Efficient Mitsunobu Reactions with N-Phenylfluorenyl or N-Trityl Serine Esters

Robert J. Cherney* and Li Wang

Chemical and Physical Sciences, The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880-0500

Received November 3, 1995

The Mitsunobu reaction¹ is a mild way to convert an alcohol into a wide range of functionality. During the course of a SAR (structure-activity relationship) study, we became interested in the Mitsunobu reaction of serine. It was our intention to use the primary alcohol of L-serine ester 1 as a handle, to which our desired functionality could be attached to give a general derivative 2 (Scheme 1). However, we were concerned that a major problem inherent with this approach would be the well documented¹ β -elimination reaction to yield **4**. In fact, Wjciechowska and co-workers² have reported this reaction as an efficient method for producing didehydroalanine derivatives 4 from serine 1 through the action of diethyl azodicarboxylate (DEAD) and PPh₃ (Scheme 1 without an acidic HX present). A literature search on serine-based Mitsunobu reactions yielded mainly references for the intramolecular construction and chemistry of β -lactones,³ β -lactams,⁴ and oxazolines.⁵ In fact intermolecular examples, as in Scheme 1, are limited and poor yielding.⁶ An exception is the reaction⁷ using L-serine with hydrazoic acid under the standard conditions (PPh₃/ DEAD/solvent). This reaction converts the alcohol 1 into an azide 5 (\sim 70% yield) with only a small amount of the elimination product 4 (\sim 5%) being produced. Our interests were centered on a variety of different nucleophiles (benzoic acids, phenols, and imides) other than hydrazoic acid. We knew, in general, the Mitsunobu reaction with 4-nitrobenzoic acid was a very efficient⁸ reaction and thus selected it as a starting point. As we suspected, N-Cbz-L-serine 6 with 4-nitrobenzoic acid under standard Mitsunobu conditions (DEAD, PPh₃, and PhH at rt) afforded a large amount (53%) of the didehydroalanine 7 along with a small amount (28%) of the nucleophilic substitution product 8 (Scheme 2).

In order to circumvent this side reaction, we considered the choice of *N*-protecting group. Both *N*-phenylfluorenyl (PhF)⁹ and *N*-trityl (Tr)¹⁰ are known to protect the α -center of amino acids from base-promoted racemization. As a result, we postulated these groups might also protect serine from the elimination reaction during a Mitsunobu reaction. When *N*-phenylfluorenyl serine **9** was subjected

(6) Nagai, U.; Kato, R.; Pavone, V. Peptide Chem. **1987**, 187.

(8) Martin, S. F.; Dodge, J. A. *Tetrahedron Lett.* **1991**, *32*, 3017.
(9) Christie, B. D.; Rapoport, H. *J. Org. Chem.* **1985**, *50*, 1239.
(10) Guthrie, R. D.; Nicolas, E. C J. Am. Chem. Soc. **1981**, *103*, 4638.

to the same Mitsunobu reaction with 4-nitrobenzoic acid at room temperature (Scheme 3), *we were pleased to find only the substitution product* **10** *in* 86% *yield*. Hence, by making a simple change in protecting groups, we were able to prevent the elimination reaction completely.

To examine the scope and utility of this reaction, we explored additional examples, the results of which are summarized in Table 1. Entry A indicates that the Mitsunobu reaction with *N*-trityl-L-serine methyl ester and 4-nitrobenzoic acid behaves analogously to give the substitution product **11A** (90% yield) under identical conditions. As mentioned above, we were interested in other acidic moieties like imides and phenols. Phthalimide could also participate in the reaction to give only the addition products **11C** and **11D** for *N*-phenylfluorenyl (entry C) and *N*-trityl (entry D), respectively. One can compare this example to entry B where *N*-Cbz-L-serine methyl ester **6** gave primarily the elimination product **11B** (13% yield).

This same trend was also noted for phenols. As indicated in entry E, we did not observe any substitution product for the Mitsunobu reaction between N-Boc-Lserine methyl ester and methyl 4-hydroxybenzoate. Again, an enhancement was observed with the bulky *N*-protecting groups. When the same Mitsunobu reaction was performed with N-trityl serine methyl ester (entry F), the substitution product 11F was isolated in 63% yield along with the aziridine 14 (Table 1). The aziridine 14 has previously been synthesized (via another route) by Baldwin et al.,¹¹ and our material compared exactly with their reported characterization. The Mitsunobu reaction with N-phenylfluorenyl serine 9 and methyl 4-hydroxybenzoate (entry G) was analogous to this, producing the substitution product 11G (40% yield) and the corresponding aziridine 15 (24% yield).

