Synthesis and Crystal Structure of Rb₃AgO₂

M. Sofin, K. Friese, J. Nuss, E. M. Peters, and M. Jansen*

Stuttgart, Max-Planck-Institut für Festkörperforschung

Received June 18th, 2002.

Dedicated to Professor Dieter Fenske on the Occasion of his 60th Birthday

Abstract. Rb₃AgO₂ was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Ag₂O, RbN₃ and RbNO₃) were heated in a special regime up to 450 °C and annealed at this temperature for 50 h in silver crucibles. Single crystals have been grown by subsequent annealing of the as prepared powder at 450 °C for 500 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structure ($P2_12_12_1$, Z = 16, a = 12.800(1), b = 12.848(1), c =14.329(1) Å, 6566 independent reflections, R(all) = 0.0795, $R_{\rm w}({\rm all}) = 0.0218$), Rb₃AgO₂ is isostructural with K₃AgO₂. The structure can be derived from the fluorite structure type. Silver is linearly coordinated by oxygen atoms, while Rb has pseudo-tetrahedral coordination. The crystal under investigation was composed of four twin individuals.

Keywords: Silver; Rubidium silver oxide; Crystal structure; Twinning; Azide/nitrate route.

Synthese und Kristallstruktur von Rb₃AgO₂

Inhaltsübersicht. Rb₃AgO₂ wurde über die Azid/Nitrat-Route dargestellt. Stöchiometrische Gemenge der Edukte (Ag₂O, RbN₃ und RbNO₃) wurden unter besonderer Temperaturführung bis 450 °C aufgeheizt und bei dieser Temperatur 50 Stunden in Silbertiegeln getempert. Durch nachträgliches Tempern des erhaltenen Pulvers (450 °C, 500 h) in Silbertiegeln, die unter getrocknetem Ar in Glasampullen eingeschmolzen waren, wurden Einkristalle erhalten. Nach der Röntgenstrukturanalyse ($P2_12_12_1$, Z = 16, a = 12,800(1),

Introduction

Alkali metal oxoargenates(I) are known to form families of the compositions AAg_3O_2 (A = Li [1], Na [2]), AAgO (A = Li[3], Na[4], K [4, 5], Rb[4, 6, 7], Cs[4, 5, 7]), and A_3AgO_2 (A = Na [3], K [8, 9]). Within each family the constitution of the oxoargentate anion is uniformly determined by the Ag/O ratio, and the degree to which the basic linear unit AgO₂ is condensed varies from isolated (A₃AgO₂) through oligomeric [Ag₄O₄] (AAgO) to infinite-crosslinked $\frac{1}{\infty}$ [AgO_{2/3}] (AAg₃O₂). Na₃AgO₂ and K₃AgO₂ show particularly close relationships to the structures of the respective parent alkali metal oxides. However, the cation ordering is significantly different. Here we report on the synthesis and structure determination of the new homologue Rb₃AgO₂.

Results and Discussion

 Rb_3AgO_2 can be readily prepared by the azide/nitrate route [10] as a micro-crystalline powder. The colourless products

* Prof. Dr. M. Jansen

Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1 D-70569 Stuttgart Fax: +49-711-689 15 02 e-mail: m.jansen@fkf.mpg.de b = 12,848(1), c = 14,329(1) Å, 6566 unabhängige Reflexe, $R(\text{alle}) = 0.0795, R_w(\text{alle}) = 0.0227)$ ist Rb₃AgO₂ isotyp zu K₃AgO₂. Die Struktur kann vom Fluorit-Typ abgeleitet werden. Silber ist linear von Sauerstoffatomen koordiniert, während das Rubidium eine pseudotetraedrische Umgebung aufweist. Der untersuchte Kristall war systematisch verzwillingt und wurde über vier Zwillingsindividuen beschrieben.

are extremely sensitive to air and moisture, and turn black, immediately, when exposed to humid air. The DTA/TG analysis has shown that Rb_3AgO_2 starts melting at ~620 °C.

