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The carbene carbon atom in Fischer carbene complexes is
well known to be susceptible to nucleophilic attack. Hence,
complexes A bearing both Fischer carbene and thiolato
ligands would be in equilibrium with the thiametalacyclopro-
pane form B.[1] Although the existence of an equilibrium
between A and B was supported by NMR spectroscopy and
reactivity studies,[1a] such complexes are scarce.[2–4] A possible
reason for this paucity lies in facile intramolecular nucleo-
philic substitution to form the RS-substituted carbene com-
plex C.

In our studies of transition-metal complexes of thiolato
ligands,[5] we designed and synthesized the tridentate ligand
[TMSS3Si]3� (H3[

TMSS3Si]= tris(3-trimethylsilyl-2-mercaptophe-
nyl)methylsilane).[6] On attempting to carbonylate an iron(ii)
complex of [TMSS3Si]3�, namely 1, we encountered an unex-
pected formation of a stable Fischer carbene–thiolato com-
plex 3 (Scheme 1). Intriguingly, 3 exhibits a bonding inter-
action of the Fischer carbene carbon atom with the thiolato
ligand.[7]

Treatment of [Fe(CF3SO3)2(CH3CN)2] with 1 equiv of
Li3(

TMSS3Si) followed by cation exchange with PPh4Br
afforded PPh4[Fe(TMSS3Si)(thf)] (1). The magnetic moment
of 1 is typical of tetrahedral FeII centers (meff= 4.77 mB).
Despite line-broadening and a paramagnetic shift of the
resonances, the 1H NMR spectrum exhibits five signals
ascribed to the [TMSS3Si]3� ligand, and this suggests that the
solution structure is consistent with C3 symmetry.

An X-ray crystallographic study of 1 (Figure 1) showed
that the iron atom is bound to the three sulfur donors and one
THF molecule with an average Fe�S distance of 2.301 : and

an Fe�O distance of 2.130(2) :.[8] The iron center has a
tetrahedral environment with slight compression of the S-Fe-
S angles (av 113.58). The S-Fe-O angles average 104.78. The
bridging Si(1) atom assumes a tetrahedral geometry, and the
atoms Fe and Si(1) are separated by 3.3701(9) :. The strain in
the eight-membered {FeS2C4Si} ring of 1 is relieved by
propeller twisting of the [TMSS3Si]3� ligand, which leads to
average S-Fe-Si-C torsion angles of 41.98.

Complex 1 smoothly reacted with 1 atm of CO in THF at
�48 8C to give the diamagnetic carbonyl derivative
(PPh4)[Fe(TMSS3Si)(CO)3] (2). The 1H NMR spectrum of 2
indicates that the symmetric coordination of the [TMSS3Si]3�

ligand is retained. The 13C{1H} NMR resonance of the
carbonyl ligands is found at d= 209.6 ppm. The IR spectrum
of 2 displays two carbonyl stretching bands at 2052 and

Scheme 1. Synthesis of 1–3. a) 3BuLi then [Fe(CF3SO3)2(CH3CN)2],
THF; b) CO, THF, �48 8C; c) THF, RT.

Figure 1. Structure of the anion of 1 with 50% ellipsoids. Selected
bond lengths [-] and angles [8]: Fe�S(1) 2.2798(9), Fe�S(2) 2.3097(9),
Fe�S(3) 2.3129(9), Fe�O 2.130(2); S(1)-Fe-S(2) 106.02(3), S(1)-Fe-S(3)
112.00(3), S(2)-Fe-S(3) 122.62(3), S(1)-Fe-O 100.81(6), S(2)-Fe-O
110.13(7), S(3)-Fe-O 103.14(7).
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1990 cm�1, indicative of a facial tricarbonyl geometry. Com-
plex 2 is stable at low temperature, but is unstable in solution
at ambient temperature. On warming to room temperature,
the red solution gradually turned green, and complete
conversion to complex 3 occurred.

The crystal structure of 3 revealed an unprecedented
Fischer carbene–thiolato complex (Figure 2).[8] The coordi-

nation environment of the iron center is best described as
distorted octahedral, with two mutually cis carbonyl ligands
and a new [TMSS3Si]-derived tetradentate ligand in which the
original trithiolato ligand has been transformed into a
carbene–trithiolato moiety by insertion of CO into an Si�C
bond. The Fe�C(29) bond length of 1.981(4) : is at the long
end of known Fe�C(carbene) bonds,[9] and the C(29) atom
has trigonal-planar geometry, as evidenced by the sum of
angles at C(29) of 352.78. The Fe�S bond lengths, which range
from 2.299(1) to 2.334(1) :, are typical of low-spin FeII

thiolato complexes.[10] It is noteworthy that the thiolato
sulfur atom S(2) is in close proximity to the carbene carbon
atom C(29), although the separation of 1.872(4) : is longer
than a normal C�S single bond (C(sp3)�S 1.82 :).[11] Longer
C�S bonds (1.87–1.92 :) have been observed for sulfur atoms
bonded to spiro carbon atoms.[12] This structural feature
suggests that substantial bonding interaction occurs between
the vacant p orbital of the carbene carbon atom and the lone
pair of the thiolato sulfur atom. This notion is also supported
by the elongation of the C(29)�O(1) distance (1.409(5) :)
relative to those of Fischer carbene complexes.