^{(1) (}a) Mitsunobu, O. *Synthesis* **1981**, 1. (b) Hughes, D. L. *Org. React.* **1992**, *42*, 335.

⁽²⁾ Wojciechowska, H.; Pawlowicz, R.; Andruszkiewicz, R.; Grzybowska, J. *Tetrahedron Lett.* **1978**, 4063.

⁽³⁾ Arnold, L. D.; Kalantar, T. H.; Vederas, J. C. *J. Am. Chem. Soc.* **1985**, *107*, 7105.

⁽⁴⁾ Miller, M. J. Acc. Chem. Res. 1986, 19, 49.

⁽⁵⁾ Galeotti, N.; Montagne, C.; Poncet, J.; Jouin, P. Tetrahedron Lett. 1992, 2807. Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 6267.

 ^{(7) (}a) Golding, B. T.; Howes, C. J. Chem. Res. (S) 1984, 1. (b)
 Otsuka, M.; Kittaka, A.; Iimori, T.; Yamashita, H.; Kobayashi, S.; Ohno,
 M. Chem. Pharm. Bull. 1985, 33, 509. (c) Fabiano, E.; Golding, B. T.;
 Sadeghi, M. M. Synthesis 1987, 190.

⁽¹¹⁾ Baldwin, J. E.; Spivey, A. C.; Schofield, C. J.; Sweeney, J. B. Tetrahedron 1993, 49, 6309.

Table 1. Mitsunobu Reactions with N-PhF and N-Tri-Serine Esters

P(H)N CO ₂ R			DEAD PPh ₃ HX PhH, rt	P(H)N_CO ₂ R +	P(H)N CO ₂ R +	
	no			11 A -G	7 P = Cbz 12 P = Boc	14 P = Tr 15 P = PhF
Entry	Р	R	нх	11 (%) ^a	7 or 12 (%) ^a	14 or 15 (%) ^a
Α	Tr	Me	p-O₂N-C ₆ H₄-CO₂H	11 A (90%)	-	-
в	Cbz	Мө	phthalimide	11 B (13%)	7 (73%)	-
С	PhF	Me	phthalimide	11C (95%)	-	-
D	Tr	Me	phthalimide	11D (91%)	-	-
Е	Boc	Bn	p-MeO₂C-C ₆ H₄-OH	11E (-)	12 (91%)	-
F	Tr	Me	p-MeO₂C-C ₆ H₄-OH	11F (63%)		14 (16%)
G	PhF	Мө	p-MeO₂C-C ₆ H₄-OH	11G (40%)	-	15 (24%)

" Yields refer to isolated material.

$$PhF \equiv \sum_{i=1}^{Ph}$$

Each of the *N*-trityl and *N*-phenylfluorenyl substitution products **10**, **11A**, **11C**, **11D**, **11F**, and **11G** were checked by Mosher amide¹² analysis (¹H NMR and ¹⁹F NMR) for racemization. In each case, the D-serine enantiomer or racemate was carried through the same Mitsunobu reaction and then converted to the Mosher amide for comparison. All the Mosher amides analyzed in this fashion proved to be free of racemization and gave a diastereomeric purity of \geq 95%.

In summary, we have shown that with *N*-phenylfluorenyl or *N*-trityl protection, Mitsunobu reactions can be performed quite efficiently with serine. In the cases shown, benzoic acids and imides showed good reactivity, whereas phenols were somewhat less reactive.

Experimental Section

General. All reactions were performed under a nitrogen atmosphere at room temperature unless otherwise noted. The amino acid derivative *N*-phenylfluorenyl-L-serine methyl ester **9** was synthesized according to the procedure of Rapoport.¹³ In addition, *N*-Trityl-L-serine methyl ester was synthesized as reported by Baldwin.¹¹ All other reagents and solvents were purchased from commercial sources and used as received unless otherwise noted. The ¹H NMR and ¹³C NMR were recorded at 300 and 75 MHz, respectively. The chemical shifts are reported in ppm (*∂*) relative to TMS in the solvent listed. ESMS is the abbreviation for electrospray ionization mass spectroscopy.