The crystal structure of the novel rubidium argenate, which crystallises orthorhombic $(P2_12_12_1)$, was determined from a crystal which showed systematic twinning as is already suggested by the observed pseudotetragonal metrics. Four individuals have to be taken into account (see Table 1). The second individual results from the first through a rotation by 90° around the crystallographic *c*-axis; the third one is connected via a centre of symmetry, and the fourth is the resulting rotoinversion by 90°. Of the four individuals only the first three have significant volume fractions. Although the sum of individual I and III already account for 90 % of the complete volume of the crystal the introduction of individuals II and IV in the refinement process led to a considerable improvement of the agreement factors (about 3 %) and thus confirmed the correctness of the description.

For further details of the measurement, structure determination and additional crystallographic data see Tables 1-3. Interatomic distances, coordination numbers (CN), effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR) [11] for Rb₃AgO₂ are given in Table 4. The difference between the Madelung part of lattice energy

Tal	ble	1		X-ray	and	crystal	lograph	nic da	ata f	or I	Rb₃Æ	4gC) ₂ (293	K))
-----	-----	---	--	-------	-----	---------	---------	--------	-------	------	------	-----	------------------	-----	----	---

Crystal data	
Crystal system	Orthorhombic
Space group, Z	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (no 19), 16
Lattice constants (from powder), Å	a = 12.800(1)
	b = 12.848(1)
	c = 14.329(1)
Molar volume, cm ³ /mol	88.86
Calculated density, g/cm3	4.47
Crystal shape, color	irregular, colourless
Crystal size, mm	0.2 x 0.1 x 0.1
Data collection	
Diffractometer	STOE IPDS II
Monochromator	Graphite
Wavelength, Å	MoK _α , 0.71073
2Θ range for data collection	$2.0 < 2\Theta < 59.1$
h.k.l-range	-17 < h < 17, -17 < k < 17, -19
-	< <i>l</i> < 19
Absorption correction	Gauss [14]
T_{\min}, T_{\max}	0.2497, 0.6504
Total no. reflection	24749
Unique reflections	6566
Absorption coefficient. μ (mm ⁻¹)	27.9
F(000)	2784.0
Structure refinement	
Structure solution	SHELXS97 [15]
Structure refinement	Jana2000 [16]
Parameters refined	221
$R(\text{obs}) (> 3\sigma)$	0.0398
$R_{\rm w}({\rm obs})$	0.0218
R(all)	0.0795
$R_{\rm w}({\rm all})$	0.0227
Twin matrix II	010 / 100 / 001
Twin matrix III	100 / 010 / 001
Twin matrix IV	010 / 100 / 001
Twin volume I	0.39(2)
Twin volume II	0.10(1)
Twin volume III	0.48(1)
Twin volume IV	0.02(1)
Extinction coefficient	0.0393(6)