Spectroscopic data of 3 are consistent with the solid-state
structure. The 1H NMR spectrum reveals a total lack of
symmetry in solution, as evidenced by three SiMe3 singlets. In
the 13C{1H} NMR spectrum of 3-13C, prepared with 13CO, the
carbene carbon atom resonates at d= 128.6 ppm as a doublet

of doublets (2JC,C= 11, 7 Hz) and is accompanied by two
doublets of doublets ascribed to two terminal carbonyl
ligands at d= 213.6 (J= 11, 2 Hz) and 220.1 ppm (J= 7,
2 Hz). The chemical shift of the carbene carbon atom shows
that this center is shielded relative to typical Fischer carbene
complexes (220–350 ppm),[13] a difference that may arise from
the interaction between the carbene carbon atom and the
thiolato sulfur atom. In the IR spectrum, the carbonyl bands
of 3 (1993, 1928 cm�1) are at lower wavenumber than those of
2 because of the higher s-donor/p-acceptor ratio of the
carbene ligand relative to CO.

Scheme 2 shows the likely sequence of events in the
formation of 3 from 2. This transformation is presumed to

involve loss of one CO ligand and h1/h3 rearrangement of one
of the arylthiolate groups, followed by migratory insertion of
the CO ligand into an Si�C bond and subsequent capture of
the liberated CO. This would yield an acyl intermediate with a
dearomatized ring, which could then undergo a net [1,3]-silyl
migration to give a carbene species due to the high
oxophilicity of the silicon atom. In arylthiolato complexes
p coordination at the aryl substituent is uncommon. However,
our recent finding that the arylthiolato ligand SC6H3-2,6-
(SiMe3)2 can bind to the metal center though the aryl moiety
could provide support for the h1/h3 rearrangement of this
proposed mechanism.[5] Although carbonylation of early
transition-metal and actinide complexes is well known to
produce enolate complexes via insertion of CO into Si�C
bonds,[14] this kind of intramolecular transformation is rare for
late-transition-metal complexes. Recently, it was reported
that a platinum complex with Ph2P=NSiMe3 ligands under-
went insertion of CO into the N�Si bond and subsequent
migration of the SiMe3 group to generate an N,O-substituted
carbene.[15]

To gain some insight into the kinetics of the formation of
3, we monitored the disappearance of CO stretching absorp-
tions in the IR spectrum of 2 from 277 to 296 K. The resulting
data gave first-order plots with excellent correlation coeffi-
cients (R2> 0.997). An Arrhenius plot yielded values of
DH�= 125.3� 3.3 kJmol�1 and DS�= 122� 11 Jmol�1K�1.
Together with the observation that the rate of the reaction

Figure 2. Structure of the anion of 3 with 50% ellipsoids. Selected
bond lengths [-] and angles [8]: Fe�S(1) 2.334(1), Fe�S(2) 2.299(1),
Fe�S(3) 2.281(1), Fe�C(29) 1.981(4), Fe�C(30) 1.818(5), Fe�C(31)
1.745(5), S(2)�C(29) 1.872(4), Si(1)�O(1) 1.652(3), O(1)�C(29)
1.409(5), C(21)�C(29) 1.487(6); S(1)-Fe-S(2) 97.96(5), S(1)-Fe-S(3)
170.21(5), S(2)-Fe-S(3) 87.32(6), S(2)-Fe-C(29) 51.2(1), S(2)-Fe-C(30)
107.8(2), C(29)-Fe-C(31) 96.1(2), C(30)-Fe-C(31) 104.9(2), Fe-S(2)-
C(29) 55.6(1), Fe-C(29)-S(2) 73.2(2), Fe-C(29)-O(1) 126.0(3), Fe-C(29)-
C(21) 117.2(3), S(2)-C(29)-O(1) 114.8(3), S(2)-C(29)-C(21) 110.2(3),
O(1)-C(29)-C(21) 109.5(3).

Scheme 2. Proposed mechanism for the transformation of 2 into 3.
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is slower in the presence of CO, the positive entropy of
activation suggests a rate-limiting step involving CO loss from
2. The formation of 3 might be driven by strain in the large
chelate rings in 2.

Finally, preliminary reactivity studies were carried out
with 3. Treatment of 3 with 1 equiv of methyl iodide gave a
mixture of three products in which one of the three thiolato
donors of the [TMSS3Si]3� ligand was methylated according to
NMR spectroscopic data. The carbene moiety remains intact
during the course of the reaction, in which a dithio(thioe-
ther)carbene ligand is formed. On the other hand, complex 3
was inert toward nucleophiles such as PEt3.