General Procedure for *N*-PhF or *N*-Tr-serine Mitsunobu Reactions: *N*-(9-Phenylfluoren-9-yl)-*O*-(4-nitrobenzoyl)-Lserine Methyl Ester (10). The *N*-PhF-L-serine methyl ester 9 (474.4 mg, 1.3 mmol) was dissolved in benzene (15 mL) prior to the addition of PPh₃ (380.8 mg, 1.4 mmol) and 4-nitrobenzoic acid (330.8 mg, 1.9 mmol). After 5 min, DEAD (0.23 mL, 1.4 mmol) was added dropwise. The reaction was stirred for 15 h, after which time the solid urea was removed via filtration. The filtrate was concentrated to an oil, which was purified by flash chromatography (1:5 EtOAc/hexane) to provide the desired product 10 (568.1 mg, 1.1 mmol, 86%) as a white foam: $[\alpha]^{25}_{\rm D}$ –162.5° (*c* 0.25, CH₂Cl₂); ¹H NMR (CDCl₃) δ 8.27 (dd, 2H, *J* = 1.8, 8.8 Hz), 8.13 (dd, 2H, J = 1.8, 8.8 Hz), 7.7 (t, 2H, J = 10.2 Hz), 7.42–7.12 (m, 11H), 4.34 (dd, 1H, J = 5.5, 10.6 Hz), 4.25 (dd, 1H, J = 5.8, 10.9 Hz), 3.38 (s, 3H), 3.23 (br d, 1H, J = 8.4 Hz), 3.04 (m, 1H); ¹³C NMR (CDCl₃) δ 173.62, 164.03, 150.53, 148.60, 148.24, 143.84, 140.98, 139.89, 135.16, 130.69, 128.49, 128.27, 127.95, 127.51, 127.32, 125.97, 125.78, 125.09, 123.44, 120.07, 119.96, 72.71, 67.14, 54.76, 51.97; IR (neat) 3320, 3058, 2952, 1732, 1528, 1272 cm⁻¹; ESMS *m*/*z* (rel intensity) 509 (M⁺ + H, 52), 241 (100). Anal. Calcd for $C_{30}H_{24}N_2O_6$: C, 70.86; H, 4.77; N, 5.52. Found: C, 70.75; H, 4.75; N, 5.37.

The following compounds (see Table 1) were synthesized according to the general procedure:

N-(Triphenylmethyl)-*O*-(4-nitrobenzoyl)-L-serine methyl ester (11A): $[\alpha]^{25}_{D} + 58.9^{\circ}$ (*c* 0.21, CH₂Cl₂); ¹H NMR (DMSO*d*₆) δ 8.33 (d, 2H, J = 9.2 Hz), 8.11 (d, 2H, J = 9.2 Hz), 7.42 (d, 6H, J = 7.7 Hz), 7.29–7.15 (m, 9H), 4.51 (dd, 1H, J = 5.9, 11.0 Hz), 4.38 (dd, 1H, J = 7.5, 11.0 Hz), 3.61 (m, 1H), 3.19 (d, 1H, J = 10.2 Hz), 3.12 (s, 3H); ¹³C NMR (CDCl₃) δ 172.69, 164.20, 150.25, 145.34, 135.10, 120.69, 128.57, 127.88, 126.57, 123.50, 70.00, 67.28, 55.36, 51.94; IR (KBr) 3324, 3084, 1734, 1528, 1272 cm⁻¹; CIMS *m*/*z* (rel intensity) 511 (M⁺ + H, 65), 243 (100). Anal. Calcd for C₃₀H₂₆N₂O₆: C, 70.58; H, 5.13; N, 5.50. Found: C, 70.50; H, 5.13; N, 5.37.

