Transition Metal Complexes in Organic Synthesis, Part 69.¹ Total Synthesis of the *Amaryllidaceae* Alkaloids Anhydrolycorinone and Hippadine Using Ironand Palladium-Mediated Coupling Reactions

Hans-Joachim Knölker,* Salima Filali

Institut für Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany Fax +49(351)46337030; E-mail: hans-joachim.knoelker@chemie.tu-dresden.de *Received 30 June 2003*

Abstract: A novel synthesis of the *Amaryllidaceae* alkaloids anhydrolycorinone and hippadine has been developed using an iron-mediated oxidative alkylamine cyclization and an intramolecular palladium-mediated biaryl coupling as the key steps.

Key words: alkaloids, cyclizations, dehydrogenations, iron, palladium

The lycorine alkaloids **1–4** isolated from *Amaryllidaceae* plants have a pyrrolo[3,2,1-*de*]phenanthridine skeleton and show interesting biological activities (Figure 1). Hippadine (**2**) reversibly inhibits the fertility in male rats.² Anhydrolycorinium chloride (**3**) and kalbretorine (**4**) show antitumor activity.^{3,4} Anhydrolycorinone (**1**) represents a precursor for the synthesis of the biologically active natural products **2** and **3**.^{2a}

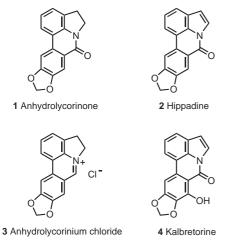
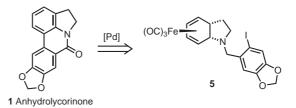
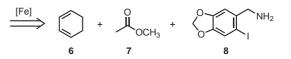
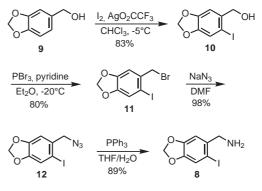
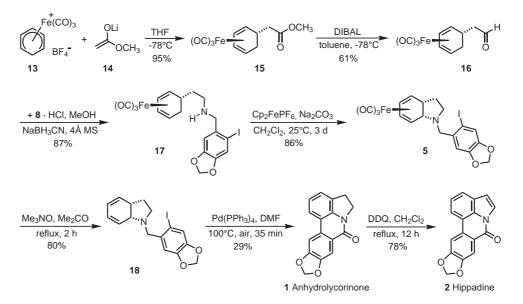




Figure 1 Pyrrolophenanthridine alkaloids


The potent biological activities found for many pyrrolophenanthridine alkaloids induced the development of diverse synthetic approaches.⁵ Herein, we report a novel synthesis based on an iron-mediated indole annulation followed by an intramolecular palladium-mediated biaryl coupling with concomitant oxidation (Scheme 1). Using various methods for the oxidative cyclization,⁶ the iron-mediated oxidative coupling of arylamines and cyclohexa-1,3-diene was applied to the total synthesis of a wide range of biologically active carbazole alkaloids.⁷ Moreover, the oxidative cyclization of tricarbonyl[η⁴-cyclohexa-1,3-diene]iron complexes with an appropriate alkylamine side chain afforded 2,3,3a,7a-tetrahydro-indoles.⁸ The implementation of this iron-mediated alkylamine cyclization is the characteristic feature of our present synthesis of pyrrolophenanthridine alkaloids.


Scheme 1 Retrosynthetic analysis of anhydrolycorinone (1)

An iron-mediated oxidative coupling of cyclohexa-1,3diene (6) with methyl acetate (7) and iodopiperonylamine 8 to the iron-complexed tetrahydroindole 5 followed by a sequence of aromatization, intramolecular palladiummediated biaryl coupling, and oxidation at the benzylic position should provide anhydrolycorinone (1).

Scheme 2 Synthesis of the iodopiperonylamine 8

Synlett 2003, No. 11, Print: 02 09 2003. Web: 25 08 2003. Art Id.1437-2096,E;2003,0,11,1752,1754,ftx,en;G15003ST.pdf. DOI: 10.1055/s-2003-41438 © Georg Thieme Verlag Stuttgart · New York

Scheme 3 Iron- and palladium-mediated total synthesis of anhydrolycorinone (1) and hippadine (2)

Iodopiperonylamine **8** is readily prepared on large scale in four steps and 58% overall yield from commercially available piperonyl alcohol **9** (Scheme 2).⁹ The silver trifluoroacetate promoted iodination of **9** afforded iodopiperonyl alcohol **10**. Consecutive treatment with phosphorus tribromide to iodopiperonyl bromide **11** and then with sodium azide led to iodopiperonyl azide **12**. Subsequent Staudinger reduction provided iodopiperonylamine **8**.