In summary, we have synthesized the novel iron(ii)
trithiolato complex 1 containing the tripodal [TMSS3Si]3�

ligand. Carbene–thiolato complex 3 was prepared by reaction
of 1 with CO, in which insertion of CO into an Si�C bond took
place. Since the coordinated THF molecule of 1 is labile, the
trithiolato complex 1 could be a useful reagent for exploring
the chemistry of iron–sulfur compounds relevant to the active
sites in metalloenzymes. We are currently investigating the
reactivity of 1 and 3.

Experimental Section
1: A solution of Li3[

TMSS3Si], prepared by reaction of H3[
TMSS3Si]

(428 mg, 0.729 mmol) with BuLi (1.58m, 1.42 mL, 2.21 mmol) in THF
(10 mL), was added to [Fe(CF3SO3)2(CH3CN)2] (317 mg,
0.728 mmol). The mixture was stirred for 15 min at room temper-
ature, and a solution of PPh4Br (305 mg, 0.727 mmol) in CH3CN
(3.5 mL) was added. After removal of the solvent in vacuo, recrystal-
lization of the residue from THF/Et2O afforded pale-yellow rods of 1
(643 mg, 84%); elemental analysis (%) calcd for C56H67FeOPS3Si4: C
63.97, H 6.42, S 9.15; found: C 63.83, H 6.53, S 8.67; 1H NMR
([D8]THF, 500 MHz, 23 8C): d= 20.1 (br, w1/2= 21 Hz, 3H), 17.7 (br,
w1/2= 40 Hz, 3H), 8.35 (br, 8H, PPh4

+), 8.09 (br, 12H, PPh4
+), 6.99

(br, w1/2= 38 Hz, 27H), �2.90 (br, w1/2= 27 Hz, 3H), �25.3 ppm (br,
w1/2= 24 Hz, 3H); magnetic moment: meff= 4.77 mB.

2 : A solution of 1 (368 mg, 0.35 mmol) in THF (3 mL) was treated
with 1 atm of CO at �48 8C for 1 h. The red solution was concentrated
and layered with Et2O at �48 8C to give 2 (306 mg, 82%) as red
plates; elemental analysis (%) calcd for C55H59FeO3PS3Si4: C 62.12, H
5.59, S 9.05; found: C 61.95, H 5.93, S 8.30; IR (KBr): ñ(CO)= 2052
(s), 1990 cm�1 (s); 1H NMR ([D8]THF, 500 MHz, �30 8C): d= 8.0–7.6
(br, 20H, PPh4

+), 7.19 (d, J= 7.3 Hz, 3H, ArH), 7.14 (J= 6.8 Hz, 3H,
ArH), 6.75 (dd, J= 6.8, 7.3 Hz, 3H, ArH), 0.40 (s, 3H, SiMe),
0.27 ppm (s, 27H, SiMe3).

13C{1H} NMR ([D8]THF, 125 MHz,
�30 8C): d= 209.6 (CO). 29Si{1H} NMR ([D8]THF, 99 MHz, �30 8C)
d=�7.6 (SiMe3), �18.9 ppm (SiMe).

3 : A solution of 2 (306 mg, 0.288 mmol) in THF (7 mL) was
stirred for 2 h at room temperature. The resulting green solution was
evaporated to dryness. The residue was washed with Et2O and
recrystallized from THF/Et2O to give 3 as green plates (229 mg,
75%); elemental analysis (%) calcd for C55H59FeO3PS3Si4: C 62.12, H
5.59, S 9.05; found: C 61.85, H 5.69, S 8.83; IR (KBr): ñ(CO)= 1993
(s), 1928 cm�1 (s); 1H NMR ([D8]THF, 500 MHz): d= 8.0–7.5 (m,
20H, PPh4

+), 7.64 (d, J= 7.3 Hz, 1H), 7.34 (d, J= 6.7 Hz, 1H), 7.28 (d,
J= 6.7 Hz, 1H), 7.19 (d, J= 7.3 Hz, 1H), 7.16 (d, J= 7.3 Hz, 1H), 6.89
(m, 2H), 6.83 (d, J= 7.3 Hz, 1H), 6.55 (m, 1H), 0.62 (s, 3H, SiMe),
0.331 (s, 9H, SiMe3), 0.325 (s, 9H, SiMe3), 0.28 ppm (s, 3H, SiMe3);
13C{1H} NMR ([D8]THF, 3-13C): d= 219.8 (2JC,C= 11, 2 Hz, CO), 213.3
(J= 7, 2 Hz, CO), 128.9 ppm (J= 11, 7 Hz, Ccarbene);

29Si NMR (DEPT,
[D8]THF, 99 MHz): d=�5.0, �6.3, �8.4 (SiMe3), �15.1 ppm (SiMe).
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