6 c}(51 \%$). - IR (neat): $v=$ 3045, 3028, 2980, 2976, 1681, 1618, 1542, $1430 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.62(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}), 2.68$ (br. s, 4 H , piperazine H), 2.91 (br. s, 4 H , piperazine H), $2.96(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.69\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.97(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$, $7-\mathrm{H}), 7.07$ (dd, $J=2.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic H), $7.63(\mathrm{~m}$, 2 H , aromatic H), $7.93\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO})$, 8.59 (d, $\left.J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.79(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.6^{\prime}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=25.07(\mathrm{C}-4)$, $30.28(\mathrm{C}-3), 51.70\left(\mathrm{C}_{\text {piper }}\right), 53.13\left(\mathrm{C}_{\text {piper }}\right), 59.82\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $119.50,122.97,124.02,124.19,127.27,128.26,129.16$, 132.30, 133.36, 135.45, 136.60, 137.66, 138.99, 147.19, 149.09 (all $\mathrm{C}_{\text {arom }}$), $170.90(\mathrm{C}-2) .-\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}$ (398.50): calcd. C $75.35, \mathrm{H} 6.58, \mathrm{~N} 14.06$; found C 75.28 , H 6.64 , N 14.00 .

8-(4-((5-(4-Fluorophenyl)pyridin-3-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5d)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a lightyellow solid from compounds $\mathbf{5}$ and $\mathbf{6 d}(47 \%)$. M. p. 133$135{ }^{\circ} \mathrm{C}$. - IR (neat): $v=3065,3038,2981,2973,1680$, 1613, 1548, $1432 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=2.62$ (m, $2 \mathrm{H}, 4-\mathrm{H}$), 2.68 (br. s, 4 H , piperazine H), 2.90 (br. s, 4 H , piperazine H), 2.97 (m, $2 \mathrm{H}, 3-\mathrm{H}$), $3.68\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.96(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.06(\mathrm{dd}, J=$ $2.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 7.17 (t, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H$), 7.58(\mathrm{~m}, 2 \mathrm{H}$, aromatic H$), 7.89\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\right.$ $\mathrm{H}), 8.22(1 \mathrm{H}, \mathrm{s}, N H C O), 8.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 8.73\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right): \delta=24.84(\mathrm{C}-4), 30.03(\mathrm{C}-3), 51.44$
$\left(\mathrm{C}_{\text {piper }}\right), 52.86\left(\mathrm{C}_{\text {piper }}\right), 59.51\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 115.80,115.97$, $119.30,122.81,123.84,123.99,128.74,128.80,132.05$, $133.24,133.48,135.27,135.54,138.77,146.62,148.70$, 163.99 (all $\mathrm{C}_{\text {arom }}$), 170.81 (C-2). - $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{FN}_{4} \mathrm{O}$ (416.49): calcd. C 72.09, H 6.05, N 13.45; found C 72.03, H 6.09, N 13.40 .

8-(4-(3-Cyclopentenylbenzyl)piperazin-1-yl)-3,4-dihydro-quinolin-2(1H)-one (5e)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a light-green gum from compounds 5 and $\mathbf{6 e}(61 \%)$. IR (neat): $v=3062$, 3048, 2981, 2976, 2973, 1681, 1623, 1545, $1422 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.02(\mathrm{~m}, 2 \mathrm{H}$, cyclopent $\mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), $2.62(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, 4-H), 2.63-2.70 (br. s, 4 H , piperazine H), 2.71 (m, 2 H , cyclopent H), 2.88 (br. s, 4 H , piperazine H), 2.95 (t, $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 3.59\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.21(\mathrm{~s}, 1 \mathrm{H}$, cyclopent H), $6.94(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 7.05(\mathrm{dd}, J=2.7,6.7 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 1 H , aromatic H), $7.35(\mathrm{~m}, 1 \mathrm{H}$, aromatic H), 7.42 (br. s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.10$ (br. s, $1 \mathrm{H}, \mathrm{NHCO}$). $-{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $125.7 \mathrm{MHz}): \delta=23.26\left(\mathrm{C}_{\text {cyclopent }}\right), 25.46$ (C-4), 30.64 (C-3), 33.15 ($\mathrm{C}_{\text {cyclopent }}$), 33.24 ($\mathrm{C}_{\text {cyclopent }}$), 51.99 ($\mathrm{C}_{\text {piper }}$), $53.38\left(\mathrm{C}_{\text {piper }}\right), 63.02\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 119.39,122.76,123.78$, 123.91, 124.47, 126.25, 126.41, 127.78, 128.17, 132.14, 136.76, 137.32, 138.90, 142.23 (all Carom), 170.39 (C-2). -
$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}$ (387.52): calcd. C 77.48, H 7.54, N 10.84; found C 77.40, H 7.58, N 10.77.

