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Abstract—A traceless synthesis of 1,3-diketones has been achieved through enamine methodology from solid-phase organic
synthesis. Thus, piperazine served as a linker for this traceless cleavage of �-diketones from solid support. © 2003 Elsevier Science
Ltd. All rights reserved.

1,3-Diketones are important intermediates not only as a
key building block for the synthesis of core heterocycles
such as pyrazole,1 isoxazlole,2 and triazole3 in medicinal
chemistry, but also as an invaluable chelating ligand for
various lanthanide and transition metals in material
chemistry.4 Although there are many reports of the
synthesis of 1,3-diketone scaffold and its derivatives
from solution phase chemistry,5 few routes using solid-
phase are known, and these routes need some improve-
ments for our purpose. For example, 1,3-diketone
scaffold has been constructed in Wang or Rink amide
resin through Claisen condensation, providing a start-
ing material for pyrazole and isoxazole based heterocy-
cle libraries.6 However, that method, upon cleavage
from solid-phase, resulted in unwanted tether such as
amide6i or hydroxy6ii functional group in the product
depending on the resin used. This unwanted functional
group attached to the 1,3-diketones negatively influ-
ences the formation of �-diketone-metal complexes for
various materials. Furthermore, application to the syn-
thesis of various heterocycles can result in biologically
undesirable functionality in the final products. Thus, a
traceless synthetic strategy for 1,3-diketones needs to be
developed to provide a large number of diverse 1,3-
diketones from solid-phase combinatorial approach. To
achieve this end, we examined enamine methodology.7

Morpholine or pyrrolidine is widely used for the forma-
tion of ketone enamine, which, upon reaction with acyl
halide, followed by hydrolysis, affords �-diketones.
Since polymer supported piperazine is commercially
available we chose to explore its use as a linker for
enamine acylations. One example of using piperazine as
a linker has been reported for the synthesis of �,�-
unsaturated methyl ketones.8 A preliminary solution
phase reaction showed that �-diketone 2 was obtained
from N-methylpiperazine through its enamine interme-
diate 1 (Scheme 1).

This result convinced us to further explore commer-
cially available polymer bound piperazine 3 in this
reaction. Thus, several methyl ketones were attached to
piperazinomethylpolystyrene through azeotropic dehy-
dration to afford enamine bound polymer 4. Subse-
quent reaction of this polymeric enamine intermediate
with substituted acyl halides provided acylated enam-
ines 5. After acid hydrolysis of the polymer bound
acylated enamine, traceless �-diketones 6 were obtained
(Scheme 2).9

It is known that halogen (especially fluorine) containing
�-diketones are in many instances superior intermedi-
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ates to their non halogenated (fluorinated) analogues
for their useful properties such as metal extraction or
high biological activities.10

Enamine bound resin 7, which was made from
cycloalkanones, provide polymer bound enol ester 9
exclusively when reacted with electron withdrawing
group substituted acyl halides. The released enol ester
10 from hydrolysis of the resin 9 was quantitatively
safonified to afford desired �-diketones 11 (Scheme 3
and Table 1).

Enol ester 10 is also known as an invaluable intermedi-
ate for the synthesis of functionalized furan derivatives
by McMurry-type coupling reaction11, and we are cur-
rently exploring this reaction from solid-phase
chemistry.

In summary, we have established a viable route for the
traceless solid-phase synthesis of 1,3-diketones via
enamine methodology. This is the first report for the
synthesis of traceless 1,3-diketones from solid-phase,
and production of a large library of this scaffold via
parallel solid-phase synthesis is currently underway.
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Table 1. 1,3-Diketones (6 or 11) from solid-phase

Entrya Yieldb (%)R1 or n R2

C6H5-C6H5- 366-1
536-2 C6H5- o-F-C6H4-

6-3 p-CF3-C6H4- 40C6H5-
426-4 C6H5- C6F5-

6-5 29p-Cl-C6H4-p-CH3-C6H4-
C6H5- 38p-F-C6H4-6-6

6-7 57Biphenyl C6H5-
n=1 (Cyclopentane)11-1 p-F-C6H4- 35
n=2 (Cyclohexane) o-Cl-C6H4-11-2 66
n=3 (Cycloheptane)11-3 p-F-C6H4- 50

a All known compounds.
b Overall yield after purification from short silica column chromato-

graphy.
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