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ABSTRACT

The first total synthesis of gliocladin C, a fungal-derived marine alkaloid containing a rare trioxopiperazine fragment, is reported. This asymmet ric
synthesis establishes the absolute configuration of this structurally novel natural product.

Fungi found in marine organisms have proven to be a rich
source of architecturally novel and biologically active natural
products.1 In 2004, Usami and co-workers reported the
isolation of the indole alkaloid gliocladin C (1) from a strain
of Gliocladium roseum, originally obtained from the sea hare
Aplysia kurodai(Figure 1).2 Coisolated with gliocladin C

were the sulfur-containing analogues gliocladins A (2) and
B (3), the former being related closely in structure to

epidithiodiketopiperazine congeners leptosin D,3 gliocladine
A,4 and T988A.5 Gliocladins A-C exhibited cytotoxic
activity against P388 lymphocytic leukemia in cell culture,
with gliocladin C (1) being most potent (2.4µg/mL).2

The proposed gross structure and relative configuration
of gliocladin C (1) was based on mass spectrometric and
spectroscopic data, with the absolute configuration being
undefined.2 The most novel structural feature of gliocladin
C is the trioxopiperazine ring, which is an extremely rare
feature of natural products, never before seen in conjunction
with a pyrrolidinoindoline fragment.6,7 We report in this
disclosure the first total synthesis of gliocladin C (1) and
proof that its absolute configuration is as depicted in Figure
1.

Oxindoles having aâ-aminoethyl substituent at C3 are
time-tested precursors of pyrrolidinoindolines.8 We recently
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Figure 1. Gliocladins A (2), B (3), and C (1).
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reported9 that elaborate, enantiopure structures of this type
containing an aryl or heteroaryl substituent at the quaternary
C3 stereocenter could be quickly assembled by the Mu-
kaiyama aldol reaction10 of 2-siloxyindoles and the serine-
derived aldehyde5 (eq 1, DTBMP) 2,6-di-tert-butyl-4-
methylpyridine).11 (+)-Oxindole6, which can be prepared
in this fashion on a large scale in five steps from isatin, was
the starting point for our construction of (+)-gliocladin C
(1).

The conversion of Mukaiyama aldol adduct6 to hy-
droxymethyl pyrrolidinoindoline11 is summarized in Scheme
1. This seemingly straightforward elaboration was rendered
challenging by the propensity of oxindole6 to undergo retro-
aldol fragmentation under basic conditions9 and the acid
sensitivity of pyrrolidinolindolines having a hydroxyl sub-
stituent at C3.12,13 The sequence that ultimately proved
successful began by cleavage of the oxazoline and Boc
substituents of aldol adduct6 with 3 M HCl in MeOH,
followed by reaction of the resulting amino diol with 2,2-
dimethoxypropane, a sequence that delivered 1,3-dioxane7
in 85% overall yield. The use of formic acid in the first step9

resulted in partial retroaldolization in large-scale reactions
when this less volatile acid was removed by evaporation.
Reaction of amino oxindole7 with excess LiAlH4 at room
temperature, followed by exposure of the crude product to a
slurry of silica gel in MeOH provided pyrrolidinoindoline8
in 93% yield.

We first became aware of the extreme acid sensitivity of
pyrrolidinoindolines containing hydroxyl sustituents at C3
when all standard conditions we surveyed for cleaving the
acetonide substituent of intermediate8 resulted in extensive
decomposition. However, using the method developed by
Rychnovsky,14 this group was transformed to silyloxy
propenyl ether9 in high yield by exposure to excess
TMSOTf and diisopropylethylamine. After introducing a Boc

group to protect the pyrrolidine nitrogen, reaction at room
temperature with a catalytic amount of oxalic acid in MeOH
delivered diol10 in 71% yield for the two steps. As this
intermediate was quite sensitive, all attempts to selectively
oxidize the primary alcohol substituent were unsuccessful.
Thus, diol10 was transformed to methoxy derivative11 by
selective protection of the primary alcohol with a TBDMS
group, followed by sequential reaction with excess NaH and
MeI and then TBAF (1 equiv). This series of three reactions
provided intermediate11 in 68% overall yield from diol
precursor10.15 All steps of this sequence take place under
basic conditions, which is likely key to its success.

The trioxopiperazine ring of (+)-gliocladin C was as-
sembled, and the∆11,12-unsaturation introduced by the series
of transformations summarized in Scheme 2. The primary
alcohol substituent of alcohol11 was first oxidized to give
the corresponding acid without effecting the indole substitu-
ent by a two-step sequence involving initial reaction with
Dess-Martin periodinane16 to give the corresponding alde-
hyde, followed by sodium chlorite oxidation.17 Coupling of
the crude acid product with methylamine using the BOP
reagent18 then delivered amide12 in 60% overall yield form
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Scheme 1. Conversion of Aldol Product6 to
Pyrrolidinoindoline Alcohol11
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hydroxymethylpyrrolidinoindoline11. To set the stage for
assembling the trioxopiperazine ring, the Boc group was
cleaved by reaction of12with TMSI to give secondary amine
13 in 65% yield.19,20 A preliminary survey of the reactivity
of the pyrrolidine nitrogen of congeners of1321 had shown
that acylation of the hindered and inductively deactivated
secondary amine was problematic; thus, the benzyl protecting
group of the adjacent nitrogen and that of the indole
substituent were removed at this stage by the reaction of13
at -78 °C with excess Na andt-BuOH in THF-NH3. This
deprotection was remarkably clean, providing the secondary
triamine 14 in 87% yield. Although several potential ap-
proaches for fashioning the trioxopiperazine ring in one step
were unsuccessful,22 reaction of14 with ethyl chlorooxo-
acetate in the presence of Et3N took place cleanly at N5 to
give oxalyl half-ester half-amide15 in 87% yield. To our
initial dismay, attempts to cyclize this intermdiate by reaction
with a variety of bases (e.g., DBU,i-Pr2EtN, Et3N, or NaH)

led to extensive decomposition. Fortunately, a method
developed by Mulliez to form peptide-derived trioxopipera-
zines proved successful.23 Thus, when a solution of15 and
1,1,1,3,3,3-hexamethyldisilazane was heated at 140°C in a
sealed tube, cyclization to form the trioxopiperazine and
elimination of the methoxy group both took place to give
(+)-gliocladin C (1), a pale yellow solid, in 73% yield.
Comparison of1H and13C NMR data24,25of synthetic1 with
those of the natural product confirmed their identity. The
optical rotation of synthetic1, [R]23

D +116 (c 0.02 CHCl3),
compared well with that reported for the natural sample, [R]D

+131 (c 0.07 CHCl3). Because the relative and absolute
configuration of the Fmoc derivative of synthetic precursor
7 had been determined by single-crystal X-ray analysis,9 this
comparison establishes the absolute configuration of (+)-
gliocladin C (1) to be as depicted.

In summary, the first total synthesis of the structurally
novel marine alkaloid (+)-gliocladin C (1) was completed
in ∼4% overall yield and 21 steps from isatin. A central
step in this sequence is asymmetric construction of the
quaternary carbon stereocenter by a Mukaiyama aldol
reaction of siloxyindole4 and enantiopure aldehyde5.9

Knowledge gained during the latter stages of this synthesis
could potentially allow the synthetic sequence to be stream-
lined. Of more importance, a better appreciation of the acid
sensitivity of pyrrolidinoindolines containing oxygen sub-
stituents at C3 should assist in the design of synthetic
approaches to related, more complex, and biologically more
potent alkaloids.26
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Scheme 2. Construction of the Trioxopiperazine Ring To
Form (+)-Gliocladin C (1)
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