N-(9-Phenylfluoren-9-yl)-β-(phthalimido)-L-alanine methyl ester (11C): $[\alpha]^{25}_{D} - 280.0^{\circ}$ (c 0.16, CH₂Cl₂); ¹H NMR (DMSOd₆) δ 7.90-7.85 (m, 4H), 7.79 (dd, 2H, J = 7.7, 13.9 Hz), 7.36 (t, 1H, J = 7.3 Hz), 7.28-7.12 (m, 8H), 6.67 (d, 2H, J = 3.4 Hz), 3.64 (dd, 1H, J = 9.1, 13.5 Hz), 3.50 (dd, 1H, J = 5.5, 13.5 Hz), 3.38 (d, 1H, J = 9.89 Hz), 3.34 (s, 3H), 2.74 (ddd, 1H, J = 5.48, 9.1, 9.89 Hz); ¹³C NMR (CDCl₃) δ 174.31, 167.84, 133.91, 128.40, 128.31, 127.19, 126.02, 123.29, 120.02, 72.73, 54.42, 52.01, 41.16; IR (KBr) 3472, 3060, 1718, 1394 cm⁻¹; CIMS *m*/*z* (rel intensity) 489 (M⁺ + H, 100). Anal. Calcd for C₃₁H₂₄N₂O₄: C, 76.21; H, 4.95; N, 5.73. Found: C, 75.88; H, 4.80; N, 5.59.

N-(Triphenylmethyl)-β-(phthalimido)-t-alanine methyl ester (11D): $[α]^{25}_{D}$ +16.9° (*c* 0.11, CH₂Cl₂); ¹H NMR (DMSOd₆) δ 7.93-7.85 (m, 4H), 7.38-7.14 (m, 15H), 3.83 (d, 2H, J = 7.0 Hz), 3.48 (m, 1H), 3.04-3.01 (m, 4H); ¹³C NMR (CDCl₃) δ 172.89, 167.83, 145.42, 133.93, 128.61, 127.75, 126.36, 123.49, 123.26, 80.90, 55.38, 51.88, 41.62; IR (KBr) 3202, 2950, 1734, 1718, 1394 cm⁻¹; CIMS *m*/*z* (rel intensity) 491 (M⁺ + H, 100). Anal. Calcd for C₃₁H₂₆N₂O₄: C, 75.90; H, 5.34; N, 5.71. Found: C, 75.51; H, 5.25; N, 5.59.

N-(Triphenylmethyl)-*O*-(4-carbomethoxyphenyl)-Lserine methyl ester (11F): $[\alpha]^{25}_{D}$ +96.1° (*c* 0.15, CH₂Cl₂); ¹H NMR (CDCl₃) δ 7.89 (d, 2H, J = 8.9 Hz), 7.43 (d, 6H, J = 7.3 Hz), 7.29 (t, 6H, J = 7.5 Hz), 7.20 (t, 3H, J = 7.1 Hz), 6.97 (d, 2H, J = 8.9 Hz), 4.28 (dd, 1H, J = 4.9, 9.5 Hz), 4.05 (dd, 1H, J= 6.6, 9.5 Hz), 3.81 (s, 3H), 3.56 (ddd, 1H, J = 4.9, 6.6, 10.2 Hz),

⁽¹²⁾ The substitution product was heated in TFA and CH_2Cl_2 to remove the *N*-phenylfluorenyl or *N*-trityl protecting group. The solution was concentrated and reacted with the (*R*)-Mosher acid chloride (Fluka) to give the corresponding amide: Dale, J. A.; Dull, D. L.; Mosher, H. S. *J. Org. Chem.* **1969**, *34*, 2543.

⁽¹³⁾ Lubell, W.; Rapoport, H. J. Org. Chem. 1989, 54, 3824.

3.23 (s, 3H), 2.90 (d, 1H, J = 10.2 Hz); ¹³C NMR (CDCl₃) δ 173.24, 162.14, 145.63, 131.55, 128.72, 127.94, 126.58, 123.03, 114.23, 70.99, 70.35, 56.03, 51.96, 51.87; IR (KBr) 3412, 3030, 2950, 1718, 1606 cm⁻¹; CIMS *m*/*z* (rel intensity) 496 (M⁺ + H, 7), 243 (100). Anal. Calcd for C₃₁H₂₉NO₅: C, 75.13; H, 5.91; N, 2.84. Found: C, 75.11; H, 5.73; N, 2.75.

N-(Triphenylmethyl)aziridine-(2.5)-carboxylic acid methyl ester (14): $[\alpha]^{25}_{D} - 85.9^{\circ}$ (*c* 0.09, CH₂Cl₂); ¹H NMR (CDCl₃) δ 7.51–7.19 (m, 15H), 3.76 (s, 3H), 2.26 (dd, 1H, *J* = 1.4, 2.6 Hz), 1.89 (dd, 1H, *J* = 2.6, 6.2 Hz), 1.41 (dd, 1H, *J* = 1.4, 6.2 Hz); ¹³C NMR (CDCl₃) δ 172.20, 143.53, 129.24, 128.98, 128.55, 128.36, 127.90, 127.83, 127.75, 127.56, 126.84, 126.55, 74.30, 51.98, 31.61, 28.57; IR (KBr) 3434, 3060, 1744, 1490, 1448, 1284, 1242 cm⁻¹; CIMS *m*/*z* (rel intensity) 344 (M⁺ + H, 21), 243 (100); HRMS calcd for C₂₃H₂₂NO₂ (M⁺ + H), 344.1650; found 344.1664.