8-(4-((5-Cyclopentenylpyridin-3-yl)methyl)piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (5f)

Following the same procedure as adopted for the synthesis of 3a, the title compound was obtained as a light-yellow solid from compounds 5 and $\mathbf{6 f}(52 \%)$. M. p. $103-105^{\circ} \mathrm{C}$. IR (neat): $v=3052,3033,2980,2972,2970,1682,1633$, $1541,1426 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=2.05$ (m, 2 H , cyclopent H), $2.55(\mathrm{~m}, 2 \mathrm{H}$, cyclopent H), 2.62 (m, $2 \mathrm{H}, 4-\mathrm{H}$), 2.63-2.70 (br. s, 4 H , piperazine H), 2.72 $(\mathrm{m}, 2 \mathrm{H}$, cyclopent H), 2.88 (br. s, 4 H , piperazine H), 2.97 $(\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{H}), 3.59\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 6.31(\mathrm{~s}, 1 \mathrm{H}$, cyclopent H$)$, 6.95 (m, 2 H, 6-H, 7-H), 7.05 (dd, J = 2.5, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 7.69$ (br. s, $1 \mathrm{H}, 4^{\prime}-\mathrm{H}$), 8.12 (br. s, $1 \mathrm{H}, \mathrm{NHCO}$), 8.42 (s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.60\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 125.7 MHz): $\delta=23.13$ ($\mathrm{C}_{\text {cyclopent }}$), 25.44 (C-4), 30.61 (C-3), 32.86 ($\mathrm{C}_{\text {cyclopent }}$), 33.34 ($\mathrm{C}_{\text {cyclopent }}$), 51.98 ($\mathrm{C}_{\text {piper }}$), 53.35 $\left(\mathrm{C}_{\text {piper }}\right), 60.13\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 119.37,122.80,123.84,123.99$, $128.45,132.03,132.12,132.66,133.39,138.80,139.27$, 145.85, 148.35 (all Carom), 170.47 (C-2). $-\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}$ (388.51): calcd. C $74.20, \mathrm{H} 7.26, \mathrm{~N} 14.42$; found C 74.13 , H 7.30, N 14.34 .
Acknowledgements
Financial support from KACST Project No: AR-28-38 and lab facilities from KFUPM are gratefully acknowledged.
[1] M. Rowley, J. L. Bristow, H. H. Peter, J. Med. Chem. 2001, 44, 477-498.
[2] D. E. Casey, Br. J. Psychiatr. 1996, 29, 32 - 39.
[3] P. Seeman, T. Lee, M. Chau-Wong, K. Wong, Nature 1976, 261, 717-719.
[4] A. Newman-Tancredi, Curr. Opin. Inves. Drugs 2010, 11, 802-812.
[5] A. C. McCreary, J. C. Glennon, C. R. Ashby, Jr., H. Y. Meltzer, Z. Li, J. -H. Reinders, M.B. Hesselink, S. K. Long, A.H. Herremans, H. van Stuivenberg, R. W. Feenstra, C. G. Kruse, Neuropsychopharmacology 2007, 32, 78-94.
[6] S. Cuisiat, N. Bourdiol, V. Lacharme, A. NewmanTancredi, F. Colpaert, B. Vacher, J. Med. Chem. 2007, 50, 865-876.
[7] Q. Hu, M. Negri, K. Jahn-Hoffmann, Y. Zhuang, S. Olgen, M. Bartels, U. Müller-Vieira, T. Lauterbach, R. W. Hartmann, Bioorg. Med. Chem. 2008, 16, 7715-7727.
[8] D. Desai, G. Lin, H. Morimoto, P. G. Williams, K. ElBayoumy, S. Amin, J. Label Compd Radiopharm. 2002, 45, 1133-1141.
[9] D. L. Comins, J. J. Herrick, Heterocycles 1987, 26, 2159-2164.
[10] J. Kralik, US Patent 123682, 2005.
[11] F. Cottet, M. Marull, O. Lefebvre, M. Schlosser, Eur. J. Org. Chem. 2003, 8, 1559-1568.
[12] A. G. Osborne, J. Chem. Soc., Perkin Trans. I 1993, 2, 181-184.
[13] J.D. Clark, J.M. Davis, D. Favor, L. K. Fay, L. Franklin, K. E. Henegar, D. S. Johnson, B. J. Nichelson, L. Ou, J. T. Repine, M. A. Walters, A.D. White, Z. Zhu, US Patent 0043309, 2005.
[14] M. Tominaga, E. Yo, H. Ogawa, S. Yamashita, Y. Yabuuchi, K. Nakagawa, Chem. Pharm. Bull. 1984, 32, 2100-2110.

