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Stereocontrolled Synthesis of 1,7a-Diepialexine
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Abstract: (2R,5R)-Dikydroxymethyl-(3R,4S)-dikydroxypyrrolidine derivative 15, 1,7a-diepialexine 1, and 1,7,7a-triepi-
alexine 2 have been synthesized from (S)-pyroglutamic acid derivative 4.

Alexinel.2 is a new class of polyhydroxylated pyrrolizidine alkaloid with a hydroxymethyl group at C-3
and five contiguous asymmetric centers, and has been shown to possess inhibitory activity toward the fungal
glucan 1,4-a-glucosidase. Recently, 1,7a-diepialexine (1-epiaustraline) 134 has been isolated and its
structure is related to (2R,5R)-dihydroxymethyl-(3R,45)-dihydroxypyrrolidine derivative. In connection
with our synthetic studies on the utility of optically active pyroglutamic acid derivatives for natural product
synthesis, 5 we describe here a stereocontrolled synthesis of (2R,5R)-dihydroxymethyl-(3R,45)-dihydroxy-
pyrrolidine derivative 15 and 1,7a-diepialexine 1 via a none-carbohydrate based approach utilizing (S)-

pyroglutamic acid derivative 4.6
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Addition of vinylmagnesium bromide” in THF at -40- -50°C to (3R,4R,5R )-1-(tert-butoxycarbonyl)-
3,4-isopropylidenedioxy-5-trityloxymethyl-2-pyrrolidinone 4 5¢ (m.p. 142-143°C, [a]p?0 +43.2° (c 0.6,
CHCl3)), prepared from the unsaturated lactam 3 by cis-dihydroxylation with a catalytic amount of OsOy4
followed by isopropylidenation, yielded the enone 58 in 93% yield. Reduction of § with NaBH4 in the
presence of CeCl3 in MeOH? gave the allylic alcohol 6 as a 1:2.4 mixture of inseparable diastereomers in
91% yield. Conversion of 6 to the mesylate followed by cyclization with terr-BuOK in THF provided the
pyrrolidine 7 as the sole stereoisomer in 72% yield. The configurations of 7 were confirmed by the conver-
sion of 7 into the hydrochloride of meso-2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine 910,11 (m.p. 99-
101 °C) via the alcohol 8 in 77% yield. On the other hand, diols 10 and 12 were obtained by ozonolysis of
6 followed by workup with NaBH4 and both were converted to zerr-butyldimethylsilyl ethers 11 and 13 in

48% and 19% yields, respectively. Then, oxidation of 11 by the method of Swern 12 foliowed by reduction
with NaBHy in EtOH at -78°C gave 13 with high diastereoselectivity (13:11=18:1) in 73% yield. The silyl
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Reagents and conditions: (a) cat. OsO,4, N-methyimorphotine N-oxide, acetone-Hz0, then 2,2-di-
methoxypropane, cat. p-TSOH, acetone; (b) vinyimagnesium brornide, THF, -40 - -50 °C; (c) NaBH,,
CeClz7H,0, MeOH; (d) MsCl, TEA, CH.CIy, then tert-BuOK, THF; (e) O3, CHCl,, -78°C, then
NaBH,, EtOH; (f) 10% HCI, MeOH, 60°C; (g) tert-butyldimethyisilyl chloride, imidazole, DMF, 0°C;
(h) Swern oxidation, -20°C, then NaBH,, EtOH, -78°C; (i) tetrabutylammonium. fluoride, THF; (j)
Swern oxidation, then aflylation, -78 °C; (k) chioromethyimethyl ether, N, N-diethylaniline, CH,Cly;
() tert-butyldimethyisilyl trifiuoromethanesulfonate, 2,6-lutidine, CH.Clo, then (i), then BnBr,
KoCOj3, acetone; (m) MsCl, TEA, CHyCl,, then 10% Pd-C, Hp, EtOH.
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ether 13 was further converted to the mesylate and treated with zerr-BuOK in THF to provide the pyrrolidine
14 with intramolecular SN2 displacement in 75% yield. Acid hydrolysis of 14 gave the hydrochloride of
(2R,5R)-dihydroxymethyl-(3R,45)-dihydroxypyrrolidine 1613 (m.p. 190-192°C, [a]p20 +51.5° (c 1,
Hy0)) in 78% yield. The carbon unit required for the pyrrolizidine skeleton was introduced using the dia -
stereoselective allylation previously reported.5,d,14  After removal of the silyl ether from 14 with tetra-
butylammonium fluoride in THF, Swern oxidation of the resulting alcohol 15 (m.p. 145°C, [a]p?®
-49.1°(c 1.6, CHCl3)) gave the corresponding aldehyde, which was treated with either allylmagnesium
chloride in THF or allyllithium in ether—THF at -78°C to afford 17 predominantlyl5 (allylmagnesium
chloride: 17/20=2.5/1, yield 84%; allyllithium: 17/20=5.4/1, yield 81%; the ratio was determined by HPLC
analysis). After protection of the hydroxy group of 17 as the methoxymethyl ether, selective transformation
of N-tert-butoxycarbonyl group of 18 into N-benzyl group was effected by reaction with rerr-butyldi-
methylsilyl trifluoromethanesulfonatel6 in the presence of 2,6-lutidine followed by successive treatments
with tetrabutylammonium fluoride in THF and benzyl bromide in the presence of poassium carbonate in
acetone to furnish 19 in 58% yield. Ozonolysis of 19 followed by reductive workup with NaBHy gave
the alcohol 21 in 58% yield. Mesylation of 21 followed by cleavage of the protecting groups afforded 1,7a-
diepialexine 1 ([aJp20 +12.5°(c 0.6, H0), lit. [a]p20 +12°(c 1.17, Hy0),3 [aJp? +8.5°(c 0.41,
H20)4) in 52% yield after purification by ion exchange chromatography (Dowex 50W-X8, H* form). Its
spectral data (1H and 13C NMR) were identical with those reported for 1.4 By a parallel series of reactions,
20 was converted to 1,7,7a-triepialexine 217(oil, [a]p20 +4.7°(c 0.5, H20)).

Presently described synthesis is stereoselective and provides a new approach for the preparation of the
polyhydroxylated pyrrolizidines and its stereoisomers.
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