N:(9-Phenylfluoren-9-yl)-*O*-(4-carbomethoxyphenyl)-Lserine methyl ester (11G): $[\alpha]^{25}_{\rm D}$ -62.5° (*c* 0.11, CH₂Cl₂); ¹H NMR (CDCl₃) δ 7.90 (dd, 2H, J = 1.8, 8.8 Hz), 7.69 (t, 2H, J =6.6 Hz), 7.44–7.16 (m, 11H), 6.71 (dd, 2H, J = 2.2, 9.1 Hz), 4.00 (dd, 1H, J = 5.1, 9.5 Hz), 3.92 (dd, 1H, J = 2.9, 6.6 Hz), 3.87 (s, 3H), 3.36 (s, 3H), 3.20 (br d, 1H, J = 8.8 Hz), 3.05 (m, 1H); ¹³C NMR (CDCl₃) δ 174.06, 166.66, 161.97, 148.90, 148.46, 143.99, 140.88, 140.07, 131.39, 128.46, 128.24, 127.94, 127.54, 127.29, 126.00, 125.71, 125.05, 122.78, 120.07, 119.96, 114.06, 72.74, 70.00, 54.94, 51.83, 51.72; IR (film) 3320, 2950, 1716 cm⁻¹; ESMS m'z (rel intensity) 494 (M⁺ + H, 41), 241 (100). Anal. Calcd for C₃₁H₂₇NO₅: C, 75.44; H, 5.51; N, 2.85. Found: C, 75.57; H, 5.41; N, 2.80.

N-9-Phenylfluoren-9-ylaziridine-(2.5)-carboxylic acid methyl ester (15): $[\alpha]^{25}_{D} - 124.1^{\circ}$ (c 0.94, CH₂Cl₂); ¹H NMR (CDCl₃) δ 7.69 (td, 2H, J = 2.5, 4.8 Hz), 7.41–7.33 (m, 4H), 7.28–7.18 (m, 7H), 3.69 (s, 3H), 2.19 (dd, 1H, J = 2.9, 6.2 Hz), 2.09 (dd, 1H, J = 1.1, 2.9 Hz), 1.55 (dd, 1H, J = 1.1, 6.2 Hz); ¹³C NMR (CDCl₃) δ 171.40, 147.24, 146.05, 142.95, 141.20, 140.29, 128.90, 128.71, 128.25, 127.77, 127.64, 127.14, 126.90, 126.21, 126.23, 119.95, 119.90, 75.72, 52.11, 33.18, 29.76; IR (KBr) 3058, 1748, 1448 cm⁻¹; HRMS calcd for C₂₃H₂₀NO₂ (M⁺ + H), 342.149404; found 342.147554.

Mitsunobu Reaction between *N*-Cbz-L-Serine Methyl Ester (6) and 4-Nitrobenzoic Acid. The reaction was performed as described in the general procedure. Starting with *N*-Cbz-L-serine methyl ester (6) (283.0 mg, 1.1 mmol), 4-nitrobenzoic acid (280.2 mg, 1.7 mmol), PPh₃ (322.5 mg, 1.2 mmol), and DEAD (0.19 mL, 1.2 mmol) gave the β -elimination product 7 (141 mg, 0.6 mmol, 53%) and the substitution product 8 (126 mg, 0.3 mmol, 28%).

Data for 7: ¹H NMR (CDCl₃) δ 7.37 (m, 5H), 7.24 (br s, 1H), 6.25 (br s, 1H), 5.79 (d, 1H, J = 1.5 Hz), 5.16 (s, 2H), 3.83 (s, 3H); ¹³C NMR (CDCl₃) δ 164.07, 153.02, 135.76, 130.91, 128.51,

128.27, 128.13, 105.98, 66.95, 52.79; IR (KBr) 3412, 1742, 1500 cm⁻¹; CIMS (NH₃) m/z (rel intensity) 253 (M⁺ + NH₄, 100), 236 (M⁺ + H, 19); HRMS calcd for C₁₂H₁₄NO₄ (M⁺ + H), 236.092283; found 236.091810.