Using three transition metal-mediated bond formations, we elaborated a concise synthesis of the Amaryllidaceae alkaloids anhydrolycorinone (1) and hippadine (2) (Scheme 3). Cyclohexa-1,3-diene (6) was almost quantitatively transformed to the complex salt 13 by azadienecatalyzed complexation with pentacarbonyliron¹⁰ and subsequent hydride abstraction using trityl tetrafluoroborate.¹¹ The introduction of the side chain was achieved by nucleophilic addition of the lithium ester enolate 14 [prepared by deprotonation of methyl acetate (7) with LDA] to the complex salt 13.¹² Our modified procedure (reaction at -78 °C for 2 h) afforded complex 15 in 95% yield.⁸ Using the low temperature reduction with DIBAL,¹³ ester **15** was converted into aldehyde **16**. The two building blocks were then combined to alkylaminesubstituted iron complex 17 by a reductive amination of aldehyde 16 with the hydrochloride of iodopiperonylamine 8 using sodium cyanoborohydride as the reducing agent.¹⁴ Oxidative cyclization of complex 17 with ferricenium hexafluorophosphate in the presence of sodium carbonate afforded the tetrahydroindole complex 5.^{14,15} The SET reagent has been applied previously to the iron-mediated oxidative cyclization of alkylamines8 and arylamines.¹⁶ Demetalation of complex **5** with anhydrous trimethylamine N-oxide¹⁷ led to tetrahydroindole **18**.¹⁴

We envisaged to achieve the final intramolecular biaryl coupling by a Heck-type reaction.¹⁸ Miki et al. synthesized pyrrolophenanthridines by a Heck coupling in a related system with an aromatized indole.^{5b} After variation of several reaction parameters, we found a biaryl coupling procedure that proceeded with concomitant aromatization of the cyclohexadiene ring and oxidation at the benzylic position to the lactam. Treatment of compound 18 with a stoichiometric amount of tetrakis[triphenylphosphine]palladium in DMF at 100 °C under air for 35 min gave anhydrolycorinone (1) (mp 226-228 °C). The oxidation of anhydrolycorinone (1) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) provided hippadine (2) (mp 207-208 °C).² The spectral data of both alkaloids were in good agreement with those reported for the natural products.^{2,14}

In conclusion, we developed a novel approach to the pyrrolophenanthridine alkaloids anhydrolycorinone (1) and hippadine (2). Iron-mediated C–C and C–N bond formations are applied to construct the indole nucleus. Thus, this route features the first application of the iron-mediated alkylamine cyclization in natural product synthesis. The palladium-mediated intramolecular Heck coupling with concomitant aromatization and oxidation to the lactam provides directly anhydrolycorinone (1). The synthesis affords the biologically active *Amaryllidaceae* alkaloid hippadine (2) in seven steps and 8% overall yield based on the complex salt 13. Further applications of this methodology in natural product synthesis are in progress.

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank the BASF AG, Ludwigshafen, for a gift of pentacarbonyliron.

References

- (1) Part 68: Knölker, H.-J.; Wolpert, M. *Tetrahedron* **2003**, *59*, 5317.
- (2) (a) Ghosal, S.; Rao, H. P.; Jaiswal, D. K.; Kumar, Y.; Frahm, W. A. *Phytochemistry* **1981**, *20*, 2003. (b) Chattopadhyay, S.; Chattopadhyay, U.; Marthur, P. P.; Saini, K. S.; Ghosal, S. *Planta Med.* **1983**, *49*, 252.
- (3) Pettit, G. R.; Gaddamidi, V.; Goswami, A.; Cragg, G. M. J. Nat. Prod. 1984, 47, 796.
- (4) Ghosal, S.; Lochan, R.; Ashutosh, R.; Kumar, Y.; Srivastava, R. S. *Phytochemistry* **1985**, 24, 1825.
- (5) For some recent syntheses, see: (a) Harrowven, D. C.; Lai, D.; Lucas, M. C. Synthesis 1999, 1300. (b) Miki, Y.; Shirokoshi, H.; Matsushita, K. Tetrahedron Lett. 1999, 40, 4347. (c) Padwa, A.; Brodney, M. A.; Liu, B.; Satake, K.; Wu, T. J. Org. Chem. 1999, 64, 3595. (d) Stark, L. M.; Lin, X.-F.; Flippin, L. A. J. Org. Chem. 2000, 65, 3227. (e) Boger, D. L.; Wolkenberg, S. E. J. Org. Chem. 2000, 65, 9120. (f) Wolkenberg, S. E.; Boger, D. L. J. Org. Chem. 2002, 67, 7361; and references cited therein.
- (6) (a) Knölker, H.-J. Synlett 1992, 371. (b) Knölker, H.-J. In Transition Metals for Organic Synthesis, Vol. 1; Beller, M.; Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998, 534.
 (c) Knölker, H.-J. Chem. Soc. Rev. 1999, 28, 151.
- (7) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
- (8) Knölker, H.-J.; El-Ahl, A.-A.; Weingärtner, G. Synlett **1994**, 194.
- (9) (a) Cossy, J.; Tresnard, L.; Pardo, D. G. *Tetrahedron Lett.* 1999, 40, 1125. (b) Cossy, J.; Tresnard, L.; Pardo, D. G. *Eur. J. Org. Chem.* 1999, 1925.
- (10) (a) Knölker, H.-J.; Baum, E.; Gonser, P.; Rohde, G.; Röttele,
 H. Organometallics 1998, 17, 3916. (b) Knölker, H.-J.
 Chem. Rev. 2000, 100, 2941.
- (11) Fischer, E. O.; Fischer, R. D. Angew. Chem. 1960, 72, 919.
- (12) Pearson, A. J.; Kole, S. L.; Yoon, J. Organometallics 1986, 5, 2075.
- (13) Winterfeldt, E. Synthesis **1975**, 617.
- (14) All new compounds have been fully characterized (IR, ¹H NMR, ¹³C NMR, MS, and elemental analysis or HRMS). ¹³C NMR and DEPT spectral data (125 MHz, CDCl₃) of representative compounds. **17**: δ = 30.75 (CH₂), 35.90 (CH), 40.27 (CH₂), 47.66 (CH₂), 57.97 (CH₂), 59.76 (CH), 66.57 (CH), 84.39 (CH), 85.53 (CH), 86.99 (C), 101.53 (CH₂),

