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Abstract—Optimization of the piperidino-piperazines 1 and 2 provided early leads 3 and 4, which showed good activity in the
CCR5–RANTES binding assay and in antiviral assays. A systematic study around these structures showed that the 2(S)-methyl
piperazine is essential for CCR5 affinity, which is further enhanced by forming the 2,6-dimethyl benzamide of the piperidine.# 2001
Elsevier Science Ltd. All rights reserved.

The worldwide AIDS pandemic caused by the type 1
human immunodeficiency virus (HIV-1), with over 30
million infected individuals, continues to be a fatal
medical condition.1 Intensive efforts to combat this ret-
rovirus have led to the adoption of combination ther-
apy, using inhibitors of the viral protease and reverse
transcriptase enzymes. Although effective in the short
term, this approach suffers from patient compliance
issues and incomplete suppression of the virus in the
long term. This has led to the emergence of HIV strains
resistant to the current regimen of drugs.2 Hence, there
is a need for new agents which act at different points in
the viral life cycle.

It has been shown recently that binding to specific, cell-
surface co-receptors is an essential process, when HIV-1
gains entry to the CD4+ cells of the immune system.3

HIV-1 utilizes the chemokine receptor CCR5 on mac-
rophages and T-cells, which are its primary targets.
CCR5 is a G-protein coupled, 7-trans-membrane recep-
tor whose endogenous ligands are the chemokines
RANTES, MIP-1a and MIP-1b, which have been
reported to suppress HIV-1 cell entry.4

Although CCR5 activation is involved in normal cell
trafficking, the lack of functional CCR5 does not

compromise the immune system in individuals who are
homozygous for a defective genetic sequence for recep-
tor coding. Further, such individuals are significantly
resistant to HIV-1 infection.5 These observations sug-
gest that appropriate, small-molecule antagonists of the
virus–CCR5 interaction should be novel anti-HIV-1
agents.6 During the course of our studies, such a mole-
cule, TAK-779, was described and shown to be an
effective inhibitor of HIV-1 infection of T-cells.7 Groups
from Merck have also disclosed their work in this area.8

In this paper, we describe the identification and ela-
boration of piperidino-piperazine lead compounds to
obtain effective inhibitors of HIV-1 cell entry.

Three assays were used to evaluate compounds. The
primary assay, also used in initial high-throughput
library screening, measured the ability of compounds to
inhibit 125I-labeled RANTES binding to the CCR5
receptor on membranes.9 Selected compounds were then
evaluated in a viral entry assay,10 in which a pseudo-
type virus bearing a reporter gene for luciferase was
used to infect cells expressing CD4 and CCR5. Finally,
antiviral activity was measured as the ability of com-
pounds to inhibit the growth of primary HIV-1 isolates
in human peripheral blood mononuclear cells.11

From our compound library, several structural types
inhibited the RANTES–CCR5 interaction. Further
evaluation for inhibition of viral entry at sub-cytotoxic
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levels revealed a series of compounds as exemplified by
1 and 2 (Fig. 1), originally prepared for our muscarinic
receptor antagonist program.12

Accordingly, we synthesized a series of compounds in
which the methylation pattern and stereochemistry, the
diaryl linking unit, and the amide substitution pattern
were varied. The diaryl sulfones were prepared as out-
lined in Scheme 1. In this route, the benzylic chirality
derives from the enantioselective reduction of a pro-
chiral ketone.13 The success of the subsequent SN2 dis-
placement reaction depends upon the presence of an
electron-withdrawing para substituent, to suppress SN1
chemistry at the benzylic center.

Alternatively, p-bromo a-methylbenzylamine was lithi-
ated and treated with piperonal to obtain the diaryl
methane 9 after deoxygenation of the initial carbinol.
Reaction of 9 with (R)-methyl lactate led to the diketo-
piperazine 10 (Scheme 2). Reduction of the carbonyl
groups in 10 and reductive amination with N-tert-
butoxycarbonyl-4-piperidinone gave 12. Coupling of the
free piperidine from 12 with 2,6-dimethyl benzoic acid
gave the target 4. The mono- and bis-desmethyl
compounds were similarly prepared.14

Results for the inhibition of RANTES binding (Ki) and
viral entry (IC50), as well as the M2 receptor affinity
(Ki),

12 for selected compounds are shown in Table 1.

Comparison of compounds 1 and 3 clearly shows that
the chirality of the piperazine 2-substituent determines
the selectivity: for effective CCR5 binding, 2(S) stereo-
chemistry is needed.9 In contrast, the 2(R) compounds
such as 1 are M2 antagonists. Further, any reduction in
the level of methylation reduces the CCR5 affinity
(compare compound 3 with 13c–e and compound 4 with
13a–b). The amide substitution pattern also affects
potency: a 2,6-disubstituted aryl ring is very important
(compare compound 2 with 4). The choice of the groups
R3 and R4 is critical: although methyl may be replaced
by isosteric polar groups such as NH2 or Cl (com-
pounds 13f–h), a smaller group (F) diminishes binding
(compound 13i). Finally, compound 14 shows that the
3,4-methylenedioxyphenyl ring can be replaced by 3-
chlorophenyl ring, with only a modest potency loss in
CCR5 binding, but a more significant reduction in the
M2 affinity.

Figure 1.

Scheme 1. SN2 displacement route to CCR5 antagonists.

Scheme 2. The diketopiperazine route to CCR5 antagonists.
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For the more potent compounds in this series (3, 4, 13f),
inhibition of the binding at CCR5 correlated well with
inhibition of viral entry. It is important to note that
IC50 values obtained from the entry assay were gen-
erally less than the Ki values determined from the
RANTES binding assay. This probably reflects the dif-
ferences in both the ligand (RANTES vs virus) and the
target (cell membrane vs live cells) used in these
assays.15 Further, compound 4 inhibited the replication
of a primary HIV-1 isolate (US-1) in PBMCs with a
mean IC50 of 8 nM.

11 Compound 4 was also shown to
be an antagonist at the CCR5 receptor, from effects on
RANTES induced calcium flux.5a No appreciable bind-
ing was detected at other chemokine receptors (CCR1,
CCR2 and CCR3).

In summary, these results clearly demonstrate that
compounds containing the piperidino-2(S)-methyl
piperazine pharmacophore prevent the entry of HIV-1
into target cells via inhibition of the binding of the virus
to the co-receptor CCR5. The further development of
this series to give potent, orally bioavailable CCR5
antagonists that inhibit HIV replication will be reported
in the near future.
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