Data for **8**: $[\alpha]^{25}_{D}$ +38.0° (*c* 0.67, CH₂Cl₂); ¹H NMR (CDCl₃) δ 8.27 (dd, 2H, J = 1.8, 7.0 Hz), 8.13 (dd, 2H, J = 2.2, 7.0 Hz), 7.35 (s, 5H), 5.64 (br d, 1H, J = 7.7 Hz), 5.13 (s, 2H), 4.81 (m, 1H), 4.69 (m, 2H), 3.81 (s, 3H); ¹³C NMR (CDCl₃) δ 169.66, 164.11, 155.64, 150.77, 135.88, 134.64, 130.81, 128.57, 128.35, 128.16, 123.66, 67.37, 65.37, 53.34, 53.05; IR (KBr) 3424, 1754, 1730, 1718, 1536 cm⁻¹; ESMS *m*/*z* (rel intensity) 403 (M⁺ + H, 100). Anal. Calcd for C₁₉H₁₈N₂O₈: C, 56.72; H, 4.52; N, 6.96. Found: C, 56.53; H, 4.58; N, 6.83.

Mitsunobu Reaction between *N*-Cbz-L-Serine Methyl Ester (6) and Phthalimide. The reaction was performed as described in the general procedure. Starting with *N*-Cbz-L-Serine methyl ester (6) (443.2 mg, 1.7 mmol), phthalimide (382.5 mg, 2.6 mmol), PPh₃ (505.8 mg, 1.9 mmol), and DEAD (0.31 mL, 1.9 mmol) gave the β -elimination product 7 (301.6 mg, 1.3 mmol, 73%) and the substitution product **11B** (87 mg, 0.22 mmol, 13%).

Data for 7: See above.

Data for **11B**: $[\alpha]^{25}_{D} + 12.0^{\circ}$ (*c* 0.22, CH₂Cl₂); ¹H NMR (CDCl₃) δ 7.84 (m, 2H), 7.73 (m, 2H), 7.31 (s, 5H), 5.69 (br d, 1H, *J* = 7.3 Hz), 5.07 (s, 2H), 4.68 (br q, 1H, *J* = 5.5 Hz), 4.22–4.04 (m, 2H), 3.79 (s, 3H); ¹³C NMR (CDCl₃) δ 170.13, 168.02, 155.70, 136.06, 134.11, 131.65, 128.34, 127.98, 127.91, 123.46, 66.95, 53.27, 52.80, 39.03; IR (KBr) 3312, 1772, 1752, 1726, 1684 cm⁻¹; CIMS (NH₃) *m*/*z* (rel intensity) 400 (M⁺ + NH₄, 100), 383 (M⁺ + H, 27); HRMS calcd for C₂₀H₁₉N₂O₆ (M⁺ + H), 383.124312; found 383.125009.

Mitsunobu Reaction between *N*-Boc-L-Serine Benzyl Ester (entry E) and Methyl 4-Hydroxybenzoate. The reaction was performed as described in the general procedure. Starting with *N*-Boc-L-serine benzyl ester (517.7 mg, 1.7 mmol), methyl 4-hydroxybenzoate (399.4 mg, 2.6 mmol), PPh₃ (505.8 mg, 1.9 mmol), and DEAD (0.31 mL, 1.9 mmol) gave the β-elimination product **12** (442.5 mg, 1.6 mmol, 91%): ¹H NMR (CDCl₃) δ 7.37 (m, 5H), 7.03 (br s, 1H), 6.17 (br s, 1H), 5.79 (d, 1H, J = 1.5 Hz), 5.26 (s, 2H), 1.48 (s, 9H); ¹³C NMR (CDCl₃) δ 163.86, 152.53, 135.21, 131.38, 128.63, 128.50, 128.18, 105.43, 80.67, 67.60, 28.23; IR (KBr) 3456, 3420, 2978, 1718 cm⁻¹; HRMS calcd for C₁₅H₂₀NO₄ (M⁺ + H), 278.139233; found 278.138973.

Acknowledgment. The authors would like to thank Professor Henry Rapoport and Dr. Arthur D. Patten for informative discussions.

JO951958T