 Table 2
 Atomic coordinates and isotropic displacement parameters for Rb₃AgO₂

atom	x	у	Ζ	$U_{\rm iso}$
Agl	0.9997(2)	0.9977(2)	0.17544(7)	0.0192(3)
Ag2	0.2342(1)	0.2557(1)	0.9195(1)	0.0198(4)
Ag3	0.9993(2)	0.9906(2)	0.85054(8)	0.0205(3)
Ag4	0.2288(1)	0.2341(1)	0.5929(1)	0.0189(4)
Rb1	0.2021(2)	0.3038(2)	0.1452(2)	0.0333(7)
Rb2	0.9895(2)	0.0045(2)	0.4249(1)	0.0325(5)
Rb3	0.1959(2)	0.1971(2)	0.3607(2)	0.0321(7)
Rb4	0.0685(2)	0.9168(2)	0.6281(1)	0.0386(6)
Rb5	0.0057(2)	0.2127(1)	0.7272(1)	0.0498(7)
Rb6	0.9805(2)	0.2846(2)	0.4944(1)	0.0287(6)
Rb7	0.9874(2)	0.1997(2)	0.0075(1)	0.0235(6)
Rb8	0.9474(1)	0.2497(2)	0.2443(1)	0.0219(4)
Rb9	0.2055(2)	0.0100(2)	0.0088(1)	0.0230(6)
Rb10	0.7826(2)	0.9790(2)	0.0092(1)	0.0239(6)
Rb11	0.2471(2)	0.9554(2)	0.2612(1)	0.0237(6)
Rb12	0.7346(2)	0.0440(2)	0.2441(1)	0.0251(6)
01	0.610(1)	0.390(1)	0.823(1)	0.028(5)
O2	0.390(1)	0.616(1)	0.822(1)	0.036(6)
O3	0.349(1)	0.146(1)	0.917(1)	0.028(4)
O4	0.124(1)	0.366(1)	0.939(1)	0.031(5)
O5	0.387(1)	0.401(1)	0.143(1)	0.023(4)
O6	0.115(1)	0.884(1)	0.839(1)	0.029(5)
O7	0.339(1)	0.347(1)	0.607(1)	0.023(4)
O8	0.123(1)	0.120(1)	0.569(1)	0.032(5)

(MAPLE) [12] of Rb_3AgO_2 and that calculated for the sum of the binary oxides (see Table 5) is satisfactorily low (0.98 %).

Table 3 Anisotropic thermal displacement parameters (in ${\rm \AA}^2)$ for Rb_3AgO_2

atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ag1	0.0196(5)	0.0173(5)	0.0206(4)	-0.0003(5)	-0.0003(9)	-0.0004(7)
Ag2	0.0176(7)	0.0197(7)	0.0222(6)	0.0010(6)	0.0015(6)	0.0012(6)
Ag3	0.0187(5)	0.0211(7)	0.0217(5)	0.0006(5)	-0.0011(8)	-0.0002(7)
Ag4	0.0199(8)	0.0162(7)	0.0207(6)	0.0007(6)	0.0008(6)	0.0002(6)
Rb1	0.039(1)	0.035(1)	0.027(1)	-0.018(1)	0.006(1)	-0.0043(9)
Rb2	0.028(1)	0.0286(8)	0.0406(7)	0.0060(8)	0.001(1)	0.004(1)
Rb3	0.031(1)	0.033(1)	0.032(1)	0.013(1)	-0.002(1)	-0.001(1)
Rb4	0.038(1)	0.045(1)	0.0320(9)	-0.0170(9)	-0.0076(9)	0.0006(8)
Rb5	0.055(1)	0.040(1)	0.054(1)	0.021(1)	0.029(1)	0.0219(9)
Rb6	0.025(1)	0.031(1)	0.031(1)	0.0025(9)	-0.004(1)	-0.008(1)
Rb7	0.026(1)	0.0209(8)	0.0242(9)	-0.0007(9)	0.0002(9)	-0.0003(8)
Rb8	0.0215(6)	0.0223(8)	0.0218(7)	0.001(1)	-0.0002(9)	-0.0002(6)
Rb9	0.024(1)	0.023(1)	0.0228(9)	0.0001(8)	0.0018(8)	0.0017(9)
Rb10	0.025(1)	0.0211(8)	0.026(1)	-0.0003(8)	0.0005(9)	-0.0002(8)
Rb11	0.024(1)	0.024(1)	0.0226(8)	-0.0030(8)	0.0007(8)	0.0006(8)
Rb12	0.0232(9)	0.027(1)	0.025(1)	0.0001(8)	0.0029(8)	0.0024(8)
O1	0.041(8)	0.013(8)	0.031(8)	-0.006(6)	-0.002(7)	-0.004(7)
O2	0.012(10)	0.044(9)	0.050(10)	0.020(7)	-0.008(8)	0.005(7)
O3	0.045(9)	0.022(7)	0.017(7)	-0.002(6)	0.005(6)	-0.003(6)
O4	0.025(10)	0.020(7)	0.048(9)	0.010(7)	-0.005(8)	0.003(7)
O5	0.016(7)	0.029(7)	0.024(6)	-0.006(5)	0.001(6)	-0.003(6)
O6	0.017(7)	0.029(8)	0.040(8)	0.013(6)	0.011(6)	-0.008(7)
O7	0.031(8)	0.019(6)	0.019(6)	0.004(6)	-0.001(6)	0.001(5)
O8	0.037(8)	0.009(7)	0.048(9)	-0.016(6)	0.005(7)	-0.006(7)