109.71 (CH), 118.46 (CH), 135.61 (C), 147.35 (C), 148.34 (C), 212.06 (3 CO). **5**: δ = 34.64 (CH₂), 43.22 (CH), 54.31 (CH₂), 60.16 (CH), 60.85 (CH₂), 63.78 (CH), 66.32 (CH), 85.85 (CH), 86.70 (CH), 87.25 (C), 101.53 (CH₂), 110.19 (CH), 118.45 (CH), 135.01 (C), 147.36 (C), 148.44 (C), 211.75 (3 CO). 18: δ = 32.95 (CH₂), 36.46 (CH), 49.25 (CH₂), 59.56 (CH), 62.43 (CH₂), 87.26 (C), 101.50 (CH₂), 110.51 (CH), 118.25 (CH), 119.80 (CH), 122.92 (CH), 124.79 (CH), 130.31 (CH), 135.29 (C), 147.33 (C), 148.43 (C). Anhydrolycorinone (1): $\delta = 27.45$ (CH₂), 46.52 (CH₂), 100.89 (CH), 102.05 (CH₂), 106.83 (CH), 116.79 (C), 119.46 (CH), 123.10 (C), 123.27 (CH), 123.82 (CH), 130.66 (C), 130.87 (C), 139.39 (C), 148.43 (C), 151.85 (C), 159.52 (C=O). Hippadine (**2**): δ = 101.75 (CH), 102.29 (CH₂), 108.05 (CH), 110.82 (CH), 116.71 (C), 118.38 (CH), 122.51 (C), 122.63 (CH), 123.55 (CH), 124.00 (CH), 128.42 (C), 130.97 (C), 131.66 (C), 148.54 (C), 152.60 (C), 158.19 (C=O).

- (15) Iron-mediated oxidative alkylamine cyclization of **17** to **5**: Ferricenium hexafluorophosphate (291 mg, 0.88 mmol) and anhyd. Na₂CO₃ (374 mg, 3.53 mmol) were added to a solution of complex **17** (185 mg, 0.354 mmol) in degassed anhyd CH₂Cl₂ (15 mL) under an argon atmosphere. The resulting dark green suspension was stirred at r.t. for 3 d. During this time the color turned to orange (formation of ferrocene). The reaction mixture was filtered through a short path of Celite which was subsequently washed with CH₂Cl₂. Removal of the solvent from the combined filtrates and flash chromatography (hexane–EtOAc, 9:1) of the residue on silica gel provided complex **5** as light yellow crystals, yield: 158 mg (86%), mp 122 °C.
- (16) (a) Knölker, H.-J.; Bauermeister, M.; Pannek, J.-B.; Bläser, D.; Boese, R. *Tetrahedron* **1993**, *49*, 841. (b) Knölker, H.-J.; Baum, E.; Hopfmann, T. *Tetrahedron* **1999**, *55*, 10931. (c) Knölker, H.-J.; Hopfmann, T. *Tetrahedron* **2002**, *58*, 8937.
- (17) Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun. 1974, 336.
- (18) For compilations on the Heck reaction, see in: (a) Tsuji, J. Palladium Reagents and Catalysts Innovations in Organic Synthesis; Wiley: Chichester, 1995. (b) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry A Guide for the Synthetic Chemist; Pergamon: Oxford, 2000.