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Abstma: (2RJR)_oi~~~h~-(3R,4S~i~~ lidinc daiuuiw 15, 1,7a-diqialaine I, and 1,7,7a-mkp& 

alaine 2 haw been synthesid~ (S)-pyoglutamk acid dcriwatiw 4. 

Alexmel is a new class of polyhydroxylated pynolixidine alkaloid with a hydaoxymethyl group at C-3 

and five contiguous asymmetric centers, and has been shown to possess inhibitory activity toward the fungal 

glucan 1,4-a-glucosidase. Recently, 1,7a-diepialexine (l-epiaustraline) 1394 has been isolated and its 

structure iS related to (2R,5R)-dihydroxymethyl-(3R,45)dihydroxypytrokline derivative. Inco~eztim 

with our synthetic stud& on the utility of optically active pymglutamic acid derivatives for natural product 

synthesis, 5 we describe here a s tereowntrolled synthesis of (2RXklihydroxymethyl-(3R,48)-Ghydroxy- 

pyrrolidine derivative 15 and 1,7a-diepialexine 1 via a nonecarbohydrate based appmach utilii Q- 

pyrogh~tamic acid derivative 4.6 

“O,,,#_ _q+ 

1 2 

Addition of vinylmagneSium bromide7 in THF at -4O- -50°C to (3R,4R,5R)-l-(ten-butoxycarbonyl)- 

3,4-isopropylidenedioxy-5-trityloxymethyl-2-pyrrolidinone 4 5c (m.p. 142-143 “C, [a]Dsc +43.2” (c 0.6, 

CHCl3)), prepamd from the unmturakd lactam 3 by ckdihydroxylation with a catalytic amount of 0904 

followed by isopropylidenation, yielded the enone 58 in 93% yield Reduction of 5 with NaBH4 in the 

presence of CeC13 in MeOH gave the allylic alcohol 6 as a 1:2.4 mixture of inseparable dktereomers in 

91% yield. Conversion of 6 to the mesylate followed by cyclixation with fen-BuOK in TIP provikd the 

pyrrolidine 7 as the Sole stereoisomer in 72% yield The configurations of 7 were confirmed by the conver- 

sion of 7 into the hydrochloride of meso-2,5-dihydroxymethyl-3,4dihydroxypyrrolidine 9lo*l 1 (m.p. 99- 

101 C) via the alcohol 8 in 77% yield On the other hand, diols 10 and 12 were obtained by ozon~lysis of 
6 followed by workup with NaBH4 and both were converted to tert-butyldimethylsilyl ethers 11 and 13 in 

48% and 19% yields, respectively. Then, oxidation of 11 by the method of Swem12 followed by reduction 
with NaBHq in EtOH at -78°C gave 13 with high dia~temoselectivity (13:11=1&l) in 73% yield The ~ilyl 
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17 R1=H,R2=Boc 

18 R’=MOM,R2=Boc )k X20 

19 R’=MOM,R2=Bn )I ;: 

Reagents and conditions: (a) cat. 0s04, Kmethyfmorphofine Moxide, acetone-H&I, then 2,2-di- 
methoxypropane, cat. pTsOH, acetone; (8) vinyfmagnesium bromide, THF, 40 - -50 4;; (c) NaBH.,, 
CeCls*7HsO, MeOH; (d) MsCI, TEA, CH&fa, then ferf-BuOK, THF; (e) 03, CH&ls, -78”c, then 
NaBH,, EtOH; (9 10% HCf, MeOH, 60°C; (g) WWutyfdfmethyfsflyl chloride, imidazcle, DMF, 0°C; 
(h) Swem oxidation, -20°C then NaBH+ EtOH, -78OC; (i) tetrabutyfammonium fluoride, THF; (D 
Swem oxidatbn, then allyfation, -78 @; (k) chforcrnethyfmethyf ether, N,Kdiethylaniline, CH&12; 
(I) fert-butytdimethyfsilyl triftucromethanesuffonate, 2,8-lutidine, CHsCt2, then (i), then BnBr, 
K$Os, acetone; (m) f&Cl, TEA, CHaCle then 10% Pd-C, Ha, EtOH. 
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ether 13 was further comated to the mesylate and treated with ren-BuOK in ‘DIP to provide the pyrmlidine 
14 with intramolecular SN2 displacement in 75% yield Acid hydrolysis of I4 gave the hydrochloride of 

(2&5&dihydroxymethyl-(3&4a-dihydroxypyrrolidine 1613 (m.p. 190-192 Oc, ]a]oas +51.5O (c 1, 

H20)) in 78% yield The cadxm unit required for the pyrrolixidine skeleton was introduced using the dia - 

stereoselective allylation previously report&. 5 ad 14 After removal of the silyl ether from 14 with tetra- 
butylammonium fluoride in THF, Swern oxidation of the resulting alcohol 15 (m.p. 145oC, [alp 
49.1°(c 1.6, CHC13)) gave the corresponding aldehyde, which was treated with either allylmagnesium 

chloride in THF or allyllithium in ether-THP at -78°C to afford 17 predominantly15 (allylmagnesium 

chloride: 17/20=2.5/l, yield 84%; allyllithium: 17/20=5.4/l, yield 81%; the ratio was de&mined by HPLC 

analysis). After protection of the hydroxy group of 17 as the methoxymethyl ether, selective transformation 

of N-fert-butoxycarbonyl group of 18 into iV-benxyl group was effected by reaction with rerc-butyldi- 

methylsilyl trifhunomethanesulfonatel6 in the presence of 2,6-lutidine followed by successive treatments 

with tetrabutylammonium fluoride in THF and benxyl bromide in the presence of poassium carbonate in 
acetone to furnish 19 in 58% yield Oxonolysis of 19 followed by reductive workup with NaBH4 gave 

the alcohol 21 in 58% yield Mesylation of 21 followed by cleavage of the protecting groups afforded 1,7a- 
diepialexine 1 ([a]$ +12.5’(c 0.6, H20), lit. [a]$0 +12”(c 1.17, H2O),3 [a]# +8.5”(c 0.41, 

H20)4) in 52% yield after purification by ion exchange chromatography (Dowex 5OW-X8, H+ fcrm). Its 

spectral data ( 1~ and 13C NMR) were identical with those repmted for 1.4 By a parallel series of reactions, 
20 was converted to 1,7,7a-triepiaIexine 217(oil, [a]9 +4.7”(c 0.5, H20)). 

Presently described synthesis is stemoselective and provides a new approach for the preparation of the 

polyhydroxylated pyrrolixidines and its stereoisomers. 
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