The most characteristic feature of the structure is the linear AgO_2^{3-} anion, with d(Ag-O) ranging from 2.00 to 2.04 Å and O-Ag-O angles from 173.1° for Ag2 to 178.0° for Ag1. These data, related to the silver(I) anion, are basically in agreement for Rb₃AgO₂, K₃AgO₂ [8] and Na₃AgO₂ [3]. Yet the Ag-O distances in K₃AgO₂ as reported in [8] show a surprisingly wide spread from 1.91 to 2.10 Å (distances reported in the paper range from 1.95 to 2.12 A but do not correspond to the given coordinates and lattice parameters). These distances do not appear very convincing and in particular a Ag-O bond length as short as 1.91 Å is without precedence. Furthermore, the displacement parameters of some of the potassium atoms are non positive definite and the oxygen atoms were refined only isotropically. One might imagine that the crystals of K_3AgO_2 were also twinned, but that the twinning was not taken into account during the structure refinement. In this context it is interesting that a refinement of Rb₃AgO₂ without taking into consideration the systematic twinning leads to a model in which the Ag-O bond lengths also show a stronger variation (from 1.98 to 2.09 A).

All AgO₂ dumb-bells in Rb₃AgO₂ are oriented parallel (001), one half directing along [$\overline{1}10$] and one half along the [110] direction (Fig. 1). This is different to Na₃AgO₂, where the AgO₂ dumb-bells are arranged along the [001] axis and point alternatively along the [120] and [$1\overline{2}0$] direction.

The Rb atoms are coordinated pseudotetrahedrally by oxygen. An exception is Rb5 which has only three nearest neighbours, for this atom the fourth neighbour is shifted and is located at a considerably large distance of 3.92(2) Å. Some of the Rb-O distances are rather small with values below 2.7 Å. These, however, are comparable to other short Rb-O distances as observed in literature e.g. in Rb₂PbO₂ [17] or Rb₂TeO₃ [18]. The cation cation distances are in the range of 3.3-3.8 Å, which is quite common to that of other

atom	O1	O2	O3	O4	O5	O6	O 7	O8	C.N.	ECoN	MEFIR
Agl	2.02(2)	2.03(2)							2	2.0	0.62
Ag2			2.04(2)	2.01(2)					2	2.0	0.63
Ag3					2.00(1)	2.03(2)			2	2.0	0.61
Ag4							2.04(2)	2.03(2)	2	2.0	0.63
Rb1	2.79(2)	2.98(2)		3.22(2)	2.68(1)				4	3.4	1.34
Rb2			2.83(2)	3.02(2)			2.75(2)	3.07(2)	4	3.8	1.42
Rb3	3.06(2)	2.69(2)				2.65(2)		3.28(2)	4	3.0	1.30
Rb4			3.31(1)	2.73(2)		3.10(2)		2.83(2)	4	3.2	1.39
Rb5					2.81(1)	2.85(2)		2.97(2)	3	3.0	1.44
Rb6		3.23(2)				2.97(2)	2.87(1)	2.99(2)	4	3.7	1.52
Rb7	3.12(2)		2.87(2)	2.93(2)	2.83(1)	()		()	4	3.8	1.47
Rb8	2.91(2)	2.92(2)	2.95(2)				2.83(1)		4	4.0	1.46
Rb9	3.00(2)		2.86(2)			3.15(2)		2.89(2)	4	3.8	1.51
Rb10		3.04(2)		2.94(2)	2.99(1)		2.85(1)		4	3.9	1.50
Rb11	2.91(2)		2.86(2)			2.94(2)		3.36(2)	4	3.5	1.50
Rb12		3.02(2)		3.19(2)	2.90(1)	()	2.89(1)	()	4	3.8	1.53
C.N.	7	7	7	7	6	7	6	8			
ECoN	6.5	6.6	6.3	6.2	5.9	6.5	6.0	6.8			
MEFIR	1.46	1.47	1.43	1.46	1.41	1.45	1.40	1.47			

Table 4 Interatomic distances (in Å). coordination numbers (CN). effective coordination numbers (EcoN) and mean fictive ionic radii (MEFIR) [11] for Rb₃AgO₂

Table 5 Madelung part of lattice energy (MAPLE) for Rb₃AgO₂ (in kcal/mol)

atom	binary	ternary	$\Sigma\Delta^{a)}$
Agl	132.5 ^{b)}	137.6	+5.0
Ag2	132.5	135.9	+3.2
Ag3	132.5	132.0	-0.7
Ag4	132.5	132.5	-0.1
Rb1	100.2 ^{c)}	118.0	+17.8
Rb2	100.2	120.1	+19.8
Rb3	100.2	113.8	+13.6
Rb4	100.2	106.4	+6.2
Rb5	100.2	91.3	-8.9
Rb6	100.2	89.2	-11.1
Rb7	100.2	95.7	-4.5
Rb8	100.2	98.9	-1.3
Rb9	100.2	88.1	-12.1
Rb10	100.2	100.8	+0.6
Rb11	100.2	86.1	-14.1
Rb12	100.2	96.9	-3.2
O1	453.8 ^{b)}	384.8	-69.0
O2	453.8	378.9	-74.9
O3	372.5 ^{c)}	385.7	+13.1
O4	372.5	373.9	+1.3
O5	372.5	389.3	+16.7
O6	372.5	396.7	+24.2
O 7	372.5	387.2	+14.6
O8	372.5	387.4	+14.9
Σ	4875.0	4827.3	$\Delta = -47.7 \ (-0.98 \ \%)$

^{a)} ternary-binary: MAPLE(Rb₃AgO₂) - 1.5 MAPLE(Rb₂O) - 0.5 MAPLE- (Ag_2O)

complex alkali transition metal oxides like Na2RbAuO2 [19] or Cs₃AuO₂ [20].

The Rb₃AgO₂ structure can be derived from that of Rb₂O (anti CaF₂ type) by substituting silver for one fourth of the rubidium atoms which are located at the tetrahedral sites of the fcc packing of oxygen atoms: $Rb_3AgO_2 \triangleq$ Rb_4O_2 .

Viewing along [001] one can distinguish two different types of chains of edge sharing tetrahedra. One type is occupied exclusively by rubidium (Rb5-Rb12, Fig. 1 top), the second one contains rubidium and silver in equal amounts (Rb1-Rb4 and Ag1-Ag4, Fig. 1 bottom). The ordering sequence along [001] in the mixed rows is -Ag-Ag-Rb-Rb-(Fig. 2; right).

Because of the strong preference for a linear twofold coordination silver is shifted from the centre to the edge of the tetrahedra. The rubidium atoms are necessarily influenced by these shifts and move in directions of neighbouring octahedral sites. As a consequence, the tetrahedral sites of the fluorite parent structure are now empty (Fig. 2, right) in the partial structure discussed.

A similar mode of substitution can also be applied to derive the structures of K₃CuO₂ and Na₃AgO₂ from the respective alkali metal oxides.

Experimental

Starting materials for the preparation of Rb₃AgO₂ were rubidium nitrate (Johnson Matthey, 99 %), rubidium azide and silver oxide Ag₂O (Johnson Matthey, 99 %). Rubidium azide was synthesised [13] from aqueous HN₃ and rubidium carbonate (Johnson Matthey, 99 %). The starting materials (RbN₃, RbNO₃ and Ag₂O) were mixed in the required ratio according to the equation

 $5 \text{ RbN}_3 + \text{RbNO}_3 + \text{Ag}_2\text{O} = 2 \text{ Rb}_3\text{AgO}_2 + 8 \text{ N}_2$

ground in a planet ball mill, pressed in pellets under 105 N, dried under vacuum (10⁻³ mbar) at 150 °C for 12 h, and placed under argon in a tightly closed steel container provided with a silver inlay. In a flow of dry argon the following temperature treatment was applied: 25→260 °C (100 K/h); 260→380 °C (5 K/h); 380→450 °C (50 K/h) followed by subsequent annealing for 50 h at 450 °C.

b) from Ag₂O c) from Rb₂O

Fig. 1 Crystal structure of Rb_3AgO_2 , emphasising the chains of edge sharing tetrahedra fully occupied by rubidium (top), and with rubidium and silver (bottom); see text.

The obtained colourless powder was sealed in glass ampoules under argon atmosphere and all following manipulations were performed in inert atmospheres of purified argon. Single crystals have been grown by subsequent annealing of the as prepared powder at 450 °C for 500 h in silver crucibles, which were sealed in glass ampoules under dried Ar. The X-ray investigation on a powder sample was performed on a STOE Stadi P diffractometer with Cu-K α_1 radiation (λ =1.54178 Å) at room temperature using a position sensitive detector and a curved germanium monochromator. The powder diffraction experiment confirms he pureness of the sample (Table 6). Details on single crystal diffraction experiments are given in Table 1.

Thermal analyses were carried out using a DTA/TG device (STA 409, Netzsch) coupled with a quadrupole mass spectrometer (QMG 421, Balzers). The sample (m = 46.2 mg) was heated at a rate of 10 K/min in a corundum crucible under dry argon.

Fig. 2 Sections of the crystal structure of Rb₃AgO₂, showing edge sharing edge sharing tetrahedra, all centred by rubidium (**left**), with silver and rubidium shifted off-centre (**right**).

Table 6	Powd	er diffra	ction d	ata of Rb ₃ Ag	$gO_2(d$	> 2.2	25 A).	Results
of a pro	ofile fit	using t	he loca	1 parameters	from	the	single	crystal
investig	ation.							

h	k	l	d/Å	I/I ₀ (%)	h	k	l	d/Å	I/I ₀ (%)
1	1	1	7.6626	2.2	1	4	1	3.0443	9.8
0	1	2	6.2571	0.1	1	2	4	3.0391	2.2
1	0	2	6.2518	0.1	2	1	4	3.0372	8.7
0	2	1	5.8619	0.1	4	1	1	3.0347	1.3
2	0	1	5.8434	0.3	3	3	1	2.9575	16.6
1	2	0	5.7413	0.2	0	4	2	2.9309	0.1
2	1	0	5.7288	0.7	1	4	2	2.8570	0.5
1	2	1	5.3294	0.9	2	3	3	2.8540	0.2
2	1	1	5.3192	0.4	3	2	3	2.8513	3.4
0	2	2	4.7829	1.5	4	1	2	2.8490	0.8
2	0	2	4.7729	1.3	2	4	1	2.8148	1.6
2	2	0	4.5338	1.0	2	2	4	2.8107	100.0
1	1	3	4.2257	5.4	4	2	1	2.8087	0.5
3	0	1	4.0892	0.1	1	0	5	2.7965	1.0
3	1	1	3.8966	0.3	0	3	4	2.7476	1.0
0	2	3	3.8328	0.3	1	1	5	2.7325	22.0
2	0	3	3.8278	0.4	3	1	4	2.6829	0.3
1	2	3	3.6718	0.7	2	4	2	2.6648	5.2
2	1	3	3.6685	0.4	4	2	2	2.6596	4.0
3	0	2	3.6658	0.7	4	0	3	2.6585	0.3
2	3	0	3.5592	0.1	1	4	3	2.6093	0.4
1	3	2	3.5331	1.1	3	4	0	2.5661	0.4
2	3	1	3.4543	0.5	1	2	5	2.5640	2.1
0	1	4	3.4505	0.1	4	3	0	2.5634	1.4
3	2	1	3.4496	1.8	2	1	5	2.5629	1.2
1	1	4	3.3316	0.1	3	3	3	2.5541	24.2
2	2	3	3.2882	0.6	3	4	1	2.5259	1.0
0	4	0	3.2120	24.7	2	3	4	2.5248	6.1
4	0	0	3.2000	30.9	3	2	4	2.5230	1.3
0	3	3	3.1885	0.7	1	5	1	2.4813	10.4
2	3	2	3.1875	5.8	5	1	1	2.4730	7.9
3	2	2	3.1839	1.0	0	5	2	2.4187	1.2
3	0	3	3.1820	0.1	4	3	2	2.4136	0.5
0	4	1	3.1342	1.2	0	4	4	2.3914	1.6
0	2	4	3.1286	0.2	4	0	4	2.3865	2.3
2	0	4	3.1258	0.1	3	0	5	2.3789	3.6
4	0	1	3.1230	0.1	0	1	6	2.3479	0.8
1	4	0	3.1154	2.3	1	0	6	2.3476	0.7
4	1	0	3.1051	12.8	4	1	4	2.3463	1.0
1	3	3	3.0940	28.7	4	4	0	2.2670	24.5
3	1	3	3.0886	18.1	5	0	3	2.2563	3.8

References

- [1] M. Jansen, Z. Naturforsch., 1975, 30b, 854.
- [2] M. Jansen, Z. Naturforsch., 1976, 31b, 1544.
- [3] H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem. 1982, 485, 92.
- [4] H. Klassen, R. Hoppe, Z. Anorg. Allg. Chem. 1982, 485, 101.
- [5] H. Sabrowsky, R. Hoppe, Z. Anorg. Allg. Chem. 1968, 358, 241.
- [6] H. Sabrowsky, Z. Anorg. Allg. Chem. 1969, 365, 146.
- [7] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem. 1985, 524, 7.
- [8] B. Darriet, M. Devalette, B. Lecart, Rev. Chem. Miner. 1977, 14, 423.
- [9] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem. 1985, 521, 69.
- [10] D. Trinschek, M. Jansen, Angew. Chem. 1999, 111, 234; Angew. Chem. Int. Ed. 1999, 38, 133.

- [11] R. Hoppe, Z. Kristallogr. 1979, 150, 23.
- [12] R. Hoppe, Z. Naturforsch., 1995, 50a, 555.
- [13] A. Petrikaln, Z. Phys. 1926, 37, 610.
- [14] A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystallogr. 1968, A24, 351.
- [15] G. Sheldrick, University of Göttingen, Göttingen, 1997.
- [16] V. Petricek, M. Dusek, Institute of Physics, Academy of the Czech Republic, Praha, 2000.
- [17] K. P. Martens, R. Hoppe, Z. Anorg. Allg. Chem., 1978, 440, 81.
- [18] H. J. Thümmel, R. Hoppe, Z. Naturforsch. 1974, 29b, 28.
- [19] A.-V. Mudring, M. Jansen, Z. Anorg. Allg. Chem. 2001, 627, 135.
- [20] A.-V. Mudring, M. Jansen, Z. Anorg. Allg. Chem. 2001, 